Fixing tests
Signed-off-by: brian <brian@brutex.de>
This commit is contained in:
		
							parent
							
								
									0bed17c97f
								
							
						
					
					
						commit
						997143b9dd
					
				| @ -88,7 +88,7 @@ public class CNN1DTestCases { | ||||
|                         .convolutionMode(ConvolutionMode.Same)) | ||||
|                         .graphBuilder() | ||||
|                         .addInputs("in") | ||||
|                         .layer("0", Convolution1DLayer.builder().nOut(32).activation(Activation.TANH).kernelSize(3).stride(1).build(), "in") | ||||
|                         .layer("0", Convolution1D.builder().nOut(32).activation(Activation.TANH).kernelSize(3).stride(1).build(), "in") | ||||
|                         .layer("1", Subsampling1DLayer.builder().kernelSize(2).stride(1).poolingType(SubsamplingLayer.PoolingType.MAX.toPoolingType()).build(), "0") | ||||
|                         .layer("2", Cropping1D.builder(1).build(), "1") | ||||
|                         .layer("3", ZeroPadding1DLayer.builder(1).build(), "2") | ||||
|  | ||||
| @ -77,7 +77,7 @@ public class BNGradientCheckTest extends BaseDL4JTest { | ||||
|                 NeuralNetConfiguration.builder().updater(new NoOp()) | ||||
|                         .dataType(DataType.DOUBLE) | ||||
|                         .seed(12345L) | ||||
|                         .dist(new NormalDistribution(0, 1)).list() | ||||
|                         .weightInit(new NormalDistribution(0, 1)) | ||||
|                         .layer(0, DenseLayer.builder().nIn(4).nOut(3) | ||||
|                                 .activation(Activation.IDENTITY).build()) | ||||
|                         .layer(1,BatchNormalization.builder().useLogStd(useLogStd).nOut(3).build()) | ||||
|  | ||||
| @ -93,7 +93,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                   .convolutionMode(ConvolutionMode.Same) | ||||
|                   .list() | ||||
|                   .layer( | ||||
|                       Convolution1DLayer.builder() | ||||
|                       Convolution1D.builder() | ||||
|                           .activation(afn) | ||||
|                           .kernelSize(kernel) | ||||
|                           .stride(stride) | ||||
| @ -202,7 +202,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                     .dist(new NormalDistribution(0, 1)) | ||||
|                     .convolutionMode(ConvolutionMode.Same) | ||||
|                     .layer( | ||||
|                         Convolution1DLayer.builder() | ||||
|                         Convolution1D.builder() | ||||
|                             .activation(afn) | ||||
|                             .kernelSize(kernel) | ||||
|                             .stride(stride) | ||||
| @ -211,7 +211,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                             .build()) | ||||
|                     .layer(Cropping1D.builder(cropping).build()) | ||||
|                     .layer( | ||||
|                         Convolution1DLayer.builder() | ||||
|                         Convolution1D.builder() | ||||
|                             .activation(afn) | ||||
|                             .kernelSize(kernel) | ||||
|                             .stride(stride) | ||||
| @ -317,7 +317,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                     .dist(new NormalDistribution(0, 1)) | ||||
|                     .convolutionMode(ConvolutionMode.Same) | ||||
|                     .layer( | ||||
|                         Convolution1DLayer.builder() | ||||
|                         Convolution1D.builder() | ||||
|                             .activation(afn) | ||||
|                             .kernelSize(kernel) | ||||
|                             .stride(stride) | ||||
| @ -326,7 +326,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                             .build()) | ||||
|                     .layer(ZeroPadding1DLayer.builder(zeroPadding).build()) | ||||
|                     .layer( | ||||
|                         Convolution1DLayer.builder() | ||||
|                         Convolution1D.builder() | ||||
|                             .activation(afn) | ||||
|                             .kernelSize(kernel) | ||||
|                             .stride(stride) | ||||
| @ -438,7 +438,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                     .list() | ||||
|                     .layer( | ||||
|                         0, | ||||
|                         Convolution1DLayer.builder() | ||||
|                         Convolution1D.builder() | ||||
|                             .activation(afn) | ||||
|                             .kernelSize(kernel) | ||||
|                             .stride(stride) | ||||
| @ -447,7 +447,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                             .build()) | ||||
|                     .layer( | ||||
|                         1, | ||||
|                         Convolution1DLayer.builder() | ||||
|                         Convolution1D.builder() | ||||
|                             .activation(afn) | ||||
|                             .kernelSize(kernel) | ||||
|                             .stride(stride) | ||||
| @ -548,7 +548,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                   .seed(12345) | ||||
|                   .list() | ||||
|                   .layer( | ||||
|                       Convolution1DLayer.builder() | ||||
|                       Convolution1D.builder() | ||||
|                           .kernelSize(2) | ||||
|                           .rnnDataFormat(RNNFormat.NCW) | ||||
|                           .stride(stride) | ||||
| @ -562,7 +562,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                           .pnorm(pnorm) | ||||
|                           .build()) | ||||
|                   .layer( | ||||
|                       Convolution1DLayer.builder() | ||||
|                       Convolution1D.builder() | ||||
|                           .kernelSize(2) | ||||
|                           .rnnDataFormat(RNNFormat.NCW) | ||||
|                           .stride(stride) | ||||
| @ -655,7 +655,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|               .seed(12345) | ||||
|               .list() | ||||
|               .layer( | ||||
|                   Convolution1DLayer.builder() | ||||
|                   Convolution1D.builder() | ||||
|                       .kernelSize(k) | ||||
|                       .dilation(d) | ||||
|                       .hasBias(hasBias) | ||||
| @ -664,7 +664,7 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest { | ||||
|                       .nOut(convNOut1) | ||||
|                       .build()) | ||||
|               .layer( | ||||
|                   Convolution1DLayer.builder() | ||||
|                   Convolution1D.builder() | ||||
|                       .kernelSize(k) | ||||
|                       .dilation(d) | ||||
|                       .convolutionMode(ConvolutionMode.Causal) | ||||
|  | ||||
| @ -180,7 +180,7 @@ public class DTypeTests extends BaseDL4JTest { | ||||
|             Pooling2D.class,        //Alias for SubsamplingLayer | ||||
|             Convolution2D.class,    //Alias for ConvolutionLayer | ||||
|             Pooling1D.class,        //Alias for Subsampling1D | ||||
|             Convolution1D.class,    //Alias for  Convolution1DLayer | ||||
|             Convolution1D.class,    //Alias for  Convolution1D | ||||
|             TensorFlowCnnToFeedForwardPreProcessor.class    //Deprecated | ||||
|     )); | ||||
| 
 | ||||
|  | ||||
| @ -37,7 +37,7 @@ import org.deeplearning4j.nn.gradient.Gradient; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.deeplearning4j.nn.workspace.ArrayType; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.deeplearning4j.util.ConvolutionUtils; | ||||
| import org.deeplearning4j.util.Convolution2DUtils; | ||||
| import org.junit.jupiter.api.Test; | ||||
| import org.junit.jupiter.api.Timeout; | ||||
| import org.nd4j.linalg.activations.Activation; | ||||
| @ -1026,7 +1026,7 @@ public class ConvDataFormatTests extends BaseDL4JTest { | ||||
|                 } catch (DL4JInvalidInputException e) { | ||||
| //                    e.printStackTrace(); | ||||
|                     String msg = e.getMessage(); | ||||
|                     assertTrue(msg.contains(ConvolutionUtils.NCHW_NHWC_ERROR_MSG) || msg.contains("input array channels does not match CNN layer configuration"), msg); | ||||
|                     assertTrue(msg.contains(Convolution2DUtils.NCHW_NHWC_ERROR_MSG) || msg.contains("input array channels does not match CNN layer configuration"), msg); | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|  | ||||
| @ -36,7 +36,7 @@ import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | ||||
