Merge pull request #8814 from KonduitAI/master

Development updates
master
Alex Black 2020-03-30 22:29:09 +11:00 committed by GitHub
commit 7f89fbba2d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
68 changed files with 3317 additions and 1602 deletions

View File

@ -1381,4 +1381,17 @@ public class RecordReaderDataSetiteratorTest extends BaseDL4JTest {
assertNotNull(ds.getFeatures()); assertNotNull(ds.getFeatures());
assertNull(ds.getLabels()); assertNull(ds.getLabels());
} }
@Test
public void testCollectMetaData(){
RecordReaderDataSetIterator trainIter = new RecordReaderDataSetIterator.Builder(new CollectionRecordReader(Collections.<List<Writable>>emptyList()), 1)
.collectMetaData(true)
.build();
assertTrue(trainIter.isCollectMetaData());
trainIter.setCollectMetaData(false);
assertFalse(trainIter.isCollectMetaData());
trainIter.setCollectMetaData(true);
assertTrue(trainIter.isCollectMetaData());
}
} }

View File

@ -33,7 +33,6 @@ import org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator;
import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator; import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator;
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator; import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
import org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator; import org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator;
import org.deeplearning4j.eval.meta.Prediction;
import org.deeplearning4j.nn.api.OptimizationAlgorithm; import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*; import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.layers.*; import org.deeplearning4j.nn.conf.layers.*;
@ -52,19 +51,13 @@ import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize; import org.nd4j.linalg.dataset.api.preprocessor.NormalizerStandardize;
import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.io.ClassPathResource;
import org.nd4j.linalg.learning.config.Sgd; import org.nd4j.linalg.learning.config.Sgd;
import org.nd4j.linalg.lossfunctions.LossFunctions; import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.nd4j.linalg.util.FeatureUtil;
import org.nd4j.resources.Resources; import org.nd4j.resources.Resources;
import java.util.*; import java.util.*;
import static org.junit.Assert.*; import static org.junit.Assert.*;
import static org.nd4j.linalg.indexing.NDArrayIndex.all;
import static org.nd4j.linalg.indexing.NDArrayIndex.interval;
/** /**
* Created by agibsonccc on 12/22/14. * Created by agibsonccc on 12/22/14.
@ -165,7 +158,7 @@ public class EvalTest extends BaseDL4JTest {
assertEquals(evalExpected.getConfusionMatrix(), evalActual.getConfusionMatrix()); assertEquals(evalExpected.getConfusionMatrix(), evalActual.getConfusionMatrix());
} }
@Test(timeout = 300000) @Test
public void testEvaluationWithMetaData() throws Exception { public void testEvaluationWithMetaData() throws Exception {
RecordReader csv = new CSVRecordReader(); RecordReader csv = new CSVRecordReader();
@ -256,6 +249,30 @@ public class EvalTest extends BaseDL4JTest {
assertEquals(actualCounts[i], actualClassI.size()); assertEquals(actualCounts[i], actualClassI.size());
assertEquals(predictedCounts[i], predictedClassI.size()); assertEquals(predictedCounts[i], predictedClassI.size());
} }
//Finally: test doEvaluation methods
rrdsi.reset();
org.nd4j.evaluation.classification.Evaluation e2 = new org.nd4j.evaluation.classification.Evaluation();
net.doEvaluation(rrdsi, e2);
for (int i = 0; i < 3; i++) {
List<org.nd4j.evaluation.meta.Prediction> actualClassI = e2.getPredictionsByActualClass(i);
List<org.nd4j.evaluation.meta.Prediction> predictedClassI = e2.getPredictionByPredictedClass(i);
assertEquals(actualCounts[i], actualClassI.size());
assertEquals(predictedCounts[i], predictedClassI.size());
}
ComputationGraph cg = net.toComputationGraph();
rrdsi.reset();
e2 = new org.nd4j.evaluation.classification.Evaluation();
cg.doEvaluation(rrdsi, e2);
for (int i = 0; i < 3; i++) {
List<org.nd4j.evaluation.meta.Prediction> actualClassI = e2.getPredictionsByActualClass(i);
List<org.nd4j.evaluation.meta.Prediction> predictedClassI = e2.getPredictionByPredictedClass(i);
assertEquals(actualCounts[i], actualClassI.size());
assertEquals(predictedCounts[i], predictedClassI.size());
}
} }
private static void apply(org.nd4j.evaluation.classification.Evaluation e, int nTimes, INDArray predicted, INDArray actual) { private static void apply(org.nd4j.evaluation.classification.Evaluation e, int nTimes, INDArray predicted, INDArray actual) {
@ -504,11 +521,11 @@ public class EvalTest extends BaseDL4JTest {
list.add(new org.nd4j.linalg.dataset.MultiDataSet(new INDArray[]{ds.getFeatures()}, new INDArray[]{ds.getLabels(), ds.getLabels()})); list.add(new org.nd4j.linalg.dataset.MultiDataSet(new INDArray[]{ds.getFeatures()}, new INDArray[]{ds.getLabels(), ds.getLabels()}));
} }
Evaluation e = new Evaluation(); org.nd4j.evaluation.classification.Evaluation e = new org.nd4j.evaluation.classification.Evaluation();
RegressionEvaluation e2 = new RegressionEvaluation(); org.nd4j.evaluation.regression.RegressionEvaluation e2 = new org.nd4j.evaluation.regression.RegressionEvaluation();
Map<Integer,IEvaluation[]> evals = new HashMap<>(); Map<Integer,org.nd4j.evaluation.IEvaluation[]> evals = new HashMap<>();
evals.put(0, new IEvaluation[]{(IEvaluation) e}); evals.put(0, new org.nd4j.evaluation.IEvaluation[]{e});
evals.put(1, new IEvaluation[]{(IEvaluation) e2}); evals.put(1, new org.nd4j.evaluation.IEvaluation[]{e2});
cg.evaluate(new IteratorMultiDataSetIterator(list.iterator(), 30), evals); cg.evaluate(new IteratorMultiDataSetIterator(list.iterator(), 30), evals);
@ -567,14 +584,14 @@ public class EvalTest extends BaseDL4JTest {
} }
try { try {
net.evaluateROC(iter); net.evaluateROC(iter, 0);
fail("Expected exception"); fail("Expected exception");
} catch (IllegalStateException e){ } catch (IllegalStateException e){
assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROC")); assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROC"));
} }
try { try {
net.evaluateROCMultiClass(iter); net.evaluateROCMultiClass(iter, 0);
fail("Expected exception"); fail("Expected exception");
} catch (IllegalStateException e){ } catch (IllegalStateException e){
assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROCMultiClass")); assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROCMultiClass"));
@ -589,14 +606,14 @@ public class EvalTest extends BaseDL4JTest {
} }
try { try {
cg.evaluateROC(iter); cg.evaluateROC(iter, 0);
fail("Expected exception"); fail("Expected exception");
} catch (IllegalStateException e){ } catch (IllegalStateException e){
assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROC")); assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROC"));
} }
try { try {
cg.evaluateROCMultiClass(iter); cg.evaluateROCMultiClass(iter, 0);
fail("Expected exception"); fail("Expected exception");
} catch (IllegalStateException e){ } catch (IllegalStateException e){
assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROCMultiClass")); assertTrue(e.getMessage().contains("Classifier") && e.getMessage().contains("ROCMultiClass"));
@ -606,10 +623,10 @@ public class EvalTest extends BaseDL4JTest {
//Disable validation, and check same thing: //Disable validation, and check same thing:
net.getLayerWiseConfigurations().setValidateOutputLayerConfig(false); net.getLayerWiseConfigurations().setValidateOutputLayerConfig(false);
net.evaluate(iter); net.evaluate(iter);
net.evaluateROCMultiClass(iter); net.evaluateROCMultiClass(iter, 0);
cg.getConfiguration().setValidateOutputLayerConfig(false); cg.getConfiguration().setValidateOutputLayerConfig(false);
cg.evaluate(iter); cg.evaluate(iter);
cg.evaluateROCMultiClass(iter); cg.evaluateROCMultiClass(iter, 0);
} }
} }

View File

@ -61,7 +61,7 @@ public class RegressionEvalTest extends BaseDL4JTest {
DataSet ds = new DataSet(f, l); DataSet ds = new DataSet(f, l);
DataSetIterator iter = new ExistingDataSetIterator(Collections.singletonList(ds)); DataSetIterator iter = new ExistingDataSetIterator(Collections.singletonList(ds));
RegressionEvaluation re = net.evaluateRegression(iter); org.nd4j.evaluation.regression.RegressionEvaluation re = net.evaluateRegression(iter);
for (int i = 0; i < 5; i++) { for (int i = 0; i < 5; i++) {
assertEquals(1.0, re.meanSquaredError(i), 1e-6); assertEquals(1.0, re.meanSquaredError(i), 1e-6);

View File

@ -17,6 +17,7 @@
package org.deeplearning4j.nn.dtypes; package org.deeplearning4j.nn.dtypes;
import org.deeplearning4j.nn.conf.layers.recurrent.TimeDistributed; import org.deeplearning4j.nn.conf.layers.recurrent.TimeDistributed;
import org.deeplearning4j.nn.modelimport.keras.layers.TFOpLayer;
import org.nd4j.shade.guava.collect.ImmutableSet; import org.nd4j.shade.guava.collect.ImmutableSet;
import org.nd4j.shade.guava.reflect.ClassPath; import org.nd4j.shade.guava.reflect.ClassPath;
import lombok.extern.slf4j.Slf4j; import lombok.extern.slf4j.Slf4j;
@ -128,7 +129,7 @@ public class DTypeTests extends BaseDL4JTest {
throw new RuntimeException(e); throw new RuntimeException(e);
} }
if (Modifier.isAbstract(clazz.getModifiers()) || clazz.isInterface()) { if (Modifier.isAbstract(clazz.getModifiers()) || clazz.isInterface() || TFOpLayer.class == clazz) { //Skip TFOpLayer here - dtype depends on imported model dtype
continue; continue;
} }

View File

@ -86,7 +86,7 @@ public abstract class CacheableExtractableDataSetFetcher implements CacheableDat
} }
try { try {
ArchiveUtils.unzipFileTo(tmpFile.getAbsolutePath(), localCacheDir.getAbsolutePath()); ArchiveUtils.unzipFileTo(tmpFile.getAbsolutePath(), localCacheDir.getAbsolutePath(), false);
} catch (Throwable t){ } catch (Throwable t){
//Catch any errors during extraction, and delete the directory to avoid leaving the dir in an invalid state //Catch any errors during extraction, and delete the directory to avoid leaving the dir in an invalid state
if(localCacheDir.exists()) if(localCacheDir.exists())

View File

@ -205,6 +205,7 @@ public class RecordReaderDataSetIterator implements DataSetIterator {
this.numPossibleLabels = b.numPossibleLabels; this.numPossibleLabels = b.numPossibleLabels;
this.regression = b.regression; this.regression = b.regression;
this.preProcessor = b.preProcessor; this.preProcessor = b.preProcessor;
this.collectMetaData = b.collectMetaData;
} }
/** /**

View File

@ -105,6 +105,14 @@
<version>${project.version}</version> <version>${project.version}</version>
<scope>test</scope> <scope>test</scope>
</dependency> </dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-tensorflow</artifactId>
<version>${nd4j.version}</version>
<scope>test</scope>
</dependency>
</dependencies> </dependencies>
<profiles> <profiles>

View File

@ -103,4 +103,6 @@ public class Keras2LayerConfiguration extends KerasLayerConfiguration {
/* Keras weight initializers. */ /* Keras weight initializers. */
private final String LAYER_FIELD_INIT = "kernel_initializer"; private final String LAYER_FIELD_INIT = "kernel_initializer";
private final String TENSORFLOW_OP_LAYER = "TensorFlowOpLayer";
} }

View File

@ -0,0 +1,74 @@
/*******************************************************************************
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.modelimport.keras.layers;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
import java.util.Map;
public class KerasTFOpLayer extends KerasLayer {
public KerasTFOpLayer(Integer kerasVersion) throws UnsupportedKerasConfigurationException {
super(kerasVersion);
if (kerasVersion != 2){
throw new UnsupportedKerasConfigurationException("KerasTFOpLayer expects Keras version 2");
}
}
/**
* Constructor from parsed Keras layer configuration dictionary.
*
* @param layerConfig dictionary containing Keras layer configuration
* @throws InvalidKerasConfigurationException Invalid Keras config
* @throws UnsupportedKerasConfigurationException Unsupported Keras config
*/
public KerasTFOpLayer(Map<String, Object> layerConfig)
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
this(layerConfig, true);
}
/**
* Constructor from parsed Keras layer configuration dictionary.
*
* @param layerConfig dictionary containing Keras layer configuration
* @param enforceTrainingConfig whether to enforce training-related configuration options
* @throws InvalidKerasConfigurationException Invalid Keras config
* @throws UnsupportedKerasConfigurationException Unsupported Keras config
*/
public KerasTFOpLayer(Map<String, Object> layerConfig, boolean enforceTrainingConfig) throws UnsupportedKerasConfigurationException, InvalidKerasConfigurationException{
super(layerConfig, enforceTrainingConfig);
this.layer = new TFOpLayer((Map)((Map)layerConfig.get("config")).get("node_def"), (Map)((Map)layerConfig.get("config")).get("constants"));
}
/**
* Get layer output type.
*
* @param inputType Array of InputTypes
* @return output type as InputType
* @throws InvalidKerasConfigurationException Invalid Keras configuration
*/
public InputType getOutputType(InputType... inputType){
return this.layer.getOutputType(0, inputType[0]);
}
}

View File

@ -0,0 +1,106 @@
/*******************************************************************************
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.modelimport.keras.layers;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.modelimport.keras.layers.TFOpLayerImpl;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.regularization.Regularization;
import java.util.Collection;
import java.util.List;
import java.util.Map;
public class TFOpLayer extends Layer {
private Map nodeDef;
private Map constants;
public TFOpLayer(Map nodeDef, Map constants){
super();
this.nodeDef = nodeDef;
this.constants = constants;
}
@Override
public ParamInitializer initializer() {
return EmptyParamInitializer.getInstance();
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
return null;
}
@Override
public boolean isPretrainParam(String param){
return false;
}
@Override
public InputType getOutputType(int idx, InputType inputType){
long[] shape = inputType.getShape(true);
TFOpLayerImpl tempLayer = new TFOpLayerImpl(nodeDef, constants, null, null);
long[] outputShape = tempLayer.getOutputShape(shape);
return InputType.inferInputType(Nd4j.create(outputShape));
}
@Override
public void setNIn(InputType inputType, boolean override){}
@Override
public GradientNormalization getGradientNormalization(){return null;}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
TFOpLayerImpl tfOpLayerImpl = new TFOpLayerImpl(nodeDef, constants, conf, networkDataType);
tfOpLayerImpl.setListeners(trainingListeners);
tfOpLayerImpl.setIndex(layerIndex);
return tfOpLayerImpl;
}
@Override
public double getGradientNormalizationThreshold(){return 0.;}
@Override
public List<Regularization> getRegularizationByParam(String paramName){return null;}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
return new LayerMemoryReport(); //TODO
}
}