| import org.deeplearning4j.nn.conf.RNNFormat; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.deeplearning4j.nn.conf.layers.*; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1DLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1D; | ||||
| import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.deeplearning4j.nn.weights.WeightInit; | ||||
| @ -921,7 +921,7 @@ public class ConvolutionLayerTest extends BaseDL4JTest { | ||||
|         NeuralNetConfiguration.builder() | ||||
|             .convolutionMode(ConvolutionMode.Same) | ||||
|             .layer( | ||||
|                 Convolution1DLayer.builder() | ||||
|                 Convolution1D.builder() | ||||
|                     .nOut(3) | ||||
|                     .kernelSize(2) | ||||
|                     .activation(Activation.TANH) | ||||
| @ -975,7 +975,7 @@ public class ConvolutionLayerTest extends BaseDL4JTest { | ||||
| 
 | ||||
|   @Test | ||||
|   public void testConv1dCausalAllowed() { | ||||
|     Convolution1DLayer.builder().convolutionMode(ConvolutionMode.Causal).kernelSize(2).build(); | ||||
|     Convolution1D.builder().convolutionMode(ConvolutionMode.Causal).kernelSize(2).build(); | ||||
|     Subsampling1DLayer.builder().convolutionMode(ConvolutionMode.Causal).kernelSize(2).build(); | ||||
|   } | ||||
| 
 | ||||
|  | ||||
| @ -33,7 +33,7 @@ import org.deeplearning4j.nn.conf.layers.*; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.deeplearning4j.nn.weights.WeightInit; | ||||
| import org.deeplearning4j.util.ConvolutionUtils; | ||||
| import org.deeplearning4j.util.Convolution2DUtils; | ||||
| import org.junit.jupiter.api.Test; | ||||
| import org.nd4j.linalg.activations.Activation; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| @ -346,7 +346,7 @@ public class TestConvolutionModes extends BaseDL4JTest { | ||||
|         assertEquals(2, it.getHeight()); | ||||
|         assertEquals(2, it.getWidth()); | ||||
|         assertEquals(dOut, it.getChannels()); | ||||
|         int[] outSize = ConvolutionUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Strict); | ||||
|         int[] outSize = Convolution2DUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Strict); | ||||
|         assertEquals(2, outSize[0]); | ||||
|         assertEquals(2, outSize[1]); | ||||
| 
 | ||||
| @ -357,7 +357,7 @@ public class TestConvolutionModes extends BaseDL4JTest { | ||||
|         assertEquals(2, it.getHeight()); | ||||
|         assertEquals(2, it.getWidth()); | ||||
|         assertEquals(dOut, it.getChannels()); | ||||
|         outSize = ConvolutionUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Truncate); | ||||
|         outSize = Convolution2DUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Truncate); | ||||
|         assertEquals(2, outSize[0]); | ||||
|         assertEquals(2, outSize[1]); | ||||
| 
 | ||||
| @ -367,7 +367,7 @@ public class TestConvolutionModes extends BaseDL4JTest { | ||||
|         assertEquals(3, it.getHeight()); | ||||
|         assertEquals(3, it.getWidth()); | ||||
|         assertEquals(dOut, it.getChannels()); | ||||
|         outSize = ConvolutionUtils.getOutputSize(inData, kernel, stride, null, ConvolutionMode.Same); | ||||
|         outSize = Convolution2DUtils.getOutputSize(inData, kernel, stride, null, ConvolutionMode.Same); | ||||
|         assertEquals(3, outSize[0]); | ||||
|         assertEquals(3, outSize[1]); | ||||
| 
 | ||||
| @ -397,7 +397,7 @@ public class TestConvolutionModes extends BaseDL4JTest { | ||||
|             System.out.println(e.getMessage()); | ||||
|         } | ||||
|         try { | ||||
|             outSize = ConvolutionUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Strict); | ||||
|             outSize = Convolution2DUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Strict); | ||||
|             fail("Exception expected"); | ||||
|         } catch (DL4JException e) { | ||||
|             System.out.println(e.getMessage()); | ||||
| @ -409,7 +409,7 @@ public class TestConvolutionModes extends BaseDL4JTest { | ||||
|         assertEquals(1, it.getHeight()); | ||||
|         assertEquals(1, it.getWidth()); | ||||
|         assertEquals(dOut, it.getChannels()); | ||||
|         outSize = ConvolutionUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Truncate); | ||||
|         outSize = Convolution2DUtils.getOutputSize(inData, kernel, stride, padding, ConvolutionMode.Truncate); | ||||
|         assertEquals(1, outSize[0]); | ||||
|         assertEquals(1, outSize[1]); | ||||
| 
 | ||||
| @ -419,7 +419,7 @@ public class TestConvolutionModes extends BaseDL4JTest { | ||||
|         assertEquals(2, it.getHeight()); | ||||
|         assertEquals(2, it.getWidth()); | ||||
|         assertEquals(dOut, it.getChannels()); | ||||
|         outSize = ConvolutionUtils.getOutputSize(inData, kernel, stride, null, ConvolutionMode.Same); | ||||
|         outSize = Convolution2DUtils.getOutputSize(inData, kernel, stride, null, ConvolutionMode.Same); | ||||
|         assertEquals(2, outSize[0]); | ||||
|         assertEquals(2, outSize[1]); | ||||
|     } | ||||
|  | ||||
| @ -732,7 +732,7 @@ public class BatchNormalizationTest extends BaseDL4JTest { | ||||
|                     .weightInit(WeightInit.XAVIER) | ||||
|                     .convolutionMode(ConvolutionMode.Same) | ||||
|                     .layer(rnn ? LSTM.builder().nOut(3).build() : | ||||
|                             Convolution1DLayer.builder().kernelSize(3).stride(1).nOut(3).build()) | ||||
|                             Convolution1D.builder().kernelSize(3).stride(1).nOut(3).build()) | ||||
|                     .layer(BatchNormalization.builder().build()) | ||||
|                     .layer(RnnOutputLayer.builder().nOut(3).activation(Activation.TANH).lossFunction(LossFunctions.LossFunction.MSE).build()) | ||||
|                     .inputType(InputType.recurrent(3)) | ||||
|  | ||||
| @ -52,7 +52,7 @@ public class WeightInitIdentityTest extends BaseDL4JTest { | ||||
|                 .graphBuilder() | ||||
|                 .addInputs(inputName) | ||||
|                 .setOutputs(output) | ||||
|                 .layer(conv, Convolution1DLayer.builder(7) | ||||
|                 .layer(conv, Convolution1D.builder(7) | ||||
|                         .convolutionMode(ConvolutionMode.Same) | ||||
|                         .nOut(input.size(1)) | ||||
|                         .weightInit(new WeightInitIdentity()) | ||||
|  | ||||
| @ -38,7 +38,7 @@ import org.deeplearning4j.nn.gradient.Gradient; | ||||
| import org.deeplearning4j.cuda.BaseCudnnHelper; | ||||
| import org.deeplearning4j.nn.layers.convolution.ConvolutionHelper; | ||||
| import org.deeplearning4j.nn.params.ConvolutionParamInitializer; | ||||
| import org.deeplearning4j.util.ConvolutionUtils; | ||||
| import org.deeplearning4j.util.Convolution2DUtils; | ||||
| import org.nd4j.jita.allocator.Allocator; | ||||
| import org.nd4j.jita.allocator.impl.AtomicAllocator; | ||||
| import org.nd4j.jita.conf.CudaEnvironment; | ||||
| @ -681,9 +681,9 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti | ||||
| 
 | ||||
|         int[] outSize; | ||||
|         if (convolutionMode == ConvolutionMode.Same) { | ||||
|             outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation | ||||
|             padding = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int) inH, (int) inW}, kernel, strides, dilation); | ||||
|             int[] padBottomRight = ConvolutionUtils.getSameModeBottomRightPadding(outSize, new int[] {(int) inH, (int) inW}, kernel, strides, dilation); | ||||
|             outSize = Convolution2DUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation | ||||
|             padding = Convolution2DUtils.getSameModeTopLeftPadding(outSize, new int[] {(int) inH, (int) inW}, kernel, strides, dilation); | ||||
|             int[] padBottomRight = Convolution2DUtils.getSameModeBottomRightPadding(outSize, new int[] {(int) inH, (int) inW}, kernel, strides, dilation); | ||||
|             if(!Arrays.equals(padding, padBottomRight)){ | ||||
|                 /* | ||||
|                 CuDNN - even as of 7.1 (CUDA 9.1) still doesn't have support for proper SAME mode padding (i.e., asymmetric | ||||
| @ -731,7 +731,7 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti | ||||
|                 // CuDNN handle | ||||
|             } | ||||
|         } else { | ||||
|             outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, padding, convolutionMode, dilation, format); //Also performs validation | ||||
|             outSize = Convolution2DUtils.getOutputSize(input, kernel, strides, padding, convolutionMode, dilation, format); //Also performs validation | ||||
|         } | ||||
| 
 | ||||
|         return new CudnnForwardArgs(manualPadBottom, manualPadRight, input, origInput, padding, outSize); | ||||
|  | ||||
| @ -42,7 +42,7 @@ import org.deeplearning4j.nn.modelimport.keras.utils.KerasLayerUtils; | ||||
| import org.deeplearning4j.nn.modelimport.keras.utils.KerasModelBuilder; | ||||
| import org.deeplearning4j.nn.modelimport.keras.utils.KerasModelUtils; | ||||
| import org.deeplearning4j.nn.modelimport.keras.utils.KerasOptimizerUtils; | ||||
| import org.deeplearning4j.util.ConvolutionUtils; | ||||
| import org.deeplearning4j.util.Convolution2DUtils; | ||||
| import org.nd4j.common.primitives.Counter; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| import org.nd4j.linalg.learning.config.IUpdater; | ||||
| @ -442,8 +442,8 @@ public class KerasModel { | ||||
|                     KerasInput kerasInput = (KerasInput) layer; | ||||
|                     LayerConfiguration layer1 = layersOrdered.get(kerasLayerIdx + 1).layer; | ||||
|                     //no dim order, try to pull it from the next layer if there is one | ||||
|                     if(ConvolutionUtils.layerHasConvolutionLayout(layer1)) { | ||||
|                         CNN2DFormat formatForLayer = ConvolutionUtils.getFormatForLayer(layer1); | ||||
|                     if(Convolution2DUtils.layerHasConvolutionLayout(layer1)) { | ||||
|                         CNN2DFormat formatForLayer = Convolution2DUtils.getFormatForLayer(layer1); | ||||
|                         if(formatForLayer == CNN2DFormat.NCHW) { | ||||
|                             dimOrder = KerasLayer.DimOrder.THEANO; | ||||
|                         }  else if(formatForLayer == CNN2DFormat.NHWC) { | ||||
|  | ||||
| @ -23,7 +23,7 @@ package org.deeplearning4j.nn.modelimport.keras.layers.convolutional; | ||||
| import org.deeplearning4j.nn.api.layers.LayerConstraint; | ||||
| import org.deeplearning4j.nn.conf.RNNFormat; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1DLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1D; | ||||
| import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; | ||||
| import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException; | ||||
| import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException; | ||||
| @ -84,29 +84,29 @@ public class KerasAtrousConvolution1D extends KerasConvolution { | ||||
|         IWeightInit init = getWeightInitFromConfig(layerConfig, conf.getLAYER_FIELD_INIT(), | ||||
|                 enforceTrainingConfig, conf, kerasMajorVersion); | ||||
| 
 | ||||
|         ConvolutionLayer.ConvolutionLayerBuilder builder = Convolution1DLayer.builder().name(this.name) | ||||
|         var builder = Convolution1D.builder().name(this.name) | ||||
|                 .nOut(getNOutFromConfig(layerConfig, conf)).dropOut(this.dropout) | ||||
|                 .activation(getIActivationFromConfig(layerConfig, conf)) | ||||
|                 .weightInit(init) | ||||
|                 .dilation(getDilationRate(layerConfig, 1, conf, true)[0]) | ||||
|                 .l1(this.weightL1Regularization).l2(this.weightL2Regularization) | ||||
|                 .convolutionMode(getConvolutionModeFromConfig(layerConfig, conf)) | ||||
|                 .kernelSize(getKernelSizeFromConfig(layerConfig, 1, conf, kerasMajorVersion)[0]) | ||||
|                 .kernelSize(getKernelSizeFromConfig(layerConfig, 1, conf, kerasMajorVersion)) | ||||
|                 .hasBias(hasBias) | ||||
|                 .rnnDataFormat(dimOrder == DimOrder.TENSORFLOW ? RNNFormat.NWC : RNNFormat.NCW) | ||||
|                 .stride(getStrideFromConfig(layerConfig, 1, conf)[0]); | ||||
|                 .stride(getStrideFromConfig(layerConfig, 1, conf)); | ||||
|         int[] padding = getPaddingFromBorderModeConfig(layerConfig, 1, conf, kerasMajorVersion); | ||||
|         if (hasBias) | ||||
|             builder.biasInit(0.0); | ||||
|         if (padding != null) | ||||
|             builder.padding(padding[0]); | ||||
|             builder.padding(padding); | ||||
|         if (biasConstraint != null) | ||||
|             builder.constrainBias(biasConstraint); | ||||
|         if (weightConstraint != null) | ||||
|             builder.constrainWeights(weightConstraint); | ||||
|         this.layer = builder.build(); | ||||
|         Convolution1DLayer convolution1DLayer = (Convolution1DLayer) layer; | ||||
|         convolution1DLayer.setDefaultValueOverriden(true); | ||||
|         Convolution1D convolution1D = (Convolution1D) layer; | ||||
|         convolution1D.setDefaultValueOverriden(true); | ||||
|     } | ||||
| 
 | ||||
|     /** | ||||
| @ -114,8 +114,8 @@ public class KerasAtrousConvolution1D extends KerasConvolution { | ||||
|      * | ||||
|      * @return ConvolutionLayer | ||||
|      */ | ||||
|     public Convolution1DLayer getAtrousConvolution1D() { | ||||
|         return (Convolution1DLayer) this.layer; | ||||
|     public Convolution1D getAtrousConvolution1D() { | ||||
|         return (Convolution1D) this.layer; | ||||
|     } | ||||
| 
 | ||||
|     /** | ||||
|  | ||||
| @ -28,7 +28,7 @@ import org.deeplearning4j.nn.conf.CNN2DFormat; | ||||
| import org.deeplearning4j.nn.conf.InputPreProcessor; | ||||
| import org.deeplearning4j.nn.conf.RNNFormat; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1DLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1D; | ||||
| import org.deeplearning4j.nn.conf.layers.InputTypeUtil; | ||||
| import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException; | ||||
| import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException; | ||||
| @ -93,7 +93,7 @@ public class KerasConvolution1D extends KerasConvolution { | ||||
| 
 | ||||
|         IWeightInit init = getWeightInitFromConfig(layerConfig, conf.getLAYER_FIELD_INIT(), | ||||
|                 enforceTrainingConfig, conf, kerasMajorVersion); | ||||
|         Convolution1DLayer.Convolution1DLayerBuilder builder = Convolution1DLayer.builder().name(this.name) | ||||
|         var builder = Convolution1D.builder().name(this.name) | ||||
|                 .nOut(getNOutFromConfig(layerConfig, conf)).dropOut(this.dropout) | ||||
|                 .activation(getIActivationFromConfig(layerConfig, conf)) | ||||
|                 .weightInit(init) | ||||
| @ -125,9 +125,9 @@ public class KerasConvolution1D extends KerasConvolution { | ||||
| 
 | ||||
|         this.layer = builder.build(); | ||||
|         //set this in order to infer the dimensional format | ||||
|         Convolution1DLayer convolution1DLayer = (Convolution1DLayer) this.layer; | ||||
|         convolution1DLayer.setDataFormat(dimOrder == DimOrder.TENSORFLOW ? CNN2DFormat.NHWC : CNN2DFormat.NCHW); | ||||
|         convolution1DLayer.setDefaultValueOverriden(true); | ||||
|         Convolution1D convolution1D = (Convolution1D) this.layer; | ||||
|         convolution1D.setDataFormat(dimOrder == DimOrder.TENSORFLOW ? CNN2DFormat.NHWC : CNN2DFormat.NCHW); | ||||
|         convolution1D.setDefaultValueOverriden(true); | ||||
|     } | ||||
| 
 | ||||
|     /** | ||||
| @ -135,8 +135,8 @@ public class KerasConvolution1D extends KerasConvolution { | ||||
|      * | ||||
|      * @return  ConvolutionLayer | ||||
|      */ | ||||
|     public Convolution1DLayer getConvolution1DLayer() { | ||||
|         return (Convolution1DLayer) this.layer; | ||||
|     public Convolution1D getConvolution1DLayer() { | ||||
|         return (Convolution1D) this.layer; | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
| @ -29,11 +29,8 @@ import org.deeplearning4j.gradientcheck.GradientCheckUtil; | ||||
| import org.deeplearning4j.nn.api.Layer; | ||||
| import org.deeplearning4j.nn.api.layers.IOutputLayer; | ||||
| import org.deeplearning4j.nn.conf.ConvolutionMode; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1DLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.FeedForwardLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.LayerConfiguration; | ||||
| import org.deeplearning4j.nn.conf.layers.LossLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.RnnOutputLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.*; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1D; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.deeplearning4j.BaseDL4JTest; | ||||
| import org.deeplearning4j.nn.modelimport.keras.Hdf5Archive; | ||||
| @ -656,7 +653,7 @@ public class KerasModelEndToEndTest extends BaseDL4JTest { | ||||
|             MultiLayerNetwork net = importEndModelTest(modelPath, inputsOutputPath, true, true, | ||||
|                     true, true, false, null, null); | ||||
|             Layer l = net.getLayer(0); | ||||
|             Convolution1DLayer c1d = (Convolution1DLayer) l.getTrainingConfig(); | ||||
|             Convolution1D c1d = (Convolution1D) l.getTrainingConfig(); | ||||
|             assertEquals(ConvolutionMode.Causal, c1d.getConvolutionMode()); | ||||
|         } | ||||