View File

@ -0,0 +1,169 @@
/*******************************************************************************
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.modelimport.keras.layers;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.ArrayUtils;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.TFGraphRunnerService;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.primitives.Pair;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
import org.tensorflow.framework.NodeDef;
import com.google.gson.Gson;
import org.nd4j.shade.protobuf.Message;
import org.nd4j.shade.protobuf.TextFormat;
import java.util.*;
import java.util.List;
@Slf4j
@Data
public class TFOpLayerImpl extends AbstractLayer<TFOpLayer> {
private Map nodeDef;
private Map constants;
private List<String> inputNames;
TFGraphRunnerService graphRunnerService;
public TFOpLayerImpl(Map nodeDef, Map constants, NeuralNetConfiguration conf, DataType dtype){
super(conf, dtype);
this.nodeDef = nodeDef;
this.constants = constants;
setGraphRunner();
}
@Override
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr){
throw new RuntimeException("Backprop through TFOpLayerImpl is not supported yet." +
" TFOpLayerImpl is created when importing TensorFlow 2.0 Keras models " +
"(tf.keras) into DL4J, that contains TensorFlow operations not just Keras layers.");
}
/**
* Converts a Map representation of Nodedef to a singleton TF Graph and instantiates a GraphRunner.
*/
private void setGraphRunner() {
try{
String json = new Gson().toJson(nodeDef);
NodeDef.Builder builder = NodeDef.newBuilder();
org.nd4j.shade.protobuf.util.JsonFormat.parser().merge(json, builder);
NodeDef nodeDef = builder.build();
List<String> allInputNames = new ArrayList<>(); // including constants
Map<String, String> inputDataTypes = new HashMap<>();
Map<String, INDArray> constArrays = new HashMap();
this.inputNames = new ArrayList<>();
List<String> outputNames = Arrays.asList(nodeDef.getName());
Map<String, AttrValue> attrMap = nodeDef.getAttrMap();
for (int i = 0; i < nodeDef.getInputCount(); i++){
String inputName = nodeDef.getInput(i);
String[] split = inputName.split("/");
String attrKey;
if (split.length == 1){
attrKey = "T";
}
else{
attrKey = "T" + split[split.length - 1];
}
allInputNames.add(nodeDef.getInput(i));
inputDataTypes.put(nodeDef.getInput(i), attrMap.get(attrKey).getType().toString());
if (constants.containsKey(String.valueOf(i))){
constArrays.put(nodeDef.getInput(i), Nd4j.create((List<Number>)constants.get(String.valueOf(i))));
}
else{
this.inputNames.add(nodeDef.getInput(i));
}
}
String graph = "node{\n" + nodeDef.toString() + "\n}\nversions {\n producer: 22\n}";
for (int i = 0; i < allInputNames.size(); i++){
String inpName = allInputNames.get(i);
String dtype = inputDataTypes.get(inpName);
graph = "node{\nname: \"" + inpName + "\"\nop: \"Placeholder\"\nattr{\nkey: \"dtype\"\n value {\n type: " + dtype + "}\n}\n}\n" + graph;
}
log.info(graph);
GraphDef.Builder graphDefBuilder = GraphDef.newBuilder();
TextFormat.getParser().merge(graph, graphDefBuilder);
GraphDef graphDef = graphDefBuilder.build();
org.nd4j.shade.protobuf.ByteString serialized = graphDef.toByteString();
byte[] graphBytes = serialized.toByteArray();
ServiceLoader<TFGraphRunnerService> sl = ServiceLoader.load(TFGraphRunnerService.class);
Iterator<TFGraphRunnerService> iter = sl.iterator();
if (!iter.hasNext()){
throw new RuntimeException("The model contains a Tensorflow Op, which requires the nd4j-tensorflow dependency to execute.");
}
this.graphRunnerService = iter.next().init(allInputNames, outputNames, graphBytes, constArrays, inputDataTypes);
}
catch (Exception e){
throw new RuntimeException("Error parsing protobuf", e);
}
}
private INDArray runGraph(INDArray input){
if (input.rank() == 3){
// TODO make this a preprocessor
input = input.permute(0, 2, 1);
}
Map<String, INDArray> inputMap = new HashMap<>();
inputMap.put(inputNames.get(0), input);
INDArray out = graphRunnerService.run(inputMap).values().toArray(new INDArray[0])[0];
if (out.rank() == 3){
out = out.permute(0, 2, 1); // TODO post-processing?
}
return out;
}
public long[] getOutputShape(long[] inputShape){
long[] shape = ArrayUtils.clone(inputShape);
for(int i = 0; i < shape.length; i++){
if (shape[i] < 0){
shape[i] = 1;
}
}
INDArray dummyArr = Nd4j.zeros(shape);
return runGraph(dummyArr).shape();
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr){
return runGraph(input);
}
@Override
public boolean isPretrainLayer(){
return false;
}
@Override
public void clearNoiseWeightParams(){
}
}

View File

@ -190,7 +190,7 @@ public class KerasBidirectional extends KerasLayer {
"Keras Bidirectional layer accepts only one input (received " + inputType.length + ")"); "Keras Bidirectional layer accepts only one input (received " + inputType.length + ")");
InputPreProcessor preProcessor = getInputPreprocessor(inputType); InputPreProcessor preProcessor = getInputPreprocessor(inputType);
if (preProcessor != null) if (preProcessor != null)
return preProcessor.getOutputType(inputType[0]); return this.getBidirectionalLayer().getOutputType(-1, preProcessor.getOutputType(inputType[0]));
else else
return this.getBidirectionalLayer().getOutputType(-1, inputType[0]); return this.getBidirectionalLayer().getOutputType(-1, inputType[0]);
} }

View File

@ -21,10 +21,12 @@ import org.deeplearning4j.nn.conf.graph.ElementWiseVertex;
import org.deeplearning4j.nn.conf.layers.Layer; import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer; import org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer;
import org.deeplearning4j.nn.modelimport.keras.KerasLayer; import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
import org.deeplearning4j.nn.modelimport.keras.config.Keras2LayerConfiguration;
import org.deeplearning4j.nn.modelimport.keras.config.KerasLayerConfiguration; import org.deeplearning4j.nn.modelimport.keras.config.KerasLayerConfiguration;
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException; import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException; import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
import org.deeplearning4j.nn.modelimport.keras.layers.KerasInput; import org.deeplearning4j.nn.modelimport.keras.layers.KerasInput;
import org.deeplearning4j.nn.modelimport.keras.layers.KerasTFOpLayer;
import org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations.*; import org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations.*;
import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.*; import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.*;
import org.deeplearning4j.nn.modelimport.keras.layers.core.*; import org.deeplearning4j.nn.modelimport.keras.layers.core.*;
@ -317,6 +319,11 @@ public class KerasLayerUtils {
layer = new KerasELU(layerConfig, enforceTrainingConfig); layer = new KerasELU(layerConfig, enforceTrainingConfig);
} else if(layerClassName.equals(conf.getLAYER_CLASS_NAME_SOFTMAX())){ } else if(layerClassName.equals(conf.getLAYER_CLASS_NAME_SOFTMAX())){
layer = new KerasSoftmax(layerConfig, enforceTrainingConfig); layer = new KerasSoftmax(layerConfig, enforceTrainingConfig);
} else if (conf instanceof Keras2LayerConfiguration){
Keras2LayerConfiguration k2conf = (Keras2LayerConfiguration)conf;
if (layerClassName.equals(k2conf.getTENSORFLOW_OP_LAYER())){
layer = new KerasTFOpLayer(layerConfig, enforceTrainingConfig);
}
} }
if (layer == null){ if (layer == null){
Class<? extends KerasLayer> customConfig = customLayers.get(layerClassName); Class<? extends KerasLayer> customConfig = customLayers.get(layerClassName);
@ -402,6 +409,16 @@ public class KerasLayerUtils {
public static String getLayerNameFromConfig(Map<String, Object> layerConfig, public static String getLayerNameFromConfig(Map<String, Object> layerConfig,
KerasLayerConfiguration conf) KerasLayerConfiguration conf)
throws InvalidKerasConfigurationException { throws InvalidKerasConfigurationException {
if(conf instanceof Keras2LayerConfiguration){
Keras2LayerConfiguration k2conf = (Keras2LayerConfiguration)conf;
if (getClassNameFromConfig(layerConfig, conf).equals(((Keras2LayerConfiguration) conf).getTENSORFLOW_OP_LAYER())){
if (!layerConfig.containsKey(conf.getLAYER_FIELD_NAME()))
throw new InvalidKerasConfigurationException("Field " + conf.getLAYER_FIELD_NAME()
+ " missing from layer config");
return (String) layerConfig.get(conf.getLAYER_FIELD_NAME());
}
}
Map<String, Object> innerConfig = KerasLayerUtils.getInnerLayerConfigFromConfig(layerConfig, conf); Map<String, Object> innerConfig = KerasLayerUtils.getInnerLayerConfigFromConfig(layerConfig, conf);
if (!innerConfig.containsKey(conf.getLAYER_FIELD_NAME())) if (!innerConfig.containsKey(conf.getLAYER_FIELD_NAME()))
throw new InvalidKerasConfigurationException("Field " + conf.getLAYER_FIELD_NAME() throw new InvalidKerasConfigurationException("Field " + conf.getLAYER_FIELD_NAME()

View File

@ -0,0 +1,50 @@
/*******************************************************************************
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.modelimport.keras;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.junit.Assert;
import org.junit.Test;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.resources.Resources;
import java.io.File;
import java.util.Arrays;
public class TFKerasTests extends BaseDL4JTest{
@Test
public void testModelWithTFOp1() throws Exception{
File f = Resources.asFile("modelimport/keras/tfkeras/reshape.h5");
ComputationGraph graph = KerasModelImport.importKerasModelAndWeights(f.getAbsolutePath());
INDArray out = graph.outputSingle(Nd4j.zeros(12, 2, 3));
Assert.assertArrayEquals(new long[]{12, 3}, out.shape());
}
@Test
public void testModelWithTFOp2() throws Exception{
File f = Resources.asFile("modelimport/keras/tfkeras/permute.h5");
ComputationGraph graph = KerasModelImport.importKerasModelAndWeights(f.getAbsolutePath());
INDArray out = graph.outputSingle(Nd4j.zeros(12, 2, 3));
// dl4j's feedforward doesn't support 3D output, so batch and time axes gets squashed
long[] expectedShape = new long[]{12 * 2, 5};
Assert.assertArrayEquals(expectedShape, out.shape());
}
}

View File

@ -67,7 +67,7 @@ public class KuromojiBinFilesFetcher {
new URL("https://dl4jdata.blob.core.windows.net/kuromoji/kuromoji_bin_files.tar.gz"), new URL("https://dl4jdata.blob.core.windows.net/kuromoji/kuromoji_bin_files.tar.gz"),
tarFile); tarFile);
} }
ArchiveUtils.unzipFileTo(tarFile.getAbsolutePath(), rootDir.getAbsolutePath()); ArchiveUtils.unzipFileTo(tarFile.getAbsolutePath(), rootDir.getAbsolutePath(), false);
return rootDir.getAbsoluteFile(); return rootDir.getAbsoluteFile();
} }

View File

@ -77,7 +77,11 @@
<artifactId>nd4j-common</artifactId> <artifactId>nd4j-common</artifactId>
<version>${nd4j.version}</version> <version>${nd4j.version}</version>
</dependency> </dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>${gson.version}</version>
</dependency>
<!-- ND4J Shaded Jackson Dependency --> <!-- ND4J Shaded Jackson Dependency -->
<dependency> <dependency>
<groupId>org.nd4j</groupId> <groupId>org.nd4j</groupId>

View File

@ -4170,6 +4170,7 @@ public class ComputationGraph implements Serializable, Model, NeuralNetwork {
INDArray[] featuresMasks = next.getFeaturesMaskArrays(); INDArray[] featuresMasks = next.getFeaturesMaskArrays();
INDArray[] labels = next.getLabels(); INDArray[] labels = next.getLabels();
INDArray[] labelMasks = next.getLabelsMaskArrays(); INDArray[] labelMasks = next.getLabelsMaskArrays();
List<Serializable> meta = next.getExampleMetaData();
try (MemoryWorkspace ws = outputWs.notifyScopeEntered()) { try (MemoryWorkspace ws = outputWs.notifyScopeEntered()) {
INDArray[] out = outputOfLayersDetached(false, FwdPassType.STANDARD, getOutputLayerIndices(), features, featuresMasks, labelMasks, true, false, ws); INDArray[] out = outputOfLayersDetached(false, FwdPassType.STANDARD, getOutputLayerIndices(), features, featuresMasks, labelMasks, true, false, ws);
@ -4188,7 +4189,7 @@ public class ComputationGraph implements Serializable, Model, NeuralNetwork {
try (MemoryWorkspace wsO = Nd4j.getWorkspaceManager().scopeOutOfWorkspaces()) { try (MemoryWorkspace wsO = Nd4j.getWorkspaceManager().scopeOutOfWorkspaces()) {
for (IEvaluation evaluation : evalsThisOutput) for (IEvaluation evaluation : evalsThisOutput)
evaluation.eval(currLabel, currOut, next.getLabelsMaskArray(i)); evaluation.eval(currLabel, currOut, next.getLabelsMaskArray(i), meta);
} }
} }
} }

View File

@ -23,6 +23,9 @@ import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator; import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator;
import java.io.Serializable;
import java.util.List;
public class ComputationGraphUtil { public class ComputationGraphUtil {
private ComputationGraphUtil() {} private ComputationGraphUtil() {}
@ -33,13 +36,16 @@ public class ComputationGraphUtil {
INDArray l = dataSet.getLabels(); INDArray l = dataSet.getLabels();
INDArray fMask = dataSet.getFeaturesMaskArray(); INDArray fMask = dataSet.getFeaturesMaskArray();
INDArray lMask = dataSet.getLabelsMaskArray(); INDArray lMask = dataSet.getLabelsMaskArray();
List<Serializable> meta = dataSet.getExampleMetaData();
INDArray[] fNew = f == null ? null : new INDArray[] {f}; INDArray[] fNew = f == null ? null : new INDArray[] {f};
INDArray[] lNew = l == null ? null : new INDArray[] {l}; INDArray[] lNew = l == null ? null : new INDArray[] {l};
INDArray[] fMaskNew = (fMask != null ? new INDArray[] {fMask} : null); INDArray[] fMaskNew = (fMask != null ? new INDArray[] {fMask} : null);
INDArray[] lMaskNew = (lMask != null ? new INDArray[] {lMask} : null); INDArray[] lMaskNew = (lMask != null ? new INDArray[] {lMask} : null);
return new org.nd4j.linalg.dataset.MultiDataSet(fNew, lNew, fMaskNew, lMaskNew); org.nd4j.linalg.dataset.MultiDataSet mds = new org.nd4j.linalg.dataset.MultiDataSet(fNew, lNew, fMaskNew, lMaskNew);
mds.setExampleMetaData(meta);
return mds;
} }
/** Convert a DataSetIterator to a MultiDataSetIterator, via an adaptor class */ /** Convert a DataSetIterator to a MultiDataSetIterator, via an adaptor class */

View File

@ -62,6 +62,7 @@ public abstract class AbstractLayer<LayerConfT extends org.deeplearning4j.nn.con
public AbstractLayer(NeuralNetConfiguration conf, DataType dataType) { public AbstractLayer(NeuralNetConfiguration conf, DataType dataType) {
this.conf = conf; this.conf = conf;
if (conf != null)
cacheMode = conf.getCacheMode(); cacheMode = conf.getCacheMode();
this.dataType = dataType; this.dataType = dataType;
} }