|     } | ||||
|  | ||||
| @ -22,7 +22,7 @@ package org.deeplearning4j.nn.modelimport.keras.layers.convolution; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.conf.ConvolutionMode; | ||||
| import org.deeplearning4j.nn.conf.dropout.Dropout; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1DLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1D; | ||||
| import org.deeplearning4j.BaseDL4JTest; | ||||
| import org.deeplearning4j.nn.modelimport.keras.KerasTestUtils; | ||||
| import org.deeplearning4j.nn.modelimport.keras.config.Keras1LayerConfiguration; | ||||
| @ -97,7 +97,7 @@ public class KerasAtrousConvolution1DTest extends BaseDL4JTest { | ||||
|         config.put(conf.getLAYER_FIELD_BORDER_MODE(), BORDER_MODE_VALID); | ||||
|         layerConfig.put(conf.getLAYER_FIELD_CONFIG(), config); | ||||
| 
 | ||||
|         Convolution1DLayer layer = new KerasAtrousConvolution1D(layerConfig).getAtrousConvolution1D(); | ||||
|         Convolution1D layer = new KerasAtrousConvolution1D(layerConfig).getAtrousConvolution1D(); | ||||
|         assertEquals(ACTIVATION_DL4J, layer.getActivationFn().toString()); | ||||
|         assertEquals(LAYER_NAME, layer.getName()); | ||||
|         assertEquals(INIT_DL4J, layer.getWeightInit()); | ||||
|  | ||||
| @ -22,7 +22,7 @@ package org.deeplearning4j.nn.modelimport.keras.layers.convolution; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.conf.ConvolutionMode; | ||||
| import org.deeplearning4j.nn.conf.dropout.Dropout; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1DLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution1D; | ||||
| import org.deeplearning4j.BaseDL4JTest; | ||||
| import org.deeplearning4j.nn.modelimport.keras.KerasTestUtils; | ||||
| import org.deeplearning4j.nn.modelimport.keras.config.Keras1LayerConfiguration; | ||||
| @ -119,7 +119,7 @@ public class KerasConvolution1DTest extends BaseDL4JTest { | ||||
|         config.put(conf.getLAYER_FIELD_BORDER_MODE(), BORDER_MODE_VALID); | ||||
|         layerConfig.put(conf.getLAYER_FIELD_CONFIG(), config); | ||||
| 
 | ||||
|         Convolution1DLayer layer = new KerasConvolution1D(layerConfig).getConvolution1DLayer(); | ||||
|         Convolution1D layer = new KerasConvolution1D(layerConfig).getConvolution1DLayer(); | ||||
|         assertEquals(ACTIVATION_DL4J, layer.getActivationFn().toString()); | ||||
|         assertEquals(LAYER_NAME, layer.getName()); | ||||
|         assertEquals(INIT_DL4J, layer.getWeightInit()); | ||||
|  | ||||
| @ -22,8 +22,6 @@ | ||||
| package net.brutex.ai.dnn.api; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.List; | ||||
| import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | ||||
| 
 | ||||
| public interface INeuralNetworkConfiguration extends Serializable, Cloneable { | ||||
| 
 | ||||
|  | ||||
| @ -23,7 +23,6 @@ package net.brutex.ai.dnn.api; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | ||||
| import org.deeplearning4j.nn.conf.NeuralNetConfiguration.NeuralNetConfigurationBuilder; | ||||
| import org.deeplearning4j.nn.conf.layers.DenseLayer; | ||||
| 
 | ||||
| /** | ||||
|  * A fluent API to configure and create artificial neural networks | ||||
|  | ||||
| @ -23,7 +23,6 @@ package net.brutex.ai.dnn.networks; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.Arrays; | ||||
| import java.util.HashMap; | ||||
| import java.util.Map; | ||||
| import lombok.Getter; | ||||
| import lombok.NonNull; | ||||
| @ -33,7 +32,6 @@ import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | ||||
| import org.deeplearning4j.nn.gradient.Gradient; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| 
 | ||||
| /** | ||||
|  * Artificial Neural Network An artificial neural network (1) takes some input data, and (2) | ||||
|  * transforms this input data by calculating a weighted sum over the inputs and (3) applies a | ||||
|  | ||||
| @ -20,6 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.ArrayList; | ||||
| import java.util.Collections; | ||||
| import java.util.List; | ||||
| import lombok.Data; | ||||
| import lombok.NoArgsConstructor; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| @ -30,11 +34,6 @@ import org.deeplearning4j.earlystopping.termination.IterationTerminationConditio | ||||
| import org.deeplearning4j.exception.DL4JInvalidConfigException; | ||||
| import org.nd4j.common.function.Supplier; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.ArrayList; | ||||
| import java.util.Collections; | ||||
| import java.util.List; | ||||
| 
 | ||||
| @Data | ||||
| @NoArgsConstructor | ||||
| public class EarlyStoppingConfiguration<T extends IModel> implements Serializable { | ||||
|  | ||||
| @ -20,16 +20,15 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonInclude; | ||||
| import com.fasterxml.jackson.annotation.JsonSubTypes; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| import java.io.IOException; | ||||
| import java.io.Serializable; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.earlystopping.saver.InMemoryModelSaver; | ||||
| import org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver; | ||||
| import org.deeplearning4j.earlystopping.saver.LocalFileModelSaver; | ||||
| import com.fasterxml.jackson.annotation.JsonInclude; | ||||
| import com.fasterxml.jackson.annotation.JsonSubTypes; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.IOException; | ||||
| import java.io.Serializable; | ||||
| 
 | ||||
| @JsonInclude(JsonInclude.Include.NON_NULL) | ||||
| @JsonSubTypes(value = {@JsonSubTypes.Type(value = InMemoryModelSaver.class, name = "InMemoryModelSaver"), | ||||
|  | ||||
| @ -20,11 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.Map; | ||||
| import lombok.Data; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| 
 | ||||
| @Data | ||||
| public class EarlyStoppingResult<T extends IModel> implements Serializable { | ||||
|  | ||||
| @ -20,10 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.saver; | ||||
| 
 | ||||
| import org.deeplearning4j.earlystopping.EarlyStoppingModelSaver; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| 
 | ||||
| import java.io.IOException; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.earlystopping.EarlyStoppingModelSaver; | ||||
| 
 | ||||
| public class InMemoryModelSaver<T extends IModel> implements EarlyStoppingModelSaver<T> { | ||||
| 
 | ||||
|  | ||||
| @ -20,15 +20,14 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.saver; | ||||
| 
 | ||||
| import java.io.File; | ||||
| import java.io.IOException; | ||||
| import java.nio.charset.Charset; | ||||
| import org.apache.commons.io.FilenameUtils; | ||||
| import org.deeplearning4j.earlystopping.EarlyStoppingModelSaver; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.deeplearning4j.util.ModelSerializer; | ||||
| 
 | ||||
| import java.io.File; | ||||
| import java.io.IOException; | ||||
| import java.nio.charset.Charset; | ||||
| 
 | ||||
| public class LocalFileGraphSaver implements EarlyStoppingModelSaver<ComputationGraph> { | ||||
| 
 | ||||
|     private static final String BEST_GRAPH_BIN = "bestGraph.bin"; | ||||
|  | ||||
| @ -20,15 +20,14 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.saver; | ||||
| 
 | ||||
| import java.io.File; | ||||
| import java.io.IOException; | ||||
| import java.nio.charset.Charset; | ||||
| import org.apache.commons.io.FilenameUtils; | ||||
| import org.deeplearning4j.earlystopping.EarlyStoppingModelSaver; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.deeplearning4j.util.ModelSerializer; | ||||
| 
 | ||||
| import java.io.File; | ||||
| import java.io.IOException; | ||||
| import java.nio.charset.Charset; | ||||
| 
 | ||||
| public class LocalFileModelSaver implements EarlyStoppingModelSaver<MultiLayerNetwork> { | ||||
| 
 | ||||
|     private static final String BEST_MODEL_BIN = "bestModel.bin"; | ||||
|  | ||||
| @ -26,11 +26,11 @@ import org.deeplearning4j.nn.api.Layer; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.nd4j.evaluation.regression.RegressionEvaluation; | ||||
| import org.nd4j.evaluation.regression.RegressionEvaluation.Metric; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| 
 | ||||
| public class AutoencoderScoreCalculator extends BaseScoreCalculator<IModel> { | ||||
| 
 | ||||
|  | ||||
| @ -20,8 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.scorecalc; | ||||
| 
 | ||||
| import org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| @ -29,7 +30,6 @@ import org.nd4j.linalg.dataset.DataSet; | ||||
| import org.nd4j.linalg.dataset.MultiDataSet; | ||||
| import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; | ||||
| import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| public class DataSetLossCalculator extends BaseScoreCalculator<IModel> { | ||||
| 
 | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.scorecalc; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonIgnore; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.NoArgsConstructor; | ||||
| import lombok.val; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| @ -27,8 +29,6 @@ import org.nd4j.linalg.dataset.DataSet; | ||||
| import org.nd4j.linalg.dataset.api.MultiDataSet; | ||||
| import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; | ||||
| import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator; | ||||
| import com.fasterxml.jackson.annotation.JsonIgnore; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @NoArgsConstructor | ||||
| @Deprecated | ||||
|  | ||||
| @ -20,12 +20,11 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.scorecalc; | ||||
| 
 | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import com.fasterxml.jackson.annotation.JsonInclude; | ||||
| import com.fasterxml.jackson.annotation.JsonSubTypes; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
| @JsonInclude(JsonInclude.Include.NON_NULL) | ||||
|  | ||||
| @ -26,11 +26,11 @@ import org.deeplearning4j.nn.api.Layer; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.deeplearning4j.nn.layers.variational.VariationalAutoencoder; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.nd4j.evaluation.regression.RegressionEvaluation; | ||||
| import org.nd4j.evaluation.regression.RegressionEvaluation.Metric; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| 
 | ||||
| public class VAEReconErrorScoreCalculator extends BaseScoreCalculator<IModel> { | ||||
| 
 | ||||
|  | ||||
| @ -20,9 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.scorecalc.base; | ||||
| 
 | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator; | ||||
| import org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | ||||
| import org.nd4j.evaluation.IEvaluation; | ||||
|  | ||||
| @ -21,8 +21,8 @@ | ||||
| package org.deeplearning4j.earlystopping.scorecalc.base; | ||||
| 
 | ||||
| import lombok.NonNull; | ||||
| import org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.linalg.dataset.DataSet; | ||||
| import org.nd4j.linalg.dataset.api.MultiDataSet; | ||||
|  | ||||
| @ -20,8 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.termination; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| 
 | ||||
| @Data | ||||
| public class BestScoreEpochTerminationCondition implements EpochTerminationCondition { | ||||
|  | ||||
| @ -22,9 +22,7 @@ package org.deeplearning4j.earlystopping.termination; | ||||
| 
 | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonInclude; | ||||
| import com.fasterxml.jackson.annotation.JsonSubTypes; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
|  | ||||
| @ -22,7 +22,6 @@ package org.deeplearning4j.earlystopping.termination; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonInclude; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
|  | ||||
| @ -20,10 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.termination; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import lombok.NoArgsConstructor; | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.NoArgsConstructor; | ||||
| 
 | ||||
| @NoArgsConstructor | ||||
| @Data | ||||
|  | ||||
| @ -20,8 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.termination; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| 
 | ||||
| @Data | ||||
| public class MaxScoreIterationTerminationCondition implements IterationTerminationCondition { | ||||
|  | ||||
| @ -20,10 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.termination; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| import java.util.concurrent.TimeUnit; | ||||
| import lombok.Data; | ||||
| 
 | ||||
| /**Terminate training based on max time. | ||||
|  */ | ||||
|  | ||||
| @ -20,9 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.termination; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.extern.slf4j.Slf4j; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Slf4j | ||||
| @Data | ||||
|  | ||||
| @ -20,6 +20,12 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.trainer; | ||||
| 
 | ||||
| import java.io.FileNotFoundException; | ||||
| import java.io.IOException; | ||||
| import java.util.Collection; | ||||
| import java.util.Iterator; | ||||
| import java.util.LinkedHashMap; | ||||
| import java.util.Map; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration; | ||||
| import org.deeplearning4j.earlystopping.EarlyStoppingResult; | ||||
| @ -40,13 +46,6 @@ import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator; | ||||
| import org.slf4j.Logger; | ||||
| import org.slf4j.LoggerFactory; | ||||
| 
 | ||||
| import java.io.FileNotFoundException; | ||||
| import java.io.IOException; | ||||
| import java.util.Collection; | ||||
| import java.util.Iterator; | ||||
| import java.util.LinkedHashMap; | ||||
| import java.util.Map; | ||||
| 
 | ||||
| public abstract class BaseEarlyStoppingTrainer<T extends IModel> implements IEarlyStoppingTrainer<T> { | ||||
| 
 | ||||
|     private static final Logger log = LoggerFactory.getLogger(BaseEarlyStoppingTrainer.class); | ||||
|  | ||||
| @ -20,7 +20,6 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.earlystopping.trainer; | ||||
| 
 | ||||
| import org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator; | ||||
| import org.deeplearning4j.datasets.iterator.impl.SingletonDataSetIterator; | ||||
| import org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator; | ||||
| import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration; | ||||
|  | ||||
| @ -20,6 +20,13 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonAutoDetect; | ||||
| import com.fasterxml.jackson.databind.DeserializationFeature; | ||||
| import com.fasterxml.jackson.databind.MapperFeature; | ||||
| import com.fasterxml.jackson.databind.ObjectMapper; | ||||
| import com.fasterxml.jackson.databind.SerializationFeature; | ||||
| import com.fasterxml.jackson.databind.module.SimpleModule; | ||||
| import com.fasterxml.jackson.dataformat.yaml.YAMLFactory; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.Getter; | ||||
| import org.nd4j.common.primitives.AtomicBoolean; | ||||
| @ -28,14 +35,6 @@ import org.nd4j.common.primitives.serde.JsonDeserializerAtomicBoolean; | ||||
| import org.nd4j.common.primitives.serde.JsonDeserializerAtomicDouble; | ||||
| import org.nd4j.common.primitives.serde.JsonSerializerAtomicBoolean; | ||||
| import org.nd4j.common.primitives.serde.JsonSerializerAtomicDouble; | ||||
| import com.fasterxml.jackson.annotation.JsonAutoDetect; | ||||
| import com.fasterxml.jackson.core.JsonProcessingException; | ||||
| import com.fasterxml.jackson.databind.DeserializationFeature; | ||||
| import com.fasterxml.jackson.databind.MapperFeature; | ||||
| import com.fasterxml.jackson.databind.ObjectMapper; | ||||
| import com.fasterxml.jackson.databind.SerializationFeature; | ||||
| import com.fasterxml.jackson.databind.module.SimpleModule; | ||||
| import com.fasterxml.jackson.dataformat.yaml.YAMLFactory; | ||||
| 
 | ||||
| @Deprecated | ||||
| @EqualsAndHashCode(callSuper = false) | ||||
|  | ||||
| @ -20,15 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval; | ||||
| 
 | ||||
| import com.google.common.collect.HashMultiset; | ||||
| import com.google.common.collect.Multiset; | ||||
| import lombok.Getter; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.ArrayList; | ||||
| import java.util.List; | ||||
| import java.util.Map; | ||||
| import java.util.concurrent.ConcurrentHashMap; | ||||
| 
 | ||||
| @Deprecated | ||||
| public class ConfusionMatrix<T extends Comparable<? super T>> extends org.nd4j.evaluation.classification.ConfusionMatrix<T> { | ||||
|  | ||||
| @ -20,14 +20,11 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval; | ||||
| 
 | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.NonNull; | ||||
| import org.nd4j.evaluation.EvaluationAveraging; | ||||
| import org.nd4j.evaluation.IEvaluation; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| import java.util.List; | ||||
| import java.util.Map; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.NonNull; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| @EqualsAndHashCode(callSuper = true) | ||||
| @Deprecated | ||||
|  | ||||
| @ -20,9 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.Getter; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Deprecated | ||||
| @Getter | ||||
|  | ||||
| @ -20,11 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval; | ||||
| 
 | ||||
| import java.util.List; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| 
 | ||||
| import java.util.List; | ||||
| 
 | ||||
| @Deprecated | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = true) | ||||
|  | ||||
| @ -20,10 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval.curves; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.nd4j.evaluation.curves.BaseHistogram; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Deprecated | ||||