View File

@ -25,14 +25,11 @@ import lombok.val;
import org.apache.commons.lang3.ArrayUtils; import org.apache.commons.lang3.ArrayUtils;
import org.apache.commons.lang3.StringUtils; import org.apache.commons.lang3.StringUtils;
import org.bytedeco.javacpp.Pointer; import org.bytedeco.javacpp.Pointer;
import org.nd4j.adapters.OutputAdapter;
import org.nd4j.linalg.dataset.AsyncDataSetIterator;;
import org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator; import org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator;
import org.deeplearning4j.eval.RegressionEvaluation;
import org.deeplearning4j.exception.DL4JException; import org.deeplearning4j.exception.DL4JException;
import org.deeplearning4j.exception.DL4JInvalidInputException; import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.api.*;
import org.deeplearning4j.nn.api.Updater; import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.api.*;
import org.deeplearning4j.nn.api.layers.IOutputLayer; import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.api.layers.RecurrentLayer; import org.deeplearning4j.nn.api.layers.RecurrentLayer;
import org.deeplearning4j.nn.conf.*; import org.deeplearning4j.nn.conf.*;
@ -44,8 +41,8 @@ import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph; import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.layers.FrozenLayer; import org.deeplearning4j.nn.layers.FrozenLayer;
import org.deeplearning4j.nn.layers.FrozenLayerWithBackprop; import org.deeplearning4j.nn.layers.FrozenLayerWithBackprop;
import org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer;
import org.deeplearning4j.nn.layers.LayerHelper; import org.deeplearning4j.nn.layers.LayerHelper;
import org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer;
import org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer; import org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer;
import org.deeplearning4j.nn.updater.UpdaterCreator; import org.deeplearning4j.nn.updater.UpdaterCreator;
import org.deeplearning4j.nn.workspace.ArrayType; import org.deeplearning4j.nn.workspace.ArrayType;
@ -58,19 +55,23 @@ import org.deeplearning4j.util.CrashReportingUtil;
import org.deeplearning4j.util.ModelSerializer; import org.deeplearning4j.util.ModelSerializer;
import org.deeplearning4j.util.NetworkUtils; import org.deeplearning4j.util.NetworkUtils;
import org.deeplearning4j.util.OutputLayerUtil; import org.deeplearning4j.util.OutputLayerUtil;
import org.nd4j.adapters.OutputAdapter;
import org.nd4j.base.Preconditions; import org.nd4j.base.Preconditions;
import org.nd4j.evaluation.IEvaluation; import org.nd4j.evaluation.IEvaluation;
import org.nd4j.evaluation.classification.Evaluation; import org.nd4j.evaluation.classification.Evaluation;
import org.nd4j.evaluation.classification.ROC; import org.nd4j.evaluation.classification.ROC;
import org.nd4j.evaluation.classification.ROCMultiClass; import org.nd4j.evaluation.classification.ROCMultiClass;
import org.nd4j.evaluation.regression.RegressionEvaluation;
import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.memory.MemoryWorkspace; import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.memory.abstracts.DummyWorkspace;
import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration; import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration;
import org.nd4j.linalg.api.memory.enums.AllocationPolicy; import org.nd4j.linalg.api.memory.enums.AllocationPolicy;
import org.nd4j.linalg.api.memory.enums.LearningPolicy; import org.nd4j.linalg.api.memory.enums.LearningPolicy;
import org.nd4j.linalg.api.memory.enums.ResetPolicy; import org.nd4j.linalg.api.memory.enums.ResetPolicy;
import org.nd4j.linalg.api.memory.enums.SpillPolicy; import org.nd4j.linalg.api.memory.enums.SpillPolicy;
import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.AsyncDataSetIterator;
import org.nd4j.linalg.dataset.DataSet; import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.MultiDataSet; import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
@ -84,7 +85,6 @@ import org.nd4j.linalg.heartbeat.reports.Task;
import org.nd4j.linalg.heartbeat.utils.EnvironmentUtils; import org.nd4j.linalg.heartbeat.utils.EnvironmentUtils;
import org.nd4j.linalg.heartbeat.utils.TaskUtils; import org.nd4j.linalg.heartbeat.utils.TaskUtils;
import org.nd4j.linalg.indexing.NDArrayIndex; import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.api.memory.abstracts.DummyWorkspace;
import org.nd4j.linalg.primitives.Pair; import org.nd4j.linalg.primitives.Pair;
import org.nd4j.linalg.primitives.Triple; import org.nd4j.linalg.primitives.Triple;
import org.nd4j.linalg.schedule.ISchedule; import org.nd4j.linalg.schedule.ISchedule;
@ -96,6 +96,8 @@ import org.nd4j.util.OneTimeLogger;
import java.io.*; import java.io.*;
import java.util.*; import java.util.*;
;
/** /**
* MultiLayerNetwork is a neural network with multiple layers in a stack, and usually an output layer.<br> * MultiLayerNetwork is a neural network with multiple layers in a stack, and usually an output layer.<br>
@ -3315,19 +3317,39 @@ public class MultiLayerNetwork implements Serializable, Classifier, Layer, Neura
* @param iterator Iterator to evaluate on * @param iterator Iterator to evaluate on
* @return Evaluation object; results of evaluation on all examples in the data set * @return Evaluation object; results of evaluation on all examples in the data set
*/ */
public <T extends Evaluation> T evaluate(DataSetIterator iterator) { public <T extends Evaluation> T evaluate(@NonNull DataSetIterator iterator) {
return (T)evaluate(iterator, null); return (T)evaluate(iterator, null);
} }
/**
* Evaluate the network (classification performance).
* Can only be used with MultiDataSetIterator instances with a single input/output array
*
* @param iterator Iterator to evaluate on
* @return Evaluation object; results of evaluation on all examples in the data set
*/
public Evaluation evaluate(@NonNull MultiDataSetIterator iterator) {
return evaluate(new MultiDataSetWrapperIterator(iterator));
}
/** /**
* Evaluate the network for regression performance * Evaluate the network for regression performance
* @param iterator Data to evaluate on * @param iterator Data to evaluate on
* @return * @return Regression evaluation
*/ */
public <T extends RegressionEvaluation> T evaluateRegression(DataSetIterator iterator) { public <T extends RegressionEvaluation> T evaluateRegression(DataSetIterator iterator) {
return (T)doEvaluation(iterator, new RegressionEvaluation(iterator.totalOutcomes()))[0]; return (T)doEvaluation(iterator, new RegressionEvaluation(iterator.totalOutcomes()))[0];
} }
/**
* Evaluate the network for regression performance
* Can only be used with MultiDataSetIterator instances with a single input/output array
* @param iterator Data to evaluate on
*/
public org.nd4j.evaluation.regression.RegressionEvaluation evaluateRegression(MultiDataSetIterator iterator) {
return evaluateRegression(new MultiDataSetWrapperIterator(iterator));
}
/** /**
* @deprecated To be removed - use {@link #evaluateROC(DataSetIterator, int)} to enforce selection of appropriate ROC/threshold configuration * @deprecated To be removed - use {@link #evaluateROC(DataSetIterator, int)} to enforce selection of appropriate ROC/threshold configuration
*/ */
@ -3424,6 +3446,7 @@ public class MultiLayerNetwork implements Serializable, Classifier, Layer, Neura
INDArray labels = next.getLabels(); INDArray labels = next.getLabels();
INDArray fMask = next.getFeaturesMaskArray(); INDArray fMask = next.getFeaturesMaskArray();
INDArray lMask = next.getLabelsMaskArray(); INDArray lMask = next.getLabelsMaskArray();
List<Serializable> meta = next.getExampleMetaData();
if (!useRnnSegments) { if (!useRnnSegments) {
@ -3433,7 +3456,7 @@ public class MultiLayerNetwork implements Serializable, Classifier, Layer, Neura
try (MemoryWorkspace wsO = Nd4j.getWorkspaceManager().scopeOutOfWorkspaces()) { try (MemoryWorkspace wsO = Nd4j.getWorkspaceManager().scopeOutOfWorkspaces()) {
for (T evaluation : evaluations) for (T evaluation : evaluations)
evaluation.eval(labels, out, lMask); evaluation.eval(labels, out, lMask, meta);
} }
} }
} else { } else {

View File

@ -222,8 +222,11 @@ public class AdaptiveThresholdAlgorithm implements ThresholdAlgorithm {
if(a == null || Double.isNaN(a.lastThreshold)) if(a == null || Double.isNaN(a.lastThreshold))
return; return;
lastThresholdSum += a.lastThreshold; lastThresholdSum += a.lastThreshold;
if (!Double.isNaN(a.lastSparsity)) {
lastSparsitySum += a.lastSparsity; lastSparsitySum += a.lastSparsity;
}
count++; count++;
} }

View File

@ -38,16 +38,22 @@
<artifactId>nd4j-aeron</artifactId> <artifactId>nd4j-aeron</artifactId>
<version>${nd4j.version}</version> <version>${nd4j.version}</version>
</dependency> </dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-parameter-server-node_2.11</artifactId>
<version>${nd4j.version}</version>
</dependency>
<dependency> <dependency>
<groupId>org.deeplearning4j</groupId> <groupId>org.deeplearning4j</groupId>
<artifactId>dl4j-spark_2.11</artifactId> <artifactId>dl4j-spark_2.11</artifactId>
<version>${project.version}</version> <version>${project.version}</version>
</dependency> </dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-parameter-server-node_2.11</artifactId>
<version>${nd4j.version}</version>
<exclusions>
<exclusion>
<groupId>net.jpountz.lz4</groupId>
<artifactId>lz4</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency> <dependency>
<groupId>org.projectlombok</groupId> <groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId> <artifactId>lombok</artifactId>

View File

@ -23,6 +23,7 @@ import org.nd4j.linalg.dataset.api.iterator.ParallelMultiDataSetIterator;
import java.util.Iterator; import java.util.Iterator;
import java.util.List; import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
/** /**
* This MultiDataSetIterator implementation does accumulation of MultiDataSets from different Spark executors, wrt Thread/Device Affinity * This MultiDataSetIterator implementation does accumulation of MultiDataSets from different Spark executors, wrt Thread/Device Affinity
@ -32,14 +33,16 @@ import java.util.List;
public class VirtualMultiDataSetIterator implements ParallelMultiDataSetIterator { public class VirtualMultiDataSetIterator implements ParallelMultiDataSetIterator {
protected final List<Iterator<MultiDataSet>> iterators; protected final List<Iterator<MultiDataSet>> iterators;
protected final AtomicInteger position;
public VirtualMultiDataSetIterator(@NonNull List<Iterator<MultiDataSet>> iterators) { public VirtualMultiDataSetIterator(@NonNull List<Iterator<MultiDataSet>> iterators) {
this.iterators = iterators; this.iterators = iterators;
this.position = new AtomicInteger(0);
} }
@Override @Override
public MultiDataSet next(int num) { public MultiDataSet next(int num) {
return null; return next();
} }
@Override @Override
@ -59,27 +62,34 @@ public class VirtualMultiDataSetIterator implements ParallelMultiDataSetIterator
@Override @Override
public boolean asyncSupported() { public boolean asyncSupported() {
return false; return true;
} }
@Override @Override
public void reset() { public void reset() {
throw new UnsupportedOperationException();
} }
@Override @Override
public boolean hasNext() { public boolean hasNext() {
return false; // just checking if that's not the last iterator, or if that's the last one - check if it has something
boolean ret = position.get() < iterators.size() - 1
|| (position.get() < iterators.size() && iterators.get(position.get()).hasNext());
return ret;
} }
@Override @Override
public MultiDataSet next() { public MultiDataSet next() {
return null; // TODO: this solution isn't ideal, it assumes non-empty iterators all the time. Would be nice to do something here
if (!iterators.get(position.get()).hasNext())
position.getAndIncrement();
return iterators.get(position.get()).next();
} }
@Override @Override
public void remove() { public void remove() {
// no-op
} }
@Override @Override

View File

@ -109,6 +109,7 @@ public class SharedTrainingWrapper {
// now we're creating DataSetIterators, to feed ParallelWrapper // now we're creating DataSetIterators, to feed ParallelWrapper
iteratorDS = new VirtualDataSetIterator(iteratorsDS); iteratorDS = new VirtualDataSetIterator(iteratorsDS);
iteratorMDS = new VirtualMultiDataSetIterator(iteratorsMDS);
} }
public static synchronized SharedTrainingWrapper getInstance(long id) { public static synchronized SharedTrainingWrapper getInstance(long id) {
@ -447,17 +448,19 @@ public class SharedTrainingWrapper {
throw new DL4JInvalidConfigException("No iterators were defined for training"); throw new DL4JInvalidConfigException("No iterators were defined for training");
try { try {
while((iteratorDS != null && iteratorDS.hasNext()) || (iteratorMDS != null && iteratorMDS.hasNext())) { boolean dsNext;
boolean mdsNext;
while((dsNext = iteratorDS != null && iteratorDS.hasNext()) || (mdsNext = iteratorMDS != null && iteratorMDS.hasNext())) {
//Loop as a guard against concurrent modifications and RCs //Loop as a guard against concurrent modifications and RCs
if (wrapper != null) { if (wrapper != null) {
if (iteratorDS != null) if (dsNext)
wrapper.fit(iteratorDS); wrapper.fit(iteratorDS);
else else
wrapper.fit(iteratorMDS); wrapper.fit(iteratorMDS);
} else { } else {
// if wrapper is null, we're fitting standalone model then // if wrapper is null, we're fitting standalone model then
if (iteratorDS != null) { if (dsNext) {
if (model instanceof ComputationGraph) { if (model instanceof ComputationGraph) {
((ComputationGraph) originalModel).fit(iteratorDS); ((ComputationGraph) originalModel).fit(iteratorDS);
} else if (model instanceof MultiLayerNetwork) { } else if (model instanceof MultiLayerNetwork) {
@ -472,6 +475,7 @@ public class SharedTrainingWrapper {
} }
} }
if(consumer != null)
consumer.getUpdatesQueue().purge(); consumer.getUpdatesQueue().purge();
} }
} catch (Throwable t){ } catch (Throwable t){

View File

@ -116,8 +116,7 @@ public abstract class BaseSparkTest extends BaseDL4JTest implements Serializable
} }
protected int numExecutors() { protected int numExecutors() {
int numProc = Runtime.getRuntime().availableProcessors(); return 4;
return Math.min(4, numProc);
} }
protected MultiLayerConfiguration getBasicConf() { protected MultiLayerConfiguration getBasicConf() {

View File

@ -49,6 +49,7 @@ import org.junit.rules.TemporaryFolder;
import org.nd4j.linalg.activations.Activation; import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet; import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.indexing.NDArrayIndex; import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.learning.config.AMSGrad; import org.nd4j.linalg.learning.config.AMSGrad;
@ -66,20 +67,26 @@ import java.util.concurrent.ConcurrentHashMap;
import static org.junit.Assert.*; import static org.junit.Assert.*;
@Slf4j @Slf4j
@Ignore("AB 2019/05/21 - Failing - Issue #7657") //@Ignore("AB 2019/05/21 - Failing - Issue #7657")
public class GradientSharingTrainingTest extends BaseSparkTest { public class GradientSharingTrainingTest extends BaseSparkTest {
@Rule @Rule
public TemporaryFolder testDir = new TemporaryFolder(); public TemporaryFolder testDir = new TemporaryFolder();
@Override
public long getTimeoutMilliseconds() {
return 90000L;
}
@Test @Test
public void trainSanityCheck() throws Exception { public void trainSanityCheck() throws Exception {
for(boolean mds : new boolean[]{false, true}) {
INDArray last = null; INDArray last = null;
INDArray lastDup = null; INDArray lastDup = null;
for (String s : new String[]{"paths", "direct", "export"}) { for (String s : new String[]{"paths", "direct", "export"}) {
System.out.println("--------------------------------------------------------------------------------------------------------------"); System.out.println("--------------------------------------------------------------------------------------------------------------");
log.info("Starting: {}", s); log.info("Starting: {} - {}", s, (mds ? "MultiDataSet" : "DataSet"));
boolean isPaths = "paths".equals(s); boolean isPaths = "paths".equals(s);
RDDTrainingApproach rddTrainingApproach; RDDTrainingApproach rddTrainingApproach;
@ -144,7 +151,11 @@ public class GradientSharingTrainingTest extends BaseSparkTest {
DataSet d = iter.next(); DataSet d = iter.next();
if (isPaths) { if (isPaths) {
File out = new File(f, count + ".bin"); File out = new File(f, count + ".bin");
if(mds){
d.toMultiDataSet().save(out);
} else {
d.save(out); d.save(out);
}
String path = "file:///" + out.getAbsolutePath().replaceAll("\\\\", "/"); String path = "file:///" + out.getAbsolutePath().replaceAll("\\\\", "/");
paths.add(path); paths.add(path);
} }
@ -160,6 +171,27 @@ public class GradientSharingTrainingTest extends BaseSparkTest {
INDArray paramsBefore = sparkNet.getNetwork().params().dup(); INDArray paramsBefore = sparkNet.getNetwork().params().dup();
ComputationGraph after; ComputationGraph after;
if(mds) {
//Fitting from MultiDataSet
List<MultiDataSet> mdsList = new ArrayList<>();
for(DataSet d : ds){
mdsList.add(d.toMultiDataSet());
}
switch (s) {
case "direct":
case "export":
JavaRDD<MultiDataSet> dsRDD = sc.parallelize(mdsList);
after = sparkNet.fitMultiDataSet(dsRDD);
break;
case "paths":
JavaRDD<String> pathRdd = sc.parallelize(paths);
after = sparkNet.fitPathsMultiDataSet(pathRdd);
break;
default:
throw new RuntimeException();
}
} else {
//Fitting from DataSet
switch (s) { switch (s) {
case "direct": case "direct":
case "export": case "export":
@ -173,6 +205,7 @@ public class GradientSharingTrainingTest extends BaseSparkTest {
default: default:
throw new RuntimeException(); throw new RuntimeException();
} }
}
INDArray paramsAfter = after.params(); INDArray paramsAfter = after.params();
System.out.println(Arrays.toString(paramsBefore.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, 256)).dup().data().asFloat())); System.out.println(Arrays.toString(paramsBefore.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, 256)).dup().data().asFloat()));
@ -199,6 +232,7 @@ public class GradientSharingTrainingTest extends BaseSparkTest {
lastDup = last.dup(); lastDup = last.dup();
} }
} }
}
@Test @Test
@ -289,7 +323,7 @@ public class GradientSharingTrainingTest extends BaseSparkTest {
} }
@Test @Test @Ignore
public void testEpochUpdating() throws Exception { public void testEpochUpdating() throws Exception {
//Ensure that epoch counter is incremented properly on the workers //Ensure that epoch counter is incremented properly on the workers
@ -316,7 +350,7 @@ public class GradientSharingTrainingTest extends BaseSparkTest {
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder() ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(12345) .seed(12345)
.updater(new AMSGrad(0.1)) .updater(new AMSGrad(0.001))
.graphBuilder() .graphBuilder()
.addInputs("in") .addInputs("in")
.layer("out", new OutputLayer.Builder().nIn(784).nOut(10).activation(Activation.SOFTMAX) .layer("out", new OutputLayer.Builder().nIn(784).nOut(10).activation(Activation.SOFTMAX)