| @Data | ||||
|  | ||||
| @ -20,13 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval.curves; | ||||
| 
 | ||||
| import com.google.common.base.Preconditions; | ||||
| import lombok.AllArgsConstructor; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| import java.util.Arrays; | ||||
| 
 | ||||
| @Deprecated | ||||
| @Data | ||||
|  | ||||
| @ -20,8 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval.curves; | ||||
| 
 | ||||
| import lombok.NonNull; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.NonNull; | ||||
| 
 | ||||
| @Deprecated | ||||
| public class ReliabilityDiagram extends org.nd4j.evaluation.curves.ReliabilityDiagram { | ||||
|  | ||||
| @ -20,10 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval.curves; | ||||
| 
 | ||||
| import com.google.common.base.Preconditions; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Deprecated | ||||
| @Data | ||||
|  | ||||
| @ -20,7 +20,6 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.eval.meta; | ||||
| 
 | ||||
| import lombok.AllArgsConstructor; | ||||
| import lombok.Data; | ||||
| 
 | ||||
| @Data | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.adapters; | ||||
| 
 | ||||
| import java.util.List; | ||||
| import lombok.AllArgsConstructor; | ||||
| import lombok.Builder; | ||||
| import lombok.NoArgsConstructor; | ||||
| @ -32,8 +33,6 @@ import org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.linalg.exception.ND4JIllegalStateException; | ||||
| 
 | ||||
| import java.util.List; | ||||
| 
 | ||||
| @Builder | ||||
| @AllArgsConstructor | ||||
| @NoArgsConstructor | ||||
|  | ||||
| @ -21,7 +21,6 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.api; | ||||
| 
 | ||||
| import lombok.Getter; | ||||
| import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | ||||
| import org.deeplearning4j.nn.conf.layers.LayerConfiguration; | ||||
| 
 | ||||
|  | ||||
| @ -20,14 +20,12 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.api; | ||||
| 
 | ||||
| import java.util.List; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.linalg.dataset.api.DataSet; | ||||
| import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; | ||||
| 
 | ||||
| import java.util.List; | ||||
| 
 | ||||
| 
 | ||||
| public interface Classifier extends IModel { | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
| @ -20,13 +20,12 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.api; | ||||
| 
 | ||||
| import java.util.List; | ||||
| import org.deeplearning4j.nn.conf.GradientNormalization; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.learning.config.IUpdater; | ||||
| import org.nd4j.linalg.learning.regularization.Regularization; | ||||
| 
 | ||||
| import java.util.List; | ||||
| 
 | ||||
| public interface ITraininableLayerConfiguration { | ||||
| 
 | ||||
|     /** | ||||
|  | ||||
| @ -21,7 +21,7 @@ | ||||
| package org.deeplearning4j.nn.api; | ||||
| 
 | ||||
| 
 | ||||
| import java.util.Map; | ||||
| import java.io.Serializable; | ||||
| import net.brutex.ai.dnn.api.IModel; | ||||
| import org.deeplearning4j.nn.conf.CacheMode; | ||||
| import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | ||||
| @ -29,10 +29,8 @@ import org.deeplearning4j.nn.conf.layers.LayerConfiguration; | ||||
| import org.deeplearning4j.nn.gradient.Gradient; | ||||
| import org.deeplearning4j.nn.layers.LayerHelper; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| /** | ||||
|  * A layer is the highest-level building block in deep learning. A layer is a container that usually | ||||
|  | ||||
| @ -20,13 +20,12 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.api; | ||||
| 
 | ||||
| import java.util.List; | ||||
| import java.util.Map; | ||||
| import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | ||||
| import org.deeplearning4j.nn.conf.layers.LayerConfiguration; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| import java.util.List; | ||||
| import java.util.Map; | ||||
| 
 | ||||
| /** | ||||
|  * Param initializer for a layer | ||||
|  * | ||||
|  | ||||
| @ -20,11 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.api; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.gradient.Gradient; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import org.deeplearning4j.nn.gradient.Gradient; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| /** | ||||
|  * Update the model | ||||
|  | ||||
| @ -22,8 +22,8 @@ package org.deeplearning4j.nn.api.layers; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.api.Classifier; | ||||
| import org.deeplearning4j.nn.api.Layer; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| public interface IOutputLayer extends Layer, Classifier { | ||||
| 
 | ||||
|  | ||||
| @ -20,11 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.api.layers; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.api.Layer; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.Set; | ||||
| import org.deeplearning4j.nn.api.Layer; | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
| public interface LayerConstraint extends Cloneable, Serializable { | ||||
|  | ||||
| @ -20,13 +20,12 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.api.layers; | ||||
| 
 | ||||
| import java.util.Map; | ||||
| import org.deeplearning4j.nn.api.Layer; | ||||
| import org.deeplearning4j.nn.gradient.Gradient; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| 
 | ||||
| import java.util.Map; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| public interface RecurrentLayer extends Layer { | ||||
| 
 | ||||
|  | ||||
| @ -20,6 +20,12 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf; | ||||
| 
 | ||||
| import com.fasterxml.jackson.databind.JsonNode; | ||||
| import com.fasterxml.jackson.databind.ObjectMapper; | ||||
| import com.fasterxml.jackson.databind.exc.InvalidTypeIdException; | ||||
| import java.io.IOException; | ||||
| import java.io.Serializable; | ||||
| import java.util.*; | ||||
| import lombok.*; | ||||
| import org.deeplearning4j.nn.conf.distribution.Distribution; | ||||
| import org.deeplearning4j.nn.conf.graph.GraphVertex; | ||||
| @ -43,16 +49,9 @@ import org.nd4j.common.base.Preconditions; | ||||
| import org.nd4j.linalg.activations.Activation; | ||||
| import org.nd4j.linalg.activations.IActivation; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import com.fasterxml.jackson.databind.JsonNode; | ||||
| import com.fasterxml.jackson.databind.ObjectMapper; | ||||
| import com.fasterxml.jackson.databind.exc.InvalidTypeIdException; | ||||
| import org.slf4j.Logger; | ||||
| import org.slf4j.LoggerFactory; | ||||
| 
 | ||||
| import java.io.IOException; | ||||
| import java.io.Serializable; | ||||
| import java.util.*; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(exclude = {"trainingWorkspaceMode", "inferenceWorkspaceMode", "cacheMode", "topologicalOrder", "topologicalOrderStr"}) | ||||
| @AllArgsConstructor(access = AccessLevel.PRIVATE) | ||||
| @ -161,7 +160,7 @@ public class ComputationGraphConfiguration implements Serializable, Cloneable { | ||||
|      */ | ||||
|     public static ComputationGraphConfiguration fromJson(String json) { | ||||
|         //As per NeuralNetConfiguration.fromJson() | ||||
|         ObjectMapper mapper =CavisMapper.getMapper(CavisMapper.Type.JSON); | ||||
|         ObjectMapper mapper = CavisMapper.getMapper(CavisMapper.Type.JSON); | ||||
|         ComputationGraphConfiguration conf; | ||||
|         try { | ||||
|             conf = mapper.readValue(json, ComputationGraphConfiguration.class); | ||||
|  | ||||
| @ -19,10 +19,10 @@ | ||||
|  */ | ||||
| package org.deeplearning4j.nn.conf; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.conf.serde.format.DataFormatDeserializer; | ||||
| import org.deeplearning4j.nn.conf.serde.format.DataFormatSerializer; | ||||
| import com.fasterxml.jackson.databind.annotation.JsonDeserialize; | ||||
| import com.fasterxml.jackson.databind.annotation.JsonSerialize; | ||||
| import org.deeplearning4j.nn.conf.serde.format.DataFormatDeserializer; | ||||
| import org.deeplearning4j.nn.conf.serde.format.DataFormatSerializer; | ||||
| 
 | ||||
| @JsonSerialize(using = DataFormatSerializer.class) | ||||
| @JsonDeserialize(using = DataFormatDeserializer.class) | ||||
|  | ||||
| @ -21,14 +21,13 @@ | ||||
| package org.deeplearning4j.nn.conf; | ||||
| 
 | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| import java.io.Serializable; | ||||
| import org.deeplearning4j.nn.api.MaskState; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
| public interface InputPreProcessor extends Serializable, Cloneable { | ||||
|  | ||||
| @ -23,12 +23,9 @@ package org.deeplearning4j.nn.conf; | ||||
| import com.fasterxml.jackson.annotation.JsonIgnore; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| import com.fasterxml.jackson.databind.JsonNode; | ||||