View File

@ -20,12 +20,12 @@ log4j.appender.Console.layout=org.apache.log4j.PatternLayout
log4j.appender.Console.layout.ConversionPattern=%d{ABSOLUTE} %-5p ~ %m%n log4j.appender.Console.layout.ConversionPattern=%d{ABSOLUTE} %-5p ~ %m%n
log4j.appender.org.springframework=DEBUG log4j.appender.org.springframework=DEBUG
log4j.appender.org.deeplearning4j=DEBUG log4j.appender.org.deeplearning4j=INFO
log4j.appender.org.nd4j=DEBUG log4j.appender.org.nd4j=INFO
log4j.logger.org.springframework=INFO log4j.logger.org.springframework=INFO
log4j.logger.org.deeplearning4j=DEBUG log4j.logger.org.deeplearning4j=INFO
log4j.logger.org.nd4j=DEBUG log4j.logger.org.nd4j=INFO
log4j.logger.org.apache.spark=WARN log4j.logger.org.apache.spark=WARN

View File

@ -35,7 +35,7 @@
<logger name="org.apache.catalina.core" level="DEBUG" /> <logger name="org.apache.catalina.core" level="DEBUG" />
<logger name="org.springframework" level="DEBUG" /> <logger name="org.springframework" level="DEBUG" />
<logger name="org.deeplearning4j" level="DEBUG" /> <logger name="org.deeplearning4j" level="INFO" />
<logger name="org.datavec" level="INFO" /> <logger name="org.datavec" level="INFO" />
<logger name="org.nd4j" level="INFO" /> <logger name="org.nd4j" level="INFO" />
<logger name="opennlp.uima.util" level="OFF" /> <logger name="opennlp.uima.util" level="OFF" />

View File

@ -25,10 +25,6 @@
<artifactId>deeplearning4j-ui-components</artifactId> <artifactId>deeplearning4j-ui-components</artifactId>
<properties>
<freemarker.version>2.3.23</freemarker.version>
</properties>
<dependencies> <dependencies>
<dependency> <dependency>
<groupId>org.projectlombok</groupId> <groupId>org.projectlombok</groupId>

View File

@ -24,6 +24,7 @@ import org.deeplearning4j.ui.components.chart.style.StyleChart;
import org.deeplearning4j.ui.components.table.ComponentTable; import org.deeplearning4j.ui.components.table.ComponentTable;
import org.deeplearning4j.ui.components.table.style.StyleTable; import org.deeplearning4j.ui.components.table.style.StyleTable;
import org.deeplearning4j.ui.standalone.StaticPageUtil; import org.deeplearning4j.ui.standalone.StaticPageUtil;
import org.junit.Ignore;
import org.junit.Test; import org.junit.Test;
import java.awt.*; import java.awt.*;

View File

@ -60,7 +60,7 @@
<dependency> <dependency>
<groupId>org.freemarker</groupId> <groupId>org.freemarker</groupId>
<artifactId>freemarker</artifactId> <artifactId>freemarker</artifactId>
<version>2.3.29</version> <version>${freemarker.version}</version>
</dependency> </dependency>
<dependency> <dependency>

View File

@ -200,6 +200,7 @@ public class TrainModule implements UIModule {
})); }));
r.add(new Route("/train/:sessionId/info", HttpMethod.GET, (path, rc) -> this.sessionInfoForSession(path.get(0), rc))); r.add(new Route("/train/:sessionId/info", HttpMethod.GET, (path, rc) -> this.sessionInfoForSession(path.get(0), rc)));
} else { } else {
r.add(new Route("/train", HttpMethod.GET, (path, rc) -> rc.reroute("/train/overview")));
r.add(new Route("/train/sessions/current", HttpMethod.GET, (path, rc) -> rc.response().end(currentSessionID == null ? "" : currentSessionID))); r.add(new Route("/train/sessions/current", HttpMethod.GET, (path, rc) -> rc.response().end(currentSessionID == null ? "" : currentSessionID)));
r.add(new Route("/train/sessions/set/:to", HttpMethod.GET, (path, rc) -> this.setSession(path.get(0), rc))); r.add(new Route("/train/sessions/set/:to", HttpMethod.GET, (path, rc) -> this.setSession(path.get(0), rc)));
r.add(new Route("/train/overview", HttpMethod.GET, (path, rc) -> this.renderFtl("TrainingOverview.html.ftl", rc))); r.add(new Route("/train/overview", HttpMethod.GET, (path, rc) -> this.renderFtl("TrainingOverview.html.ftl", rc)));

View File

@ -33,7 +33,7 @@ OP_IMPL(mergeadd, -1, 1, false) {
auto output = OUTPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width()); std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i) for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i); inArrs[i] = INPUT_VARIABLE(i);
@ -42,7 +42,6 @@ OP_IMPL(mergeadd, -1, 1, false) {
return Status::OK(); return Status::OK();
} }
DECLARE_SYN(mergesum, mergeadd); DECLARE_SYN(mergesum, mergeadd);
DECLARE_SYN(add_n, mergeadd); DECLARE_SYN(add_n, mergeadd);
DECLARE_SYN(addn, mergeadd); DECLARE_SYN(addn, mergeadd);
@ -54,6 +53,45 @@ DECLARE_SYN(accumulate_n, mergeadd);
->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY); ->setAllowedOutputTypes(sd::DataType::ANY);
} }
CUSTOM_OP_IMPL(mergeadd_bp, 2, 1, false, 0, 0) {
auto inSize = block.width() - 1;
REQUIRE_OK(this->validateInputDimensionsMatch(block));
std::vector<NDArray*> outArrs(inSize);
const auto gradient = INPUT_VARIABLE(inSize);
for (int i = 0; i < inSize; ++i) {
outArrs[i] = OUTPUT_VARIABLE(i);
}
helpers::mergeAddBp(block.launchContext(), *gradient, outArrs);
return Status::OK();
}
DECLARE_TYPES(mergeadd_bp) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY);
}
DECLARE_SHAPE_FN(mergeadd_bp) {
const int numOfInArrs = block.width() - 1;
auto shapeList = SHAPELIST();
for (int e = 0; e < numOfInArrs; e++) {
auto inShape = inputShape->at(e);
shapeList->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inShape), shape::order(inShape), shape::shapeOf(inShape), shape::rank(inShape))));
}
return shapeList;
}
} }
} }

View File

@ -33,7 +33,7 @@ OP_IMPL(mergeavg, -1, 1, false) {
auto output = OUTPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width()); std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i) for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i); inArrs[i] = INPUT_VARIABLE(i);
@ -48,6 +48,44 @@ OP_IMPL(mergeavg, -1, 1, false) {
->setAllowedInputTypes({ALL_FLOATS}) ->setAllowedInputTypes({ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS}); ->setAllowedOutputTypes({ALL_FLOATS});
} }
CUSTOM_OP_IMPL(mergeavg_bp, 2, 1, false, 0, 0) {
auto inSize = block.width() - 1;
REQUIRE_OK(this->validateInputDimensionsMatch(block));
std::vector<NDArray*> outArrs(inSize);
const auto gradient = INPUT_VARIABLE(inSize);
for (int i = 0; i < inSize; ++i) {
outArrs[i] = OUTPUT_VARIABLE(i);
}
helpers::mergeAvgBp(block.launchContext(), *gradient, outArrs);
return Status::OK();
}
DECLARE_TYPES(mergeavg_bp) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY);
}
DECLARE_SHAPE_FN(mergeavg_bp) {
const int numOfInArrs = block.width() - 1;
auto shapeList = SHAPELIST();
for (int e = 0; e < numOfInArrs; e++) {
auto inShape = inputShape->at(e);
shapeList->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inShape), shape::order(inShape), shape::shapeOf(inShape), shape::rank(inShape))));
}
return shapeList;
}
} }
} }

View File

@ -33,7 +33,7 @@ OP_IMPL(mergemax, -1, 1, false) {
auto output = OUTPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width()); std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i) for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i); inArrs[i] = INPUT_VARIABLE(i);
@ -42,7 +42,6 @@ OP_IMPL(mergemax, -1, 1, false) {
return Status::OK(); return Status::OK();
} }
DECLARE_SYN(MergeMax, mergemax); DECLARE_SYN(MergeMax, mergemax);
DECLARE_TYPES(mergemax) { DECLARE_TYPES(mergemax) {
@ -51,6 +50,47 @@ DECLARE_SYN(MergeMax, mergemax);
->setAllowedOutputTypes(sd::DataType::ANY); ->setAllowedOutputTypes(sd::DataType::ANY);
} }
CUSTOM_OP_IMPL(mergemax_bp, 2, 1, false, 0, 0) {
auto inSize = block.width();
REQUIRE_OK(this->validateInputDimensionsMatch(block));
std::vector<const NDArray*> inArrs(inSize);
std::vector<NDArray*> outArrs(inSize - 1);
for (int i = 0; i < inSize; ++i)
inArrs[i] = INPUT_VARIABLE(i);
for (int i = 0; i < (inSize - 1); ++i) {
outArrs[i] = OUTPUT_NULLIFIED(i);
}
helpers::mergeMaxBp(block.launchContext(), inArrs, outArrs);
return Status::OK();
}
DECLARE_TYPES(mergemax_bp) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY);
}
DECLARE_SHAPE_FN(mergemax_bp) {
const int numOfInArrs = block.width() - 1;
auto shapeList = SHAPELIST();
for (int e = 0; e < numOfInArrs; e++) {
auto inShape = inputShape->at(e);
shapeList->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inShape), shape::order(inShape), shape::shapeOf(inShape), shape::rank(inShape))));
}
return shapeList;
}
} }
} }

View File

@ -32,7 +32,7 @@ CUSTOM_OP_IMPL(mergemaxindex, -1, 1, false, 0, 0) {
REQUIRE_OK(this->validateInputDimensionsMatch(block)); REQUIRE_OK(this->validateInputDimensionsMatch(block));
auto output = OUTPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width()); std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i) for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i); inArrs[i] = INPUT_VARIABLE(i);

View File

@ -64,6 +64,7 @@ namespace sd {
#if NOT_EXCLUDED(OP_mergemax) #if NOT_EXCLUDED(OP_mergemax)
DECLARE_OP(mergemax, -1, 1, false); DECLARE_OP(mergemax, -1, 1, false);
DECLARE_CUSTOM_OP(mergemax_bp, 2, 1, false, 0, 0);
#endif #endif
/* /*
* Complete tensor with max indices merged from all input tensors list * Complete tensor with max indices merged from all input tensors list
@ -78,10 +79,12 @@ namespace sd {
#if NOT_EXCLUDED(OP_mergeadd) #if NOT_EXCLUDED(OP_mergeadd)
DECLARE_OP(mergeadd, -1, 1, false); DECLARE_OP(mergeadd, -1, 1, false);
DECLARE_CUSTOM_OP(mergeadd_bp, 2, 1, false, 0, 0);
#endif #endif
#if NOT_EXCLUDED(OP_mergeavg) #if NOT_EXCLUDED(OP_mergeavg)
DECLARE_OP(mergeavg, -1, 1, false); DECLARE_OP(mergeavg, -1, 1, false);
DECLARE_CUSTOM_OP(mergeavg_bp, 2, 1, false, 0, 0);
#endif #endif
#if NOT_EXCLUDED(OP_scatter_update) #if NOT_EXCLUDED(OP_scatter_update)

View File

@ -0,0 +1,274 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNorm_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
const int rank = input.rankOf();
const auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
const T normActual = norm2.e<T>(0);
const T normClip = clipNorm.e<T>(0);
if (isInplace) {
if(norm2.lengthOf() == 1) {
if(normActual > normClip)
input *= (normClip / normActual);
}
else {
auto listOfInSubArrs = input.allTensorsAlongDimension(dimensions);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
const T iNormActual = norm2.e<T>(i);
if (iNormActual > normClip)
*listOfInSubArrs.at(i) *= normClip / iNormActual;
}
};
samediff::Threads::parallel_tad(func, 0, listOfInSubArrs.size());
}
}
else {
if(norm2.lengthOf() == 1) {
if(normActual > normClip)
output.assign(input * (normClip / normActual));
else
output.assign(input);
}
else {
auto listOfInSubArrs = input.allTensorsAlongDimension(dimensions);
auto listOfOutSubArrs = output.allTensorsAlongDimension(dimensions);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto inputSubArr = listOfInSubArrs.at(i);
auto outputSubArr = listOfOutSubArrs.at(i);
outputSubArr->assign(inputSubArr);
const T iNormActual = norm2.e<T>(i);
if (iNormActual > clipNorm.e<T>(0))
*outputSubArr *= clipNorm / iNormActual;
}
};
samediff::Threads::parallel_tad(func, 0, listOfInSubArrs.size());
}
}
}
//////////////////////////////////////////////////////////////////////////
void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(output.dataType(), clipByNorm_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
template <typename T>
static void clipByGlobalNorm_(std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
T globalNorm = 0; //NDArrayFactory::create<T>(0, inputs[0]->getContext()); //sqrt(sum([l2norm(t)**2 for t in t_list]))
// PRAGMA_OMP_PARALLEL_FOR_SIMD_REDUCTION(sumT : globalNorm)
for (size_t i = 0; i < inputs.size(); i++) {
auto input = inputs[i];
auto l2norm = input->reduceNumber(reduce::Norm2);
globalNorm += l2norm.t<T>(0) * l2norm.t<T>(0);
}
//globalNorm.applyTransform(transform::Sqrt, nullptr, nullptr);// = sd::math::nd4j_sqrt(globalNorm);
auto normS = sd::math::nd4j_sqrt<T,T>(globalNorm);
outputs[inputs.size()]->p(0, normS);
const T factor = clipNorm / normS;
// PRAGMA_OMP_PARALLEL_FOR
for (size_t e = 0; e < inputs.size(); e++) {
// all-reduce
auto input = inputs[e];
auto output = outputs[e];
if (normS <= clipNorm) {
output->assign(input);
}
else {
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input->applyLambda<T>(lambda, *output);
}
}
}
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
BUILD_SINGLE_SELECTOR(outputs[0]->dataType(), clipByGlobalNorm_, (inputs, clipNorm, workspace, outputs, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNormBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
const int rank = input.rankOf();
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
if(norm2.lengthOf() == 1) {
const T N = norm2.e<T>(0);
auto cn = clipNorm.e<T>(0);
if(N > cn) {
const T sumOfProd = (input * gradO).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N); // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
(const_cast<NDArray&>(input)).applyPairwiseLambda<T>(const_cast<NDArray&>(gradO), lambda, gradI);
}
else
gradI.assign(gradO);
}
else {
auto gradISubArrs = gradI.allTensorsAlongDimension({dimensions});
auto gradOSubArrs = gradO.allTensorsAlongDimension({dimensions});
auto inputSubArrs = input.allTensorsAlongDimension({dimensions});
auto cn = clipNorm.e<T>(0);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
T N = norm2.e<T>(i);
auto gradOSubArr = gradOSubArrs.at(i);
auto gradISubArr = gradISubArrs.at(i);
if (N > cn) {
auto inputSubArr = inputSubArrs.at(i);
const T sumOfProd = (*inputSubArr * *gradOSubArr).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N); // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
inputSubArr->applyPairwiseLambda<T>(*gradOSubArr, lambda, *gradISubArr);
} else
gradISubArr->assign(gradOSubArr);
}
};
samediff::Threads::parallel_tad(func, 0, gradISubArrs.size());
}
}
void clipByNormBP(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBP_, (input, gradO, gradI, dimensions, clipNorm), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByNormBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByAveraged_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
auto cn = clipNorm.e<T>(0);
if (dimensions.size() == 0) {
// all-reduce
T n2 = input.reduceNumber(reduce::Norm2).e<T>(0) / input.lengthOf();
if (n2 <= cn) {
if (!isInplace)
output.assign(input);
}
else {
const T factor = cn / n2;
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input.applyLambda<T>(lambda, output);
}
}
else {
// along dimension
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions, false);
if (!isInplace)
output.assign(input);
auto tads = output.allTensorsAlongDimension(dimensions);
// TODO: make this CUDA-compliant somehow
for (int e = 0; e < tads.size(); e++) {
T n2 = norm2.e<T>(e) / tads.at(e)->lengthOf();
const T factor = cn / n2;
if (n2 > cn) {
auto lambda = LAMBDA_T(_x, factor) {return _x * factor;};
tads.at(e)->applyLambda<T>(lambda, output);
}
}
}
}
void clipByAveraged(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByAveraged_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByAveraged_, (NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES);
/*
if (d1 > params[1])
return params[1];
else if (d1 < params[0])
return params[0];
else return d1;
*/
template <typename T>
static void clipByValue_(NDArray& input, double leftBound, double rightBound, NDArray& output) {
auto routine = LAMBDA_T(_x, leftBound, rightBound) {
if (_x > rightBound) return rightBound;
if (_x < leftBound) return leftBound;
return _x;
};
input.applyLambda<T>(routine, output);
}
void clipByValue(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByValue_, (input, leftBound, rightBound, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByValue_, (NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES);
}
}
}

View File

@ -0,0 +1,45 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void eye(sd::LaunchContext * context, NDArray& output) {
const int rank = output.rankOf();
auto arrs = output.allTensorsAlongDimension({rank-2, rank-1});
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++)
arrs.at(i)->setIdentity();
};
samediff::Threads::parallel_tad(func, 0, arrs.size());
}
}
}
}

View File

@ -0,0 +1,183 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
////////////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void gatherND_(NDArray& input, NDArray& indices, NDArray& output) {
const X* x = reinterpret_cast<X*>(input.getBuffer());
const Y* y = reinterpret_cast<Y*>(indices.getBuffer());
X* z = reinterpret_cast<X*>(output.getBuffer());
const int xRank = input.rankOf();
const int yRank = indices.rankOf();
const int zRank = output.rankOf();
const int maxRank = sd::math::nd4j_max<int>(yRank, sd::math::nd4j_max<int>(xRank, zRank));
const Nd4jLong zLen = output.lengthOf();
const uint yLastDim = indices.sizeAt(-1);
const int diff = zRank - xRank;
const bool bEqual = yLastDim == xRank;
auto func = PRAGMA_THREADS_FOR {
int xCoords[MAX_RANK], zCoords[MAX_RANK], temp;
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.getShapeInfo(), zCoords);
temp = zCoords[yRank - 1];
zCoords[yRank - 1] = 0;
const auto yOffset = shape::getOffset(indices.getShapeInfo(), zCoords);
zCoords[yRank - 1] = temp;
if(bEqual)
memcpy(xCoords, zCoords, zRank * sizeof(int));
else if(diff >= 0)
memcpy(xCoords, zCoords + diff, xRank * sizeof(int));
else
memcpy(xCoords - diff, zCoords, zRank * sizeof(int));
for (uint j = 0; j < yLastDim; ++j)
xCoords[j] = y[yOffset + j * indices.stridesOf()[yRank - 1]]; // last stride
const auto xOffset = shape::getOffset(input.getShapeInfo(), xCoords);
z[zOffset] = x[xOffset];
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
////////////////////////////////////////////////////////////////////////
void gatherND(sd::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) {
BUILD_DOUBLE_SELECTOR(input.dataType(), indices.dataType(), gatherND_, (input, indices, output), LIBND4J_TYPES, INDEXING_TYPES);
}
////////////////////////////////////////////////////////////////////////
template<typename T>
static void gather_(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
int axis = intArgs.size() > 0 ? intArgs[0] : 0;
const int inputRank = input->rankOf();
if(axis < 0)
axis += inputRank;
const int numOfIntArgs = intArgs.size();
if (indices != nullptr) {
for(Nd4jLong i = 0; i < indices->lengthOf(); ++i)
if(indices->e<Nd4jLong>(i) >= input->sizeAt(axis))
throw std::runtime_error("helpers::gather function: indices array contains wrong elements, each element must be smaller than corresponding dimension of input array !");
// first case: indices consist of only one scalar
if(indices->isScalar()) {
if(input->rankOf() <= 1){
//For scalar indices, rank 0 or 1 input: can't do tensor along dimension 0 as this is whole array... instead, we want to get a scalar
auto idx = indices->e<Nd4jLong>(0);
auto scalarNDArray = input->e(idx);
output->assign(scalarNDArray);
} else {
auto dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {axis});
auto tadPack = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto tadArr = NDArray(reinterpret_cast<void *>(reinterpret_cast<T*>(input->getBuffer()) + tadPack.primaryOffsets()[indices->e<Nd4jLong>(0)]), tadPack.primaryShapeInfo(), output->getContext());
output->assign(&tadArr);
}
}
else if (input->rankOf() == 1 && indices->isVector()) {
// special case
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++)
output->p(e, input->e<T>(indices->e<Nd4jLong>(e)));
};
samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
else {
std::vector<int> dimsOut(indices->rankOf());
std::iota(dimsOut.begin(), dimsOut.end(), axis); // fill with axis, axis+1, ... indices->rankOf()-1
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->getShapeInfo(), dimsOut);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
NDArray subArrOut = (*output)(i, dimsOut);
NDArray subArrIn = (*input)(indices->e<Nd4jLong>(i), {axis});
subArrOut.assign(subArrIn);
}
};
samediff::Threads::parallel_tad(func, 0, numOfSubArrs);
}
}
else {
for(int i = 1; i < numOfIntArgs; ++i)
if(intArgs[i] >= input->sizeAt(axis))
throw std::runtime_error("helpers::gather function: some of input indexes is larger than corresponding shape of input array !");
// we only allow scalar/vector case here
if (numOfIntArgs == 2) { // scalar case
output->assign((*input)(intArgs[1], {axis}));
}
else { // vector case
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->getShapeInfo(), {axis});
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
NDArray subArrOut = (*output)(i, {axis});
NDArray subArrIn = (*input)(intArgs[i + 1], {axis});
subArrOut.assign(subArrIn);
}
};
samediff::Threads::parallel_tad(func, 0, numOfSubArrs);
}
}
}
void gather(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
BUILD_SINGLE_SELECTOR(input->dataType(), gather_, (input, indices, output, intArgs), LIBND4J_TYPES);
}
}
}
}

View File

@ -0,0 +1,51 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
////////////////////////////////////////////////////////////////////////
void invertPermutation(sd::LaunchContext * context, const NDArray& input, NDArray& output) {
std::set<int> uniqueElems;
const int length = input.lengthOf();
for(int i = 0; i < length; ++i) {
int elem = input.e<int>(i);
if(!uniqueElems.insert(elem).second) // this operation forbids us to use #pragma omp
throw std::runtime_error("helpers::invertPermutation function: input array contains duplicates !");
if(elem < 0 || elem > length - 1)
throw std::runtime_error("helpers::invertPermutation function: element of input array is out of range (0, length-1) !");
output.p<int>(elem, i);
}
}
}
}
}

View File

@ -0,0 +1,277 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
* Copyright (c) 2019-2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMaxIndex_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T max = -DataTypeUtils::max<T>();
Nd4jLong idx = 0;
for (Nd4jLong i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
if (v > max) {
max = v;
idx = i;
}
}
output.p(e, idx);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), mergeMaxIndex_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMax_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T max = -DataTypeUtils::max<T>();
for (Nd4jLong i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
if (v > max)
max = v;
}
output.p(e, max);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeMax(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMaxBp_(const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
// outArrs.size() == inArrs.size() - 1
const Nd4jLong numArgs = outArrs.size();
// last array is gradient
const auto gradient = inArrs[numArgs]->bufferAsT<T>();
auto length = inArrs[numArgs]->lengthOf();
bool bSameOrderAndEws1 = (1 == inArrs[numArgs]->ews());
if (bSameOrderAndEws1) {
auto gradOrdering = inArrs[numArgs]->ordering();
for (int i = 0; i < numArgs; ++i) {
bSameOrderAndEws1 &= (gradOrdering == inArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == inArrs[i]->ews());
bSameOrderAndEws1 &= (gradOrdering == outArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == outArrs[i]->ews());
}
}
if(bSameOrderAndEws1){
auto func = PRAGMA_THREADS_FOR{
for (auto e = start; e < stop; e++) {
T max = -DataTypeUtils::max<T>();
Nd4jLong nMaxIndex = 0;
for (Nd4jLong i = 0; i < numArgs; i++) {
const T* v = inArrs[i]->bufferAsT<T>();
if (v[e] > max) {
max = v[e];
nMaxIndex = i;
}
}
T* z = outArrs[nMaxIndex]->bufferAsT<T>();
z[e] = gradient[e];
}
};
samediff::Threads::parallel_for(func, 0, length);
return;
}
auto gradShape = inArrs[numArgs]->getShapeInfo();
std::vector<bool> vbSameShaepeAndStrides(numArgs);
for (int i = 0; i < numArgs; ++i) {
vbSameShaepeAndStrides[i] = shape::haveSameShapeAndStrides(gradShape, inArrs[i]->getShapeInfo());
}
auto func = PRAGMA_THREADS_FOR{
int coords[MAX_RANK];
for (auto e = start; e < stop; e++) {
shape::index2coordsCPU(start, e, gradShape, coords);
const auto gradOffset = shape::getOffset(gradShape, coords);
T max = -DataTypeUtils::max<T>();
Nd4jLong nMaxIndex = 0;
for (Nd4jLong i = 0; i < numArgs; i++) {
const auto xOffset = vbSameShaepeAndStrides[i] ? gradOffset : shape::getOffset(inArrs[i]->getShapeInfo(), coords);
const T* v = inArrs[i]->bufferAsT<T>();
if (v[xOffset] > max) {
max = v[xOffset];
nMaxIndex = i;
}
}
const auto zOffset = vbSameShaepeAndStrides[nMaxIndex] ? gradOffset : shape::getOffset(outArrs[nMaxIndex]->getShapeInfo(), coords);
T* z = outArrs[nMaxIndex]->bufferAsT<T>();
z[zOffset] = gradient[gradOffset];
}
};
samediff::Threads::parallel_for(func, 0, length);
return;
}
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
BUILD_SINGLE_SELECTOR(outArrs[0]->dataType(), mergeMaxBp_, (inArrs, outArrs), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAvg_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
const T factor = 1.f / numArgs;
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T sum = 0.;
for (Nd4jLong i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
sum += v;
}
output.p<T>(e, sum * factor);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeAvg(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAvgBp_(const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const Nd4jLong numArgs = outArrs.size();
auto func = PRAGMA_THREADS_FOR{
for (auto e = start; e < stop; e++) {
T v = gradient.e<T>(e) / numArgs;
for (Nd4jLong i = 0; i < numArgs; i++) {
outArrs[i]->p<T>(e, v);
}
}
};
samediff::Threads::parallel_for(func, 0, gradient.lengthOf());
}
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAvgBp_, (gradient, outArrs), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAdd_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T sum = (T) 0.f;
for (Nd4jLong i = 0; i < numArgs; i++)
sum += inArrs[i]->e<T>(e);
output.p(e, sum);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeAdd(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAddBp_(const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const Nd4jLong numArgs = outArrs.size();
auto func = PRAGMA_THREADS_FOR{
for (auto e = start; e < stop; e++) {
T v = gradient.e<T>(e);
for (Nd4jLong i = 0; i < numArgs; i++) {
outArrs[i]->p<T>(e, v);
}
}
};
samediff::Threads::parallel_for(func, 0, gradient.lengthOf());
}
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAddBp_, (gradient, outArrs), LIBND4J_TYPES);
}
}
}
}