| import com.fasterxml.jackson.databind.ObjectMapper; | ||||
| import com.fasterxml.jackson.databind.node.ArrayNode; | ||||
| import java.util.*; | ||||
| import lombok.*; | ||||
| import lombok.experimental.SuperBuilder; | ||||
| import lombok.extern.jackson.Jacksonized; | ||||
| import lombok.extern.slf4j.Slf4j; | ||||
| import net.brutex.ai.dnn.api.INeuralNetworkConfiguration; | ||||
| import org.deeplearning4j.nn.api.OptimizationAlgorithm; | ||||
| @ -37,11 +34,8 @@ import org.deeplearning4j.nn.conf.distribution.Distribution; | ||||
| import org.deeplearning4j.nn.conf.dropout.Dropout; | ||||
| import org.deeplearning4j.nn.conf.dropout.IDropout; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.deeplearning4j.nn.conf.layers.BaseLayerConfiguration; | ||||
| import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; | ||||
| import org.deeplearning4j.nn.conf.layers.LayerConfiguration; | ||||
| import org.deeplearning4j.nn.conf.serde.CavisMapper; | ||||
| import org.deeplearning4j.nn.conf.serde.JsonMappers; | ||||
| import org.deeplearning4j.nn.conf.stepfunctions.StepFunction; | ||||
| import org.deeplearning4j.nn.conf.weightnoise.IWeightNoise; | ||||
| import org.deeplearning4j.nn.weights.IWeightInit; | ||||
| @ -50,7 +44,6 @@ import org.deeplearning4j.nn.weights.WeightInitDistribution; | ||||
| import org.deeplearning4j.nn.weights.WeightInitXavier; | ||||
| import org.deeplearning4j.util.NetworkUtils; | ||||
| import org.nd4j.common.base.Preconditions; | ||||
| import org.nd4j.linalg.activations.Activation; | ||||
| import org.nd4j.linalg.activations.IActivation; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.learning.config.IUpdater; | ||||
| @ -60,9 +53,6 @@ import org.nd4j.linalg.learning.regularization.L2Regularization; | ||||
| import org.nd4j.linalg.learning.regularization.Regularization; | ||||
| import org.nd4j.linalg.learning.regularization.WeightDecay; | ||||
| 
 | ||||
| import java.io.IOException; | ||||
| import java.util.*; | ||||
| 
 | ||||
| /** | ||||
|  * Deeplearning4j is a domain-specific language to configure deep neural networks, which are made of | ||||
|  * multiple layers. Everything starts with a NeuralNetConfiguration, which organizes those layers | ||||
|  | ||||
| @ -326,7 +326,7 @@ public class NeuralNetConfiguration extends NeuralNetBaseBuilderConfiguration { | ||||
|           LayerConfiguration layer = getFlattenedLayerConfigurations().get(i - 1); | ||||
|           // convolution 1d is an edge case where it has rnn input type but the filters | ||||
|           // should be the output | ||||
|           if (layer instanceof Convolution1DLayer) { | ||||
|           if (layer instanceof Convolution1D) { | ||||
|             if (l instanceof DenseLayer && getInputType() instanceof InputType.InputTypeRecurrent) { | ||||
|               FeedForwardLayer feedForwardLayer = (FeedForwardLayer) l; | ||||
|               if (getInputType() instanceof InputType.InputTypeRecurrent) { | ||||
|  | ||||
| @ -20,6 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.constraint; | ||||
| 
 | ||||
| import java.util.HashSet; | ||||
| import java.util.Map; | ||||
| import java.util.Set; | ||||
| import lombok.*; | ||||
| import org.apache.commons.lang3.ArrayUtils; | ||||
| import org.deeplearning4j.nn.api.Layer; | ||||
| @ -27,11 +30,6 @@ import org.deeplearning4j.nn.api.ParamInitializer; | ||||
| import org.deeplearning4j.nn.api.layers.LayerConstraint; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| import java.util.HashSet; | ||||
| import java.util.Map; | ||||
| import java.util.Set; | ||||
| 
 | ||||
| 
 | ||||
| @AllArgsConstructor | ||||
| @EqualsAndHashCode | ||||
| @Data | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.constraint; | ||||
| 
 | ||||
| import java.util.Collections; | ||||
| import java.util.Set; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| @ -27,9 +29,6 @@ import org.nd4j.linalg.factory.Broadcast; | ||||
| import org.nd4j.linalg.indexing.BooleanIndexing; | ||||
| import org.nd4j.linalg.indexing.conditions.Conditions; | ||||
| 
 | ||||
| import java.util.Collections; | ||||
| import java.util.Set; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = true) | ||||
| public class MaxNormConstraint extends BaseConstraint { | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.constraint; | ||||
| 
 | ||||
| import java.util.Collections; | ||||
| import java.util.Set; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| @ -27,11 +29,6 @@ import org.nd4j.linalg.api.ops.CustomOp; | ||||
| import org.nd4j.linalg.api.ops.DynamicCustomOp; | ||||
| import org.nd4j.linalg.factory.Broadcast; | ||||
| import org.nd4j.linalg.factory.Nd4j; | ||||
| import org.nd4j.linalg.indexing.BooleanIndexing; | ||||
| import org.nd4j.linalg.indexing.conditions.Conditions; | ||||
| 
 | ||||
| import java.util.Collections; | ||||
| import java.util.Set; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = true) | ||||
|  | ||||
| @ -20,14 +20,13 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.constraint; | ||||
| 
 | ||||
| import java.util.Collections; | ||||
| import java.util.Set; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.linalg.factory.Broadcast; | ||||
| 
 | ||||
| import java.util.Collections; | ||||
| import java.util.Set; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = true) | ||||
| public class UnitNormConstraint extends BaseConstraint { | ||||
|  | ||||
| @ -20,10 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = false) | ||||
|  | ||||
| @ -20,12 +20,9 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.conf.distribution.serde.LegacyDistributionHelper; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| 
 | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, property = "@class") | ||||
| public abstract class Distribution implements Serializable, Cloneable { | ||||
| 
 | ||||
|  | ||||
| @ -20,10 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| 
 | ||||
| /** | ||||
|  * A log-normal distribution, with two parameters: mean and standard deviation. | ||||
|  | ||||
| @ -20,11 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| 
 | ||||
| /** | ||||
|  * A normal (Gaussian) distribution, with two parameters: mean and standard deviation | ||||
|  | ||||
| @ -20,10 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| 
 | ||||
| /** | ||||
|  * Orthogonal distribution, with gain parameter.<br> | ||||
|  | ||||
| @ -20,10 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution; | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| 
 | ||||
| @EqualsAndHashCode(callSuper = false) | ||||
| @Data | ||||
|  | ||||
| @ -20,12 +20,12 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.apache.commons.math3.exception.NumberIsTooLargeException; | ||||
| import org.apache.commons.math3.exception.util.LocalizedFormats; | ||||
| import com.fasterxml.jackson.annotation.JsonCreator; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| /** | ||||
|  * A uniform distribution, with two parameters: lower and upper - i.e., U(lower,upper) | ||||
|  | ||||
| @ -20,15 +20,13 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution.serde; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.conf.distribution.*; | ||||
| import com.fasterxml.jackson.core.JsonParseException; | ||||
| import com.fasterxml.jackson.core.JsonParser; | ||||
| import com.fasterxml.jackson.core.JsonProcessingException; | ||||
| import com.fasterxml.jackson.databind.DeserializationContext; | ||||
| import com.fasterxml.jackson.databind.JsonDeserializer; | ||||
| import com.fasterxml.jackson.databind.JsonNode; | ||||
| 
 | ||||
| import java.io.IOException; | ||||
| import org.deeplearning4j.nn.conf.distribution.*; | ||||
| 
 | ||||
| public class LegacyDistributionDeserializer extends JsonDeserializer<Distribution> { | ||||
|     @Override | ||||
|  | ||||
| @ -20,8 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.distribution.serde; | ||||
| 
 | ||||
| import org.deeplearning4j.nn.conf.distribution.Distribution; | ||||
| import com.fasterxml.jackson.databind.annotation.JsonDeserialize; | ||||
| import org.deeplearning4j.nn.conf.distribution.Distribution; | ||||
| 
 | ||||
| @JsonDeserialize(using = LegacyDistributionDeserializer.class) | ||||
| public class LegacyDistributionHelper extends Distribution { | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.dropout; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.NonNull; | ||||
| @ -32,8 +34,6 @@ import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.MulOp; | ||||
| import org.nd4j.linalg.api.ops.random.impl.BernoulliDistribution; | ||||
| import org.nd4j.linalg.factory.Nd4j; | ||||