View File

@ -0,0 +1,483 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
void pad_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) {
const T* x = input.bufferAsT<T>();
T* z = output.bufferAsT<T>();
const Nd4jLong* xShape = input.shapeOf();
const Nd4jLong* zShape = output.shapeOf();
const int rank = input.rankOf(); // both input and output have the same rank
const int rankMinusOne = rank - 1;
const auto zLen = output.lengthOf();
if(mode == 0) { // CONSTANT case
const T padVal = padValue.e<T>(0);
auto func = PRAGMA_THREADS_FOR {
int zCoords[MAX_RANK], xCoords[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.getShapeInfo(), zCoords);
memcpy(xCoords, zCoords, rank * sizeof(int));
bool within = true;
for (int j = rankMinusOne; j >= 0; --j) {
if (xShape[j] == zShape[j])
continue;
const auto left = paddings.e<Nd4jLong>(j, 0);
if (zCoords[j] < left || zCoords[j] >= left + xShape[j]) {
within = false;
break;
}
else
xCoords[j] = zCoords[j] - left;
}
if (within)
z[zOffset] = x[shape::getOffset(input.getShapeInfo(), xCoords)];
else
z[zOffset] = padVal;
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
else { // REFLECT and SYMMETRIC cases
const Nd4jLong shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC
const Nd4jLong shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC
auto func = PRAGMA_THREADS_FOR {
int zCoords[MAX_RANK], xCoords[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.getShapeInfo(), zCoords);
memcpy(xCoords, zCoords, rank * sizeof(int));
for (int j = rankMinusOne; j >= 0; --j) {
if (xShape[j] == zShape[j])
continue;
xCoords[j] = zCoords[j] - paddings.e<Nd4jLong>(j, 0); // are ready to fill middle (within input dimension range)
if (xCoords[j] < 0)
xCoords[j] = -xCoords[j] - shift1; // means fill from left
else if (xCoords[j] >= xShape[j])
xCoords[j] = 2 * xShape[j] - xCoords[j] - shift2; // means fill from right
}
const auto xOffset = shape::getOffset(input.getShapeInfo(), xCoords);
z[zOffset] = x[xOffset];
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
}
// //////////////////////////////////////////////////////////////////////////
// template<typename T>
// void pad2_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
// const int rank = output.rankOf();
// std::vector<int> dimsToExclude(rank);
// std::iota(dimsToExclude.begin(), dimsToExclude.end(), 0); // fill with 0, 1, ... rank-1
// Nd4jLong numLeft = paddings.e<Nd4jLong>(rank-1,0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(rank-1,1);
// Nd4jLong inDimSize = input.sizeAt(rank-1);
// Nd4jLong outDimSize = output.sizeAt(rank-1);
// std::vector<std::vector<Nd4jLong>> outIdx = { std::vector<Nd4jLong>(2*rank), {numLeft, numLeft + inDimSize}, {0, numLeft}, {numLeft + inDimSize, outDimSize} };
// for(int i = 0; i < rank-1; ++i) {
// outIdx[0][2*i] = paddings.e<Nd4jLong>(i, 0);
// outIdx[0][2*i + 1] = outIdx[0][2*i] + input.sizeAt(i);
// }
// outIdx[0][2*rank-1] = outIdx[0][2*rank-2] = 0;
// // ***** populate innermost sub-arrays firstly ***** //
// dimsToExclude.pop_back();
// Nd4jLong startL = mode == 1 ? 1 : 0; // REFLECT or SYMMETRIC
// Nd4jLong startR = mode == 1 ? inDimSize-2 : inDimSize-1; // REFLECT or SYMMETRIC
// Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude);
// NDArray outSubArr0 = output(outIdx[0], true);
// PRAGMA_OMP_PARALLEL_FOR
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr1 = outSubArr0(j, dimsToExclude);
// NDArray inSubArr = input(j, dimsToExclude);
// NDArray outSubArrMid = outSubArr1(outIdx[1]);
// outSubArrMid.assign(inSubArr); // assign middle
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray temp = outSubArr1(outIdx[2]);
// temp.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray temp = outSubArr1(outIdx[3]);
// temp.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) // fill left side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) // fill right side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// }
// }
// // ***** fill rest of outer sub-arrays ***** //
// std::vector<Nd4jLong> outIdxInner(2, 0);
// std::vector<Nd4jLong> outIdxOuter(2, 0);
// for(int i = rankBorder - 1; i >= 0; --i) {
// dimsToExclude.pop_back();
// outIdxInner.push_back(0), outIdxInner.push_back(0);
// outIdxOuter.push_back(0), outIdxOuter.push_back(0);
// Nd4jLong numLeft = paddings.e<Nd4jLong>(i, 0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(i, 1);
// if(numLeft == 0 && numRight == 0)
// continue;
// Nd4jLong inDimSize = input.sizeAt(i);
// Nd4jLong outDimSize = output.sizeAt(i);
// if(mode == 0) {
// outIdxOuter[0] = 0; outIdxOuter[1] = numLeft;
// outIdxInner[0] = numLeft + inDimSize; outIdxInner[1] = outDimSize;
// }
// startL = mode == 1 ? numLeft + 1 : numLeft; // REFLECT or SYMMETRIC
// startR = mode == 1 ? numLeft + inDimSize - 2 : numLeft + inDimSize-1; // REFLECT or SYMMETRIC
// numOfSubArrs = ShapeUtils::getNumOfSubArrs(output.getShapeInfo(), dimsToExclude);
// PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(outIdxOuter, outIdxInner))
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr = output(j, dimsToExclude);
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray tempO = outSubArr(outIdxOuter);
// tempO.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray tempI = outSubArr(outIdxInner);
// tempI.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) { // fill left side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) { // fill right side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// }
// }
// }
// }
void pad(sd::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
BUILD_SINGLE_SELECTOR(input.dataType(), pad_, (mode, input, paddings, output, padValue), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mirrorPad_(const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
// mode: 0 - REFLECT, else - SYMMETRIC
const int reflBorder = (bool)mode ? 1 : 0;
const int rank = input.rankOf();
const Nd4jLong outLen = output.lengthOf();
if(rank <= 1) {
const Nd4jLong inLen = input.lengthOf();
const auto leftSide = paddings.e<Nd4jLong>(0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
for(int i = 0; i < outLen; ++i) {
if (i < leftSide) // left side
output.p(i, input.e<T>(leftSideCorrected - i));
else if(i >= leftSide && i < leftSide + inLen) // middle
output.p(i, input.e<T>(i - leftSide));
else // right side
output.p(i, input.e<T>(len - i));
}
}
else {
auto func = PRAGMA_THREADS_FOR {
int inIdx[MAX_RANK], outIdx[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), outIdx);
for (int j = 0; j < rank; ++j) {
const Nd4jLong inLen = input.sizeAt(j);
const auto leftSide = paddings.e<T>(j, 0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder;
if (outIdx[j] < leftSide) // left side
inIdx[j] = leftSideCorrected - outIdx[j];
else if (outIdx[j] >= leftSide && outIdx[j] < leftSide + inLen) // middle
inIdx[j] = outIdx[j] - leftSide;
else // right side
inIdx[j] = len - outIdx[j];
}
auto outOffset = shape::getOffset(output.getShapeInfo(), outIdx);
auto inOffset = shape::getOffset(input.getShapeInfo(), inIdx);
reinterpret_cast<T *>(output.buffer())[outOffset] = reinterpret_cast<T *>(input.getBuffer())[inOffset];
}
};
samediff::Threads::parallel_for(func, 0, outLen);
}
}
void mirrorPad(sd::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
BUILD_SINGLE_SELECTOR(input.dataType(), mirrorPad_, (input, paddings, output, mode), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mirrorPad_, (const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES);
////////////////////////////////////////////////////////////////////////
/*// initial values of inIdx, outIdx, dim must be equal to zero
template<typename T>
static void recursiveLoopForPad_(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
int leftOffset;
// dimensions are array of input dimensions, it is sorted in increasing order
// every time at the beginning we erase first element from it (not good idea to use vector for this purpose, but luckily it is small enough)
// then we use this array for tads building, every time while recursion the number of built tads becomes bigger
dimensions.erase(dimensions.begin());
// build tad basing on output array, also create auxiliary arrays pointing on required output array ranges
shape::TAD tadOut(output.getShapeInfo(), dimensions.data(), dimensions.size());
tadOut.createTadOnlyShapeInfo();
tadOut.createOffsets();
auto subArrOut = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
auto subArr = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
// build tad basing on input array, also create auxiliary array pointing on required input array range
shape::TAD tadIn(input.getShapeInfo(), dimensions.data(), dimensions.size());
tadIn.createTadOnlyShapeInfo();
tadIn.createOffsets();
auto subArrIn = NDArray(input.getBuffer(), tadIn.tadOnlyShapeInfo, output.getContext());
// these indices take into account recursion and always point to actual tads numbers
if (input.rankOf() > 1 && output.rankOf() > 1) {// only for non-vector cases
outIdx = outIdx * output.sizeAt(dim + 1);
inIdx = inIdx * input.sizeAt(dim + 1);
}
// current input tad number, we add to it unity in a loop
int k = -1;
// loop through current dimension
for(int i = 0; i < output.sizeAt(dim); ++i) {
// corresponds to outer range (relevant indices are absent in input)
leftOffset = paddings.e<int>(dim, 0);
if(i < leftOffset || i >= (input.sizeAt(dim) + leftOffset))
continue;
// increase input tads number
++k;
// recursion condition allows for the fact that tad can't reduce to scalar
if(dim < input.rankOf() - 2)
recursiveLoopForPad(mode, input, paddings, output, dimensions, dim + 1, inIdx + k, outIdx + i, padValue);
else if (paddings.sizeAt(0) > dim + 1){
leftOffset = paddings.e<int>(dim + 1, 0);
// shift buffers pointers to actual element position
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + i]);
subArrIn.setBuffer(reinterpret_cast<T*>(input.getBuffer()) + tadIn.tadOffsets[inIdx + i - paddings.e<int>(dim, 0)]);
}
else {
subArrOut.p(i, subArrIn.e<T>(i - leftOffset));
}
// most inner loop, corresponds to last dim = rank-1
switch (mode) {
case 0: // CONSTANT mode
for(int j = 0; j < subArrOut.lengthOf(); ++j)
if(j < leftOffset || j >= (subArrIn.lengthOf() + leftOffset) ) // firstly fill with zeros outer ranges
subArrOut.p(j, (T)0.f);
else
subArrOut.p(j, subArrIn.e<T>(j - leftOffset)); // fill middle with elements of input array
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j - 1));
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j-1));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j));
break;
}
}
else {
if (mode == 0 && input.rankOf() < 2)
subArrOut.p(i, subArrIn.e<T>(i - leftOffset)); // fill middle with elements of input array
}
}
// populate sub-array formed previously
leftOffset = paddings.e<int>(dim,0);
switch (mode) {
case 0: // CONSTANT mode
for(int j = 1; j <= leftOffset; ++j) {
// fill left side with padValue
if (output.rankOf() > 1) {
subArrOut.setBuffer(
reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j - 1, padValue);
}
}
// output.printIndexedBuffer("Output at");
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill left side with zeros
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j, padValue);
}
}
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - 1 - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j - 1]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
}
}
*/
/*
void recursiveLoopForPad(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
BUILD_SINGLE_SELECTOR(input.dataType(), recursiveLoopForPad_, (mode, input, paddings, output, dimensions, dim, inIdx, outIdx, padValue), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void recursiveLoopForPad_, (const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue), LIBND4J_TYPES);
*/
}
}
}

View File

@ -0,0 +1,126 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
#include <graph/RandomGenerator.h>
#include <numeric>
#include <helpers/ShapeUtils.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
void randomShuffle_(NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) {
// check edge cases first
int temp;
const int firstDim = input.sizeAt(0);
if(input.lengthOf() == 1 || firstDim == 1) {
if(!isInplace)
output.assign(input);
}
else if (input.isVector() || shape::isLikeVector(input.getShapeInfo(), temp)) {
// apply Fisher-Yates shuffle
if(isInplace) {
//PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->tadThreshold())
for(int i = firstDim-1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
if(i == r)
continue;
T t0 = input.t<T>(i);
T t1 = input.t<T>(r);
//math::nd4j_swap<T>(input(i), input(r));
input.t<T>(i) = t1;
input.t<T>(r) = t0;
}
}
else {
std::vector<int> indices(firstDim);
std::iota(indices.begin(), indices.end(), 0);
output.p<T>(Nd4jLong(0), input.e<T>(0));
// FIXME: parallelism!!
for(int i = firstDim-1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
output.t<T>(i) = input.t<T>(indices[r]);
if(i == r)
continue;
output.t<T>(r) = input.t<T>(indices[i]);
math::nd4j_swap<int>(indices[i], indices[r]);
}
rng.rewindH(firstDim-1);
}
}
else {
// evaluate sub-arrays list of input array through all dimensions excluding first one
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input.rankOf(), {0});
auto subArrsListIn = input.allTensorsAlongDimension(dimensions);
// apply Fisher-Yates shuffle
if(isInplace) {
//PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->elementwiseThreshold())
for(int i = firstDim - 1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
if(i == r)
continue;
subArrsListIn.at(i)->swapUnsafe(*subArrsListIn.at(r));
}
}
else {
// evaluate sub-arrays list of output array through all dimensions excluding first one
auto subArrsListOut = output.allTensorsAlongDimension(dimensions);
std::vector<int> indices(firstDim);
std::iota(indices.begin(), indices.end(), 0);
bool isZeroShuffled = false;
//PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->tadThreshold())
for(int i = firstDim - 1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
subArrsListOut.at(i)->assign(subArrsListIn.at(indices[r]));
if(r == 0)
isZeroShuffled = true;
if(i == r)
continue;
subArrsListOut.at(r)->assign(subArrsListIn.at(indices[i]));
math::nd4j_swap<int>(indices[i], indices[r]);
}
if(!isZeroShuffled)
subArrsListOut.at(0)->assign(subArrsListIn.at(0));
}
rng.rewindH(firstDim-1);
}
}
void randomShuffle(sd::LaunchContext * context, NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), randomShuffle_, (input, output, rng, isInplace), LIBND4J_TYPES);
}
}
}
}

View File

@ -0,0 +1,115 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void scatterUpdate(sd::LaunchContext * context, NDArray& input, NDArray& updates, const std::vector<int>* intArgs) {
int opCode = (*intArgs)[0];
int dimSize = (*intArgs)[1];
Nd4jLong e;
Nd4jLong limg = 2 + dimSize;
std::vector<int> tadDimensions(dimSize);
for (e = 2; e < limg; e++)
tadDimensions[e-2] = (*intArgs)[e];
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input.rankOf(), tadDimensions);
// increasing counter to skip numIndices
e++;
std::vector<int> indices;
for (; e < static_cast<Nd4jLong>(intArgs->size()); e++)
indices.push_back((*intArgs)[e]);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto inSubArr = input(indices[i], dimsToExclude, true);
auto updSubArr = updates(i, dimsToExclude, true);
if (inSubArr.lengthOf() != updSubArr.lengthOf())
continue;
switch (opCode) {
case 0:
inSubArr.applyPairwiseTransform(pairwise::Add, updSubArr, inSubArr);
break;
case 1:
inSubArr.applyPairwiseTransform(pairwise::Subtract, updSubArr, inSubArr);
break;
case 2:
inSubArr.applyPairwiseTransform(pairwise::Multiply, updSubArr, inSubArr);
break;
case 3:
inSubArr.applyPairwiseTransform(pairwise::Divide, updSubArr, inSubArr);
break;
case 4:
inSubArr.applyPairwiseTransform(pairwise::ReverseSubtract, updSubArr, inSubArr);
break;
case 5:
inSubArr.applyPairwiseTransform(pairwise::ReverseDivide, updSubArr, inSubArr);
break;
case 6:
inSubArr.applyPairwiseTransform(pairwise::CopyPws, updSubArr, inSubArr);
break;
default:
continue;
}
}
};
samediff::Threads::parallel_tad(func, 0, indices.size());
}
//////////////////////////////////////////////////////////////////////////
void scatterSimple(sd::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions) {
// updates and indices have same length
const Nd4jLong len = indices.lengthOf();
switch (opId) {
case 6: { // copy
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto inSubArr = input(i, dimensions);
inSubArr.p(indices.t<Nd4jLong>(i), updates.e(i));
}
};
samediff::Threads::parallel_for(func, 0, len);
}
break;
default:
throw std::invalid_argument("helpers::scatterSimple: operation is not implemented for given id !");
}
}
}
}
}

View File

@ -0,0 +1,91 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void tileBP_(const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps) {
T* gradIBuff = reinterpret_cast<T*>(gradI.getBuffer());
const T* gradOBuff = reinterpret_cast<T*>(gradO.getBuffer());
const Nd4jLong gradILen = gradI.lengthOf();
const Nd4jLong gradOLen = gradO.lengthOf(); // gradOLen >= gradILen
const Nd4jLong gradIEWS = sd::math::nd4j_abs<Nd4jLong>(gradI.ews());
const Nd4jLong gradOEWS = gradO.ews();
// initial zeroing of gradI content
if(gradIEWS == 1)
memset(gradIBuff, 0, gradILen * sizeof(T));
else {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for (Nd4jLong i = 0; i < gradILen * gradIEWS; i += gradIEWS)
gradIBuff[i] = static_cast<T>(0.f);
}
if(gradO.ordering() == 'c' && gradOEWS == 1) {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto idx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(idx, gradI.e<T>(idx) + gradOBuff[i]);
}
}
else if(gradO.ordering() == 'c' && gradOEWS > 1) {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto idx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(idx, gradI.e<T>(idx) + gradOBuff[i * gradOEWS]);
}
}
else {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto fidx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(fidx, gradI.e<T>(fidx) + gradOBuff[shape::getIndexOffset(i, gradO.getShapeInfo())]);
}
}
}
void tileBP(sd::LaunchContext * context, const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps) {
BUILD_SINGLE_SELECTOR(gradI.dataType(), tileBP_, (gradO, gradI, reps), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void tileBP_, (const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps), FLOAT_TYPES);
}
}
}