| import org.nd4j.linalg.schedule.ISchedule; | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(exclude = {"lastPValue","alphaPrime","a","b", "mask"}) | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.dropout; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.Getter; | ||||
| @ -36,8 +38,6 @@ import org.nd4j.linalg.api.ops.random.impl.DropOutInverted; | ||||
| import org.nd4j.linalg.exception.ND4JOpProfilerException; | ||||
| import org.nd4j.linalg.factory.Nd4j; | ||||
| import org.nd4j.linalg.schedule.ISchedule; | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @JsonIgnoreProperties({"mask", "helper", "helperCountFail", "initializedHelper"}) | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.dropout; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.deeplearning4j.nn.workspace.ArrayType; | ||||
| @ -30,8 +32,6 @@ import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.MulOp; | ||||
| import org.nd4j.linalg.api.ops.random.impl.GaussianDistribution; | ||||
| import org.nd4j.linalg.factory.Nd4j; | ||||
| import org.nd4j.linalg.schedule.ISchedule; | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @JsonIgnoreProperties({"noise"}) | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.dropout; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| @ -27,7 +28,6 @@ import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.AddOp; | ||||
| import org.nd4j.linalg.api.ops.random.impl.GaussianDistribution; | ||||
| import org.nd4j.linalg.factory.Nd4j; | ||||
| import org.nd4j.linalg.schedule.ISchedule; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| public class GaussianNoise implements IDropout { | ||||
|  | ||||
| @ -20,11 +20,10 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.dropout; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| import java.io.Serializable; | ||||
| import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
| public interface IDropout extends Serializable, Cloneable { | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.dropout; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.val; | ||||
| @ -31,8 +33,6 @@ import org.nd4j.linalg.api.ops.random.impl.DropOutInverted; | ||||
| import org.nd4j.linalg.factory.Broadcast; | ||||
| import org.nd4j.linalg.factory.Nd4j; | ||||
| import org.nd4j.linalg.schedule.ISchedule; | ||||
| import com.fasterxml.jackson.annotation.JsonIgnoreProperties; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @JsonIgnoreProperties({"mask"}) | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.google.common.base.Preconditions; | ||||
| import java.util.Map; | ||||
| import lombok.*; | ||||
| import org.deeplearning4j.nn.api.MaskState; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| @ -30,12 +31,10 @@ import org.deeplearning4j.nn.weights.WeightInit; | ||||
| import org.deeplearning4j.nn.weights.WeightInitUtil; | ||||
| import org.nd4j.autodiff.samediff.SDVariable; | ||||
| import org.nd4j.autodiff.samediff.SameDiff; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| import org.nd4j.linalg.api.memory.MemoryWorkspace; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import org.nd4j.linalg.factory.Nd4j; | ||||
| import org.nd4j.common.primitives.Pair; | ||||
| 
 | ||||
| import java.util.Map; | ||||
| 
 | ||||
| @NoArgsConstructor | ||||
| @Data | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.val; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| @ -30,7 +31,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| public class ElementWiseVertex extends GraphVertex { | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| @ -28,7 +29,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = false) | ||||
|  | ||||
| @ -20,15 +20,14 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| import java.io.Serializable; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException; | ||||
| import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| 
 | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
| public abstract class GraphVertex implements Cloneable, Serializable { | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.val; | ||||
| @ -30,7 +31,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = false) | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import java.util.Arrays; | ||||
| import lombok.Data; | ||||
| import lombok.Getter; | ||||
| import lombok.NoArgsConstructor; | ||||
| @ -34,8 +35,6 @@ import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| 
 | ||||
| import java.util.Arrays; | ||||
| 
 | ||||
| @NoArgsConstructor | ||||
| @Data | ||||
| public class LayerVertex extends GraphVertex { | ||||
|  | ||||
| @ -22,7 +22,6 @@ package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| 
 | ||||
| import lombok.Data; | ||||
| import lombok.Setter; | ||||
| import lombok.val; | ||||
| import org.deeplearning4j.nn.conf.CNN2DFormat; | ||||
| import org.deeplearning4j.nn.conf.RNNFormat; | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import java.util.Arrays; | ||||
| import lombok.Data; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException; | ||||
| @ -29,9 +31,6 @@ import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.common.base.Preconditions; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| import java.util.Arrays; | ||||
| 
 | ||||
| @Data | ||||
| public class ReshapeVertex extends GraphVertex { | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException; | ||||
| @ -28,7 +29,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| public class ScaleVertex extends GraphVertex { | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.NoArgsConstructor; | ||||
| @ -31,7 +32,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @NoArgsConstructor | ||||
|  | ||||
| @ -20,6 +20,8 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import java.util.Arrays; | ||||
| import lombok.Data; | ||||
| import lombok.val; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| @ -29,9 +31,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| import java.util.Arrays; | ||||
| 
 | ||||
| @Data | ||||
| public class SubsetVertex extends GraphVertex { | ||||
|  | ||||
| @ -21,6 +21,7 @@ | ||||
| package org.deeplearning4j.nn.conf.graph; | ||||
| 
 | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Getter; | ||||
| import lombok.val; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| @ -30,7 +31,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Getter | ||||
| public class UnstackVertex extends GraphVertex { | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph.rnn; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import org.deeplearning4j.nn.conf.graph.GraphVertex; | ||||
| @ -30,7 +31,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| @EqualsAndHashCode(callSuper = false) | ||||
|  | ||||
| @ -20,6 +20,7 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.graph.rnn; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import lombok.Data; | ||||
| import org.deeplearning4j.nn.conf.graph.GraphVertex; | ||||
| import org.deeplearning4j.nn.conf.inputs.InputType; | ||||
| @ -29,7 +30,6 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport; | ||||
| import org.deeplearning4j.nn.graph.ComputationGraph; | ||||
| import org.nd4j.linalg.api.buffer.DataType; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| 
 | ||||
| @Data | ||||
| public class LastTimeStepVertex extends GraphVertex { | ||||
|  | ||||
| @ -20,25 +20,23 @@ | ||||
| 
 | ||||
| package org.deeplearning4j.nn.conf.inputs; | ||||
| 
 | ||||
| import com.fasterxml.jackson.annotation.JsonIgnore; | ||||
| import com.fasterxml.jackson.annotation.JsonInclude; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| import java.io.Serializable; | ||||
| import java.util.Arrays; | ||||
| import lombok.Data; | ||||
| import lombok.EqualsAndHashCode; | ||||
| import lombok.Getter; | ||||
| import lombok.NoArgsConstructor; | ||||
| import lombok.extern.slf4j.Slf4j; | ||||
| import org.deeplearning4j.nn.conf.CNN2DFormat; | ||||
| import org.deeplearning4j.nn.conf.DataFormat; | ||||
| import org.deeplearning4j.nn.conf.RNNFormat; | ||||
| import org.deeplearning4j.nn.conf.CNN2DFormat; | ||||
| import org.deeplearning4j.nn.conf.layers.Convolution3D; | ||||
| import org.nd4j.common.base.Preconditions; | ||||
| import org.nd4j.common.util.OneTimeLogger; | ||||
| import org.nd4j.linalg.api.ndarray.INDArray; | ||||
| import com.fasterxml.jackson.annotation.JsonIgnore; | ||||
| import com.fasterxml.jackson.annotation.JsonInclude; | ||||
| import com.fasterxml.jackson.annotation.JsonProperty; | ||||
| import com.fasterxml.jackson.annotation.JsonTypeInfo; | ||||
| 
 | ||||
| import java.io.Serializable; | ||||
| import java.util.Arrays; | ||||
| 
 | ||||
| @JsonInclude(JsonInclude.Include.NON_NULL) | ||||
| @JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class") | ||||
|  | ||||
Some files were not shown because too many files have changed in this diff Show More
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user