View File

@ -0,0 +1,47 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void trace_(const NDArray& input, NDArray& output) {
const int inRank = input.rankOf();
auto setOfSubArrs = input.allTensorsAlongDimension({inRank-2, inRank-1});
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++)
output.p(i, setOfSubArrs.at(i)->getTrace());
};
samediff::Threads::parallel_for(func, 0, setOfSubArrs.size());
}
void trace(sd::LaunchContext * context, const NDArray& input, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), trace_, (input, output), LIBND4J_TYPES);
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,56 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void triuBP_(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) {
auto dOdI = NDArray(&gradO); // dO/dI
const_cast<NDArray&>(input).fillAsTriangular<T>(0, diagonal, dOdI.sizeAt(-1), dOdI, 'b');
int dLen = dOdI.lengthOf();
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
if (dOdI.t<T>(i) != static_cast<T>(0.f))
dOdI.t<T>(i) = static_cast<T>(1.f);
}
};
samediff::Threads::parallel_for(func, 0, dLen);
// FIXME: !!!
gradI.assign(dOdI * gradO); // chain rule: dLoss/dI = dO/dI * dLoss/dO
}
void triuBP(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) {
BUILD_SINGLE_SELECTOR(gradO.dataType(), triuBP_, (context, input, gradO, gradI, diagonal), LIBND4J_TYPES);
}
}
}
}

View File

@ -34,7 +34,7 @@ namespace sd {
namespace helpers { namespace helpers {
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
template <typename T, typename Z> template <typename T, typename Z>
static __global__ void global_mergeMaxIndex_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { static __global__ void mergeMaxIndexCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<Z*>(voutput); auto output = reinterpret_cast<Z*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x; const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -53,18 +53,18 @@ namespace sd {
mVal = val; mVal = val;
} }
} }
__syncthreads();
output[shape::getIndexOffset(e, outputShape)] = mIdx; output[shape::getIndexOffset(e, outputShape)] = mIdx;
} }
} }
template <typename T, typename Z> template <typename T, typename Z>
static void mergeMaxIndex_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { static void mergeMaxIndex_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) { int nArrSize = static_cast<int>(inArrs.size());
std::vector<void*> inBuffers(nArrSize), inShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer(); inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo(); inShapes[e] = inArrs[e]->getSpecialShapeInfo();
} }
@ -75,25 +75,27 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*))); auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf(); auto length = output.lengthOf();
global_mergeMaxIndex_<T,Z><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxIndexCudaLauncher<T, Z> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, nArrSize, output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize(); manager.synchronize();
} }
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { void mergeMaxIndex(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs) NDArray::prepareSpecialUse({ &output }, inArrs);
v->syncToDevice();
BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (context, inArrs, output), LIBND4J_TYPES, INDEXING_TYPES); BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (context, inArrs, output), LIBND4J_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({&output}, {}); NDArray::registerSpecialUse({ &output }, inArrs);
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
template <typename T> template <typename T>
static __global__ void global_mergeMax_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { static __global__ void mergeMaxCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput); auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x; const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -103,24 +105,25 @@ namespace sd {
T mVal = -DataTypeUtils::max<T>(); T mVal = -DataTypeUtils::max<T>();
for (int i = 0; i < numArrays; i++) { for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]); auto x = reinterpret_cast<const T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]); auto xShape = reinterpret_cast<const Nd4jLong*>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape)];; auto val = x[shape::getIndexOffset(e, xShape)];;
if (mVal < val) if (mVal < val)
mVal = val; mVal = val;
} }
__syncthreads();
output[shape::getIndexOffset(e, outputShape)] = mVal; output[shape::getIndexOffset(e, outputShape)] = mVal;
} }
} }
template<typename T> template<typename T>
static void mergeMax_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { static void mergeMax_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) { int nArrsSize = static_cast<int>(inArrs.size());
std::vector<void*> inBuffers(nArrsSize), inShapes(nArrsSize);
for (int e = 0; e < nArrsSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer(); inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo(); inShapes[e] = inArrs[e]->getSpecialShapeInfo();
} }
@ -131,23 +134,134 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*))); auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf(); auto length = output.lengthOf();
global_mergeMax_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, nArrsSize, output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize(); manager.synchronize();
} }
void mergeMax(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { void mergeMax(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs) NDArray::prepareSpecialUse({ &output }, inArrs);
v->syncToDevice();
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (context, inArrs, output), LIBND4J_TYPES); BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (context, inArrs, output), LIBND4J_TYPES);
NDArray::registerSpecialUse({&output}, {});
NDArray::registerSpecialUse({ &output }, inArrs);
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
template <typename T> template <typename T>
static __global__ void global_mergeAvg_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { static __global__ void mergeMaxBpCudaLauncher(void** inArrs, void** inShapes, void* vgradient, Nd4jLong* gradientShape, const int numArrays,
void** outArrs, void** outShapes, Nd4jLong length, bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
int nMaxIndex = 0;
auto xOffset = e, zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
if (!bSameOrderAndEws1) {
auto xShape = reinterpret_cast<Nd4jLong*>(inShapes[i]);
xOffset = shape::getOffset(xShape, coords);
}
auto val = x[xOffset];
if (mVal < val) {
mVal = val;
nMaxIndex = i;
}
}
// outputs have to be pre-nullify
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[nMaxIndex]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[nMaxIndex]);
output[zOffset] = grad[gradOffset];
}
}
template<typename T>
static void mergeMaxBp_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs, int nArrSize, bool bSameOrderAndEws1) {
std::vector<void*> inBuffers(nArrSize), inShapes(nArrSize), outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
outBuffers[e] = outArrs[e]->getSpecialBuffer();
outShapes[e] = outArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeMaxBp");
auto pInBuffers = reinterpret_cast<void**>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void*)));
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = inArrs[nArrSize]->lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxBpCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, inArrs[nArrSize]->getSpecialBuffer(),
inArrs[nArrSize]->getSpecialShapeInfo(), nArrSize, pOutBuffers, pOutShapes,
length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
// not use gradient
int nArrSize = static_cast<int>(inArrs.size() - 1);
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>&>(outArrs);
NDArray::prepareSpecialUse(out, inArrs);
bool bSameOrderAndEws1 = (1 == inArrs[nArrSize]->ews());
auto ordering = inArrs[nArrSize]->ordering();
for (int i = 0; i < nArrSize; ++i) {
bSameOrderAndEws1 &= (ordering == inArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == inArrs[i]->ews());
bSameOrderAndEws1 &= (ordering == outArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == outArrs[i]->ews());
}
BUILD_SINGLE_SELECTOR(inArrs[nArrSize]->dataType(), mergeMaxBp_, (context, inArrs, outArrs, nArrSize, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::registerSpecialUse( out, inArrs );
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAvgCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput); auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x; const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -168,9 +282,9 @@ namespace sd {
} }
template<typename T> template<typename T>
static void mergeAvg_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { static void mergeAvg_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size()); std::vector<void*> inBuffers(inArrs.size()), inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) { for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer(); inBuffers[e] = inArrs[e]->getSpecialBuffer();
@ -183,24 +297,107 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*))); auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf(); auto length = output.lengthOf();
global_mergeAvg_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAvgCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, (int)inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize(); manager.synchronize();
} }
void mergeAvg(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { void mergeAvg(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs) NDArray::prepareSpecialUse({ &output }, inArrs);
v->syncToDevice();
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (context, inArrs, output), FLOAT_TYPES); BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (context, inArrs, output), FLOAT_TYPES);
NDArray::registerSpecialUse({&output}, {}); NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAvgBpCudaLauncher(void* vgradient, Nd4jLong* gradientShape, void** outArrs, void** outShapes,
const int numArrays, Nd4jLong length, bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
auto zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[i]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[i]);
output[zOffset] = grad[gradOffset] / numArrays;
}
}
}
template<typename T>
static void mergeAvgBp_(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs, bool bSameOrderAndEws1) {
int nArrSize = static_cast<int>(outArrs.size());
std::vector<void*> outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
outBuffers[e] = outArrs[e]->getSpecialBuffer();
outShapes[e] = outArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAvgBp");
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = gradient.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAvgBpCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (gradient.getSpecialBuffer(), gradient.getSpecialShapeInfo(),
pOutBuffers, pOutShapes, nArrSize, length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>&>(outArrs);
NDArray::prepareSpecialUse( out, { &gradient });
bool bSameOrderAndEws1 = (1 == gradient.ews());
auto ordering = gradient.ordering();
for (const auto& v : outArrs) {
bSameOrderAndEws1 &= (ordering == v->ordering());
bSameOrderAndEws1 &= (1 == v->ews());
}
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAvgBp_, (context, gradient, outArrs, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::prepareSpecialUse(out, { &gradient });
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
template <typename T> template <typename T>
static __global__ void global_mergeAdd_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { static __global__ void mergeAddCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput); auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x; const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -221,11 +418,12 @@ namespace sd {
} }
template<typename T> template<typename T>
static void mergeAdd_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { static void mergeAdd_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) { int nArrSize = static_cast<int>(inArrs.size());
std::vector<void*> inBuffers(nArrSize), inShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer(); inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo(); inShapes[e] = inArrs[e]->getSpecialShapeInfo();
} }
@ -236,21 +434,104 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*))); auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf(); auto length = output.lengthOf();
global_mergeAdd_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAddCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, nArrSize, output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize(); manager.synchronize();
} }
BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), NUMERIC_TYPES); BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output), NUMERIC_TYPES);
void mergeAdd(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) { void mergeAdd(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs) NDArray::prepareSpecialUse({ &output }, inArrs);
v->syncToDevice();
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (context, inArrs, output), NUMERIC_TYPES); BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (context, inArrs, output), NUMERIC_TYPES);
NDArray::registerSpecialUse({&output}, {}); NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAddBpCudaLauncher(void* vgradient, Nd4jLong* gradientShape, void** outArrs, void** outShapes,
const int numArrays, Nd4jLong length, bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
auto zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[i]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[i]);
output[zOffset] = grad[gradOffset];
} }
} }
} }
template<typename T>
static void mergeAddBp_(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs, bool bSameOrderAndEws1) {
int nArrSize = static_cast<int>(outArrs.size());
std::vector<void*> outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
outBuffers[e] = outArrs[e]->getSpecialBuffer();
outShapes[e] = outArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAddBp");
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = gradient.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAddBpCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (gradient.getSpecialBuffer(), gradient.getSpecialShapeInfo(),
pOutBuffers, pOutShapes, nArrSize, length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>& >(outArrs);
NDArray::prepareSpecialUse( out, { &gradient });
bool bSameOrderAndEws1 = (1 == gradient.ews());
auto ordering = gradient.ordering();
for (const auto& v : outArrs) {
bSameOrderAndEws1 &= (ordering == v->ordering());
bSameOrderAndEws1 &= (1 == v->ews());
}
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAddBp_, (context, gradient, outArrs, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::prepareSpecialUse( out, { &gradient });
}
}
}
} }

View File

@ -52,13 +52,16 @@ namespace helpers {
void scatterSimple(sd::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions); void scatterSimple(sd::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions);
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output); void mergeMaxIndex(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeMax(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output); void mergeMax(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs);
void mergeAvg(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output); void mergeAvg(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs);
void mergeAdd(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output); void mergeAdd(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs);
void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace); void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace);
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace); void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace);

View File

@ -955,7 +955,160 @@ TEST_F(DeclarableOpsTests13, mergemax_2) {
ASSERT_EQ(20, status); ASSERT_EQ(20, status);
} }
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergemax_bp_1) {
NDArray x1('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x2('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x3('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray grad('c', { 5, 5 }, sd::DataType::FLOAT32);
x1.assign(3);
x2.assign(1);
x3.assign(2);
grad.linspace(.1, .1);
sd::ops::mergemax_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
auto z = result.at(0);
ASSERT_TRUE(grad.isSameShape(z));
ASSERT_TRUE(grad.equalsTo(z));
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergemax_bp_2) {
NDArray x1('c', { 2, 5 }, { 1,2,3,4,5,4,3,2,1,0 }, sd::DataType::FLOAT32);
NDArray x2('c', { 2, 5 }, { 0,1,2,3,4,5,6,7,8,9 }, sd::DataType::FLOAT32);
NDArray x3('c', { 2, 5 }, { 0,1,1,2,3,4,7,5,8,10 }, sd::DataType::FLOAT32);
NDArray grad('c', { 2, 5 }, sd::DataType::FLOAT32);
grad.linspace(.1, .1);
NDArray exp1('c', { 2, 5 }, { 0.1, 0.2, 0.3, 0.4, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0 }, sd::DataType::FLOAT32);
NDArray exp2('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.8, 0.9, 0.0 }, sd::DataType::FLOAT32);
NDArray exp3('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 1.0 }, sd::DataType::FLOAT32);
sd::ops::mergemax_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
auto z1 = result.at(0);
auto z2 = result.at(1);
auto z3 = result.at(2);
ASSERT_TRUE(exp1.isSameShape(z1));
ASSERT_TRUE(exp1.equalsTo(z1));
ASSERT_TRUE(exp2.isSameShape(z2));
ASSERT_TRUE(exp2.equalsTo(z2));
ASSERT_TRUE(exp3.isSameShape(z3));
ASSERT_TRUE(exp3.equalsTo(z3));
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergemax_bp_3) {
NDArray x1C('c', { 2, 5 }, { 1,2,3,4,5,4,3,2,1,0 }, sd::DataType::FLOAT32);
NDArray x2C('c', { 2, 5 }, { 0,1,2,3,4,5,6,7,8,9 }, sd::DataType::FLOAT32);
NDArray x3C('c', { 2, 5 }, { 0,1,1,2,3,4,7,5,8,10 }, sd::DataType::FLOAT32);
NDArray grad('c', { 2, 5 }, sd::DataType::FLOAT32);
grad.linspace(.1, .1);
NDArray x1('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray x2('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray x3('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray exp1C('c', { 2, 5 }, { 0.1, 0.2, 0.3, 0.4, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0 }, sd::DataType::FLOAT32);
NDArray exp2C('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.8, 0.9, 0.0 }, sd::DataType::FLOAT32);
NDArray exp3C('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 1.0 }, sd::DataType::FLOAT32);
NDArray exp1('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray exp2('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray exp3('f', { 2, 5 }, sd::DataType::FLOAT32);
x1.assign(x1C);
x2.assign(x2C);
x3.assign(x3C);
exp1.assign(exp1C);
exp2.assign(exp2C);
exp3.assign(exp3C);
sd::ops::mergemax_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
auto z1 = result.at(0);
auto z2 = result.at(1);
auto z3 = result.at(2);
ASSERT_TRUE(exp1.isSameShape(z1));
ASSERT_TRUE(exp1.equalsTo(z1));
ASSERT_TRUE(exp2.isSameShape(z2));
ASSERT_TRUE(exp2.equalsTo(z2));
ASSERT_TRUE(exp3.isSameShape(z3));
ASSERT_TRUE(exp3.equalsTo(z3));
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergeadd_bp_1) {
NDArray x1('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x2('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x3('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray grad('c', { 5, 5 }, sd::DataType::FLOAT32);
x1.assign(3);
x2.assign(1);
x3.assign(2);
grad.linspace(.1, .1);
sd::ops::mergeadd_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
for (int i = 0; i < 3; i++) {
auto z = result.at(0);
ASSERT_TRUE(grad.isSameShape(z));
ASSERT_TRUE(grad.equalsTo(z));
}
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergeavg_bp_1) {
NDArray x1('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x2('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x3('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray grad('c', { 5, 5 }, sd::DataType::FLOAT32);
x1.assign(3);
x2.assign(1);
x3.assign(2);
grad.linspace(.1, .1);
sd::ops::mergeavg_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
grad.applyScalar(sd::scalar::Divide, 3, grad);
for (int i = 0; i < 3; i++) {
auto z = result.at(i);
ASSERT_TRUE(grad.isSameShape(z));
ASSERT_TRUE(grad.equalsTo(z));
}
}
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, lstmLayer_1) { TEST_F(DeclarableOpsTests13, lstmLayer_1) {

View File

@ -0,0 +1,37 @@
/*******************************************************************************
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.List;
import java.util.Map;
public interface TFGraphRunnerService{
TFGraphRunnerService init(
List<String> inputNames,
List<String> outputNames,
byte[] graphBytes,
Map<String, INDArray> constants,
Map<String, String> inputDataTypes
);
Map<String,INDArray> run(Map<String,INDArray> inputs);
}

View File

@ -1654,29 +1654,6 @@ public class SDVariable implements Serializable {
return x; return x;
} }
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof SDVariable)) {
return false;
}
SDVariable that = (SDVariable) o;
if (!Objects.equals(varName, that.varName)) {
return false;
}
if (variableType != that.variableType) {
return false;
}
if(sameDiff != that.sameDiff){
return false;
}
return dataType == that.dataType;
}
@Override @Override
public int hashCode() { public int hashCode() {
int result = super.hashCode(); int result = super.hashCode();
@ -1695,4 +1672,26 @@ public class SDVariable implements Serializable {
v.sameDiff = sd; v.sameDiff = sd;
return v; return v;
} }
@Override
public boolean equals(Object o){
if(o == this) return true;
if(!(o instanceof SDVariable))
return false;
SDVariable s = (SDVariable)o;
if(!varName.equals(s.varName))
return false;
if(variableType != s.variableType)
return false;
if(dataType != s.dataType)
return false;
if(variableType == VariableType.VARIABLE || variableType == VariableType.CONSTANT){
INDArray a1 = getArr();
INDArray a2 = s.getArr();
return a1.equals(a2);
}
return true;
}
} }

View File

@ -1234,13 +1234,14 @@ public class SameDiff extends SDBaseOps {
@Override @Override
public boolean equals(Object o) { public boolean equals(Object o) {
if (this == o) return true; if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false; if (o == null || getClass() != o.getClass())
return false;
SameDiff sameDiff = (SameDiff) o; SameDiff sameDiff = (SameDiff) o;
if (variables != null ? !variables.equals(sameDiff.variables) : sameDiff.variables != null) boolean eqVars = variables.equals(sameDiff.variables);
return false; boolean eqOps = ops.equals(sameDiff.ops);
return sameDiffFunctionInstances != null ? sameDiffFunctionInstances.equals(sameDiff.sameDiffFunctionInstances) : sameDiff.sameDiffFunctionInstances == null; return eqVars && eqOps;
} }
/** /**
@ -5843,4 +5844,10 @@ public class SameDiff extends SDBaseOps {
return base + "_" + inc; return base + "_" + inc;
} }
@Override
public String toString(){
return "SameDiff(nVars=" + variables.size() + ",nOps=" + ops.size() + ")";
}
} }

View File

@ -16,10 +16,7 @@
package org.nd4j.autodiff.samediff.internal; package org.nd4j.autodiff.samediff.internal;
import lombok.AllArgsConstructor; import lombok.*;
import lombok.Builder;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.nd4j.autodiff.samediff.SDVariable; import org.nd4j.autodiff.samediff.SDVariable;
import java.util.List; import java.util.List;
@ -28,6 +25,7 @@ import java.util.List;
@NoArgsConstructor @NoArgsConstructor
@Data //TODO immutable? @Data //TODO immutable?
@Builder @Builder
@EqualsAndHashCode(exclude = {"gradient", "variableIndex"})
public class Variable { public class Variable {
protected String name; protected String name;
protected SDVariable variable; protected SDVariable variable;

View File

@ -173,9 +173,6 @@ public class EvaluationBinary extends BaseEvaluation<EvaluationBinary> {
@Override @Override
public void eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData) { public void eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData) {
if(recordMetaData != null){
throw new UnsupportedOperationException("Evaluation with record metadata not yet implemented for EvaluationBinary");
}
eval(labels, networkPredictions, maskArray); eval(labels, networkPredictions, maskArray);
} }

View File

@ -325,7 +325,7 @@ public class EvaluationCalibration extends BaseEvaluation<EvaluationCalibration>
@Override @Override
public void eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData) { public void eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData) {
throw new UnsupportedOperationException("Not yet implemented"); eval(labels, networkPredictions, maskArray);
} }
@Override @Override

View File

@ -229,7 +229,7 @@ public class RegressionEvaluation extends BaseEvaluation<RegressionEvaluation> {
@Override @Override
public void eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData) { public void eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData) {
throw new UnsupportedOperationException("Not yet implemented"); eval(labels, networkPredictions, maskArray);
} }
@Override @Override

View File

@ -76,7 +76,7 @@ public class RandomOpValidation extends BaseOpValidation {
double min = in.minNumber().doubleValue(); double min = in.minNumber().doubleValue();
double max = in.maxNumber().doubleValue(); double max = in.maxNumber().doubleValue();
double mean = in.meanNumber().doubleValue(); double mean = in.meanNumber().doubleValue();
if (min >= 1 && max <= 2 && (in.length() == 1 || Math.abs(mean - 1.5) < 0.1)) if (min >= 1 && max <= 2 && (in.length() == 1 || Math.abs(mean - 1.5) < 0.2))
return null; return null;
return "Failed: min = " + min + ", max = " + max + ", mean = " + mean; return "Failed: min = " + min + ", max = " + max + ", mean = " + mean;
}; };
@ -87,7 +87,7 @@ public class RandomOpValidation extends BaseOpValidation {
checkFn = in -> { checkFn = in -> {
double mean = in.meanNumber().doubleValue(); double mean = in.meanNumber().doubleValue();
double stdev = in.std(true).getDouble(0); double stdev = in.std(true).getDouble(0);
if (in.length() == 1 || (Math.abs(mean - 1) < 0.1 && Math.abs(stdev - 1) < 0.1)) if (in.length() == 1 || (Math.abs(mean - 1) < 0.2 && Math.abs(stdev - 1) < 0.2))
return null; return null;
return "Failed: mean = " + mean + ", stdev = " + stdev; return "Failed: mean = " + mean + ", stdev = " + stdev;
}; };

View File

@ -3556,4 +3556,52 @@ public class SameDiffTests extends BaseNd4jTest {
assertTrue(msg, msg.contains("\"labels\"") && msg.contains("No array was provided")); assertTrue(msg, msg.contains("\"labels\"") && msg.contains("No array was provided"));
} }
} }
@Test
public void testEquals1(){
SameDiff sd1 = SameDiff.create();
SameDiff sd2 = SameDiff.create();
assertEquals(sd1, sd2);
SDVariable p1 = sd1.placeHolder("ph", DataType.FLOAT, -1, 10);
SDVariable p2 = sd2.placeHolder("ph", DataType.FLOAT, -1, 10);
assertEquals(sd1, sd2);
SDVariable w1 = sd1.constant("c1",1.0f);
SDVariable w2 = sd2.constant("c1",1.0f);
assertEquals(sd1, sd2);
SDVariable a1 = p1.add("add", w1);
SDVariable a2 = p2.add("add", w2);
assertEquals(sd1, sd2);
SDVariable w1a = sd1.constant("c2", 2.0f);
SDVariable w2a = sd2.constant("cX", 2.0f);
assertNotEquals(sd1, sd2);
w2a.rename("c2");
assertEquals(sd1, sd2);
sd2.createGradFunction("ph");
assertEquals(sd1, sd2);
w2a.getArr().assign(3.0f);
assertNotEquals(sd1, sd2);
w1a.getArr().assign(3.0f);
assertEquals(sd1, sd2);
SDVariable s1 = p1.sub("op", w1);
SDVariable s2 = p2.add("op", w1);
assertNotEquals(sd1, sd2);
}
} }

View File

@ -61,7 +61,7 @@ public class OpsMappingTests extends BaseNd4jTest {
@Override @Override
public long getTimeoutMilliseconds() { public long getTimeoutMilliseconds() {
return 90000L; return 180000L; //Can be slow on some CI machines such as PPC
} }
@Test @Test

View File

@ -95,7 +95,7 @@ public class Downloader {
} }
// try extracting // try extracting
try{ try{
ArchiveUtils.unzipFileTo(f.getAbsolutePath(), extractToDir.getAbsolutePath()); ArchiveUtils.unzipFileTo(f.getAbsolutePath(), extractToDir.getAbsolutePath(), false);
} catch (Throwable t){ } catch (Throwable t){
log.warn("Error extracting {} files from file {} - retrying...", name, f.getAbsolutePath(), t); log.warn("Error extracting {} files from file {} - retrying...", name, f.getAbsolutePath(), t);
f.delete(); f.delete();

View File

@ -51,6 +51,10 @@ public class ArchiveUtils {
* @throws IOException * @throws IOException
*/ */
public static void unzipFileTo(String file, String dest) throws IOException { public static void unzipFileTo(String file, String dest) throws IOException {
unzipFileTo(file, dest, true);
}
public static void unzipFileTo(String file, String dest, boolean logFiles) throws IOException {
File target = new File(file); File target = new File(file);
if (!target.exists()) if (!target.exists())
throw new IllegalArgumentException("Archive doesnt exist"); throw new IllegalArgumentException("Archive doesnt exist");
@ -93,7 +97,9 @@ public class ArchiveUtils {
fos.close(); fos.close();
ze = zis.getNextEntry(); ze = zis.getNextEntry();
log.debug("File extracted: " + newFile.getAbsoluteFile()); if(logFiles) {
log.info("File extracted: " + newFile.getAbsoluteFile());
}
} }
zis.closeEntry(); zis.closeEntry();
@ -112,7 +118,9 @@ public class ArchiveUtils {
TarArchiveEntry entry; TarArchiveEntry entry;
/* Read the tar entries using the getNextEntry method **/ /* Read the tar entries using the getNextEntry method **/
while ((entry = (TarArchiveEntry) tarIn.getNextEntry()) != null) { while ((entry = (TarArchiveEntry) tarIn.getNextEntry()) != null) {
if(logFiles) {
log.info("Extracting: " + entry.getName()); log.info("Extracting: " + entry.getName());
}
/* If the entry is a directory, create the directory. */ /* If the entry is a directory, create the directory. */
if (entry.isDirectory()) { if (entry.isDirectory()) {

View File

@ -16,18 +16,16 @@
package org.nd4j.tensorflow.conversion.graphrunner; package org.nd4j.tensorflow.conversion.graphrunner;
import lombok.Builder; import lombok.*;
import lombok.Singular;
import org.apache.commons.io.FileUtils; import org.apache.commons.io.FileUtils;
import org.nd4j.base.Preconditions; import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.io.ClassPathResource; import org.nd4j.linalg.io.ClassPathResource;
import org.nd4j.linalg.primitives.Pair; import org.nd4j.linalg.primitives.Pair;
import org.nd4j.shade.protobuf.ByteString; import org.nd4j.shade.protobuf.ByteString;
import org.nd4j.shade.protobuf.InvalidProtocolBufferException; import org.nd4j.shade.protobuf.InvalidProtocolBufferException;
import org.nd4j.shade.protobuf.util.JsonFormat; import org.nd4j.shade.protobuf.util.JsonFormat;
import lombok.Getter;
import lombok.Setter;
import lombok.extern.slf4j.Slf4j; import lombok.extern.slf4j.Slf4j;
import org.nd4j.tensorflow.conversion.TensorDataType; import org.nd4j.tensorflow.conversion.TensorDataType;
import org.apache.commons.io.IOUtils; import org.apache.commons.io.IOUtils;
@ -56,6 +54,7 @@ import static org.bytedeco.tensorflow.global.tensorflow.*;
* @author Adam Gibson * @author Adam Gibson
*/ */
@Slf4j @Slf4j
@NoArgsConstructor
public class GraphRunner implements Closeable { public class GraphRunner implements Closeable {
private static boolean isTfWarmedUp = false; private static boolean isTfWarmedUp = false;
@ -103,6 +102,9 @@ public class GraphRunner implements Closeable {
* @param inputDataTypes the expected input data types * @param inputDataTypes the expected input data types
* @param outputDataTypes the expected output data types * @param outputDataTypes the expected output data types
*/ */
@Builder @Builder
public GraphRunner(List<String> inputNames, public GraphRunner(List<String> inputNames,
List<String> outputNames, List<String> outputNames,
@ -440,6 +442,7 @@ public class GraphRunner implements Closeable {
* @return a map of the output names to the * @return a map of the output names to the
* ndarrays matching each output specified in the graph * ndarrays matching each output specified in the graph
*/ */
public Map<String,INDArray> run(Map<String,INDArray> inputs) { public Map<String,INDArray> run(Map<String,INDArray> inputs) {
if (!isTfWarmedUp && !isTfWarmingUp){ if (!isTfWarmedUp && !isTfWarmingUp){
isTfWarmingUp = true; isTfWarmingUp = true;
@ -683,4 +686,7 @@ public class GraphRunner implements Closeable {
return builder1.build(); return builder1.build();
} }
} }

View File

@ -0,0 +1,52 @@
package org.nd4j.tensorflow.conversion.graphrunner;
import org.nd4j.TFGraphRunnerService;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.tensorflow.conversion.TensorDataType;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class GraphRunnerServiceProvider implements TFGraphRunnerService {
private GraphRunner graphRunner;
Map<String, INDArray> inputs;
@Override
public TFGraphRunnerService init(
List<String> inputNames,
List<String> outputNames,
byte[] graphBytes,
Map<String, INDArray> constants,
Map<String, String> inputDataTypes){
if (inputNames.size() != inputDataTypes.size()){
throw new IllegalArgumentException("inputNames.size() != inputDataTypes.size()");
}
Map<String, TensorDataType> convertedDataTypes = new HashMap<>();
for (int i = 0; i < inputNames.size(); i++){
convertedDataTypes.put(inputNames.get(i), TensorDataType.fromProtoValue(inputDataTypes.get(inputNames.get(i))));
}
Map<String, INDArray> castConstants = new HashMap<>();
for (Map.Entry<String, INDArray> e: constants.entrySet()) {
DataType requiredDtype = TensorDataType.toNd4jType(TensorDataType.fromProtoValue(inputDataTypes.get(e.getKey())));
castConstants.put(e.getKey(), e.getValue().castTo(requiredDtype));
}
this.inputs = castConstants;
graphRunner = GraphRunner.builder().inputNames(inputNames)
.outputNames(outputNames).graphBytes(graphBytes)
.inputDataTypes(convertedDataTypes).build();
return this;
}
@Override
public Map<String, INDArray> run(Map<String, INDArray> inputs){
if (graphRunner == null){
throw new RuntimeException("GraphRunner not initialized.");
}
this.inputs.putAll(inputs);
return graphRunner.run(this.inputs);
}
}

View File

@ -0,0 +1,17 @@
################################################################################
# Copyright (c) 2020 Konduit K.K..
#
# This program and the accompanying materials are made available under the
# terms of the Apache License, Version 2.0 which is available at
# https://www.apache.org/licenses/LICENSE-2.0.
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
# SPDX-License-Identifier: Apache-2.0
################################################################################
org.nd4j.tensorflow.conversion.graphrunner.GraphRunnerServiceProvider

View File

@ -292,9 +292,9 @@
<javacpp-presets.version>1.5.3-SNAPSHOT</javacpp-presets.version> <javacpp-presets.version>1.5.3-SNAPSHOT</javacpp-presets.version>
<javacv.version>1.5.3-SNAPSHOT</javacv.version> <javacv.version>1.5.3-SNAPSHOT</javacv.version>
<python.version>3.7.6</python.version> <python.version>3.7.7</python.version>
<cpython-platform.version>${python.version}-${javacpp-presets.version}</cpython-platform.version> <cpython-platform.version>${python.version}-${javacpp-presets.version}</cpython-platform.version>
<numpy.version>1.18.1</numpy.version> <numpy.version>1.18.2</numpy.version>
<numpy.javacpp.version>${numpy.version}-${javacpp-presets.version}</numpy.javacpp.version> <numpy.javacpp.version>${numpy.version}-${javacpp-presets.version}</numpy.javacpp.version>
<openblas.version>0.3.9</openblas.version> <openblas.version>0.3.9</openblas.version>