Gamma and Poisson distributions (#27)

* Added implementation for random_gamma op.

* Added implementation for random_poisson op and support classes.

* Added helpers for random_poisson and random_gamma ops.

* Implementation of random_poisson. The first working edition.

* Implementation of random_poisson. Parallelized working edition.

* Implementation of random_gamma. Parallelized working edition with alpha only.

* Added cuda implementation for helper of poisson distribution.

* Corrected shape calculation with random_gamma and tests.

* Finished cpu implementation for gamma distribution.

* Finished cuda implementation for random_gamma op.

* Refactored cpu helpers for random_gamma and random_poisson ops.

* Refactored cuda helpers for gamma and poisson distribution.

* Refactored cuda helper for gamma distribution.

* Refactored cpu helper for random_poisson op.

* Refactored cpu helper for random_gamma op.
master
shugeo 2019-11-04 15:42:28 +02:00 committed by GitHub
parent 948ebef41c
commit 7b14a9f603
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 654 additions and 1 deletions

View File

@ -323,7 +323,9 @@
(11, TruncatedNormalDistribution) ,\
(12, AlphaDropOut),\
(13, ExponentialDistribution),\
(14, ExponentialDistributionInv)
(14, ExponentialDistributionInv), \
(15, PoissonDistribution), \
(16, GammaDistribution)
#define PAIRWISE_INT_OPS \
(0, ShiftLeft), \

View File

@ -0,0 +1,83 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author George A. Shulinok <sgazeos@gmail.com>
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_random_gamma)
#include <ops/declarable/headers/random.h>
#include <ops/declarable/helpers/random.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(random_gamma, 2, 1, false, 0, 0) {
// gamma distribution
auto rng = block.randomGenerator();
auto shape = INPUT_VARIABLE(0);
auto alpha = INPUT_VARIABLE(1);
NDArray* beta = nullptr;
if (block.width() > 2) {
beta = INPUT_VARIABLE(2);
REQUIRE_TRUE(ShapeUtils::areShapesBroadcastable(*alpha, *beta), 0, "random_gamma: alpha and beta shapes should be broadcastable.");
}
auto output = OUTPUT_VARIABLE(0);
auto seed = 0;
if (block.getIArguments()->size()) {
seed = INT_ARG(0);
}
rng.setSeed(seed);
helpers::fillRandomGamma(block.launchContext(), rng, alpha, beta, output);
return Status::OK();
}
DECLARE_SHAPE_FN(random_gamma) {
auto in = INPUT_VARIABLE(0);
auto shape = in->template asVectorT<Nd4jLong>();
auto alphaShape = inputShape->at(1);
auto additionalShape = alphaShape;
if (inputShape->size() > 2) {
auto rest = inputShape->at(2); additionalShape = nullptr;
REQUIRE_TRUE(ShapeUtils::areShapesBroadcastable(alphaShape, rest), 0, "random_gamma: alpha and beta shapes should be broadcastable.");
ShapeUtils::evalBroadcastShapeInfo(alphaShape, rest, true, additionalShape, block.workspace());
}
auto lastDim = shape::sizeAt(alphaShape, 0);
auto dtype = ArrayOptions::dataType(alphaShape);
for (auto i = 0; i < shape::rank(additionalShape); i++)
shape.push_back(shape::sizeAt(additionalShape, i));
auto newShape = ConstantShapeHelper::getInstance()->createShapeInfo(dtype, 'c', shape);
return SHAPELIST(newShape);
}
DECLARE_TYPES(random_gamma) {
getOpDescriptor()
->setAllowedInputTypes(0, {ALL_INTS})
->setAllowedInputTypes(1, {ALL_FLOATS})
->setAllowedInputTypes(2, {ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
}
}
#endif

View File

@ -0,0 +1,67 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author George A. Shulinok <sgazeos@gmail.com>
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_random_poisson)
#include <ops/declarable/headers/random.h>
#include <ops/declarable/helpers/random.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(random_poisson, 2, 1, false, 0, 0) {
// gamma distribution
auto rng = block.randomGenerator();
auto shape = INPUT_VARIABLE(0);
auto lambda = INPUT_VARIABLE(1);
auto output = OUTPUT_VARIABLE(0);
auto seed = 0;
if (block.getIArguments()->size()) {
seed = INT_ARG(0);
}
rng.setSeed(seed);
helpers::fillRandomPoisson(block.launchContext(), rng, lambda, output);
return Status::OK();
}
DECLARE_SHAPE_FN(random_poisson) {
auto in = INPUT_VARIABLE(0);
auto shape = in->template asVectorT<Nd4jLong>();
auto lambdaShape = inputShape->at(1);
auto dtype = ArrayOptions::dataType(lambdaShape);
for (auto d = 0; d < shape::rank(lambdaShape); ++d ) {
shape.emplace_back(shape::sizeAt(lambdaShape, d));
}
auto newShape = ConstantShapeHelper::getInstance()->createShapeInfo(dtype, 'c', shape);
return SHAPELIST(newShape);
}
DECLARE_TYPES(random_poisson) {
getOpDescriptor()
->setAllowedInputTypes(0, {ALL_INTS})
->setAllowedInputTypes(1, {ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
}
}
#endif

View File

@ -49,7 +49,23 @@ namespace nd4j {
DECLARE_CUSTOM_OP(random_exponential, 1, 1, true, 1, 0);
#endif
#if NOT_EXCLUDED(OP_random_crop)
DECLARE_CUSTOM_OP(random_crop, 2, 1, false, 0, 0);
#endif
/**
* random_gamma op.
*/
#if NOT_EXCLUDED(OP_random_gamma)
DECLARE_CUSTOM_OP(random_gamma, 2, 1, false, 0, 0);
#endif
/**
* random_poisson op.
*/
#if NOT_EXCLUDED(OP_random_poisson)
DECLARE_CUSTOM_OP(random_poisson, 2, 1, false, 0, 0);
#endif
}
}

View File

@ -0,0 +1,132 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/random.h>
//#include <vector>
#include <memory>
//#include <graph/Context.h>
#include <ShapeUtils.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
void fillRandomGamma_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
Nd4jLong* broadcasted = nullptr;
if (beta != nullptr)
ShapeUtils::evalBroadcastShapeInfo(*alpha, *beta, true, broadcasted, context->getWorkspace());
else
broadcasted = alpha->shapeInfo();
auto step = shape::length(broadcasted);
auto shift = output->lengthOf() / step;
auto copyAlpha = alpha;
auto copyBeta = beta;
if (beta != nullptr) {
NDArray alphaBroadcasted(broadcasted, alpha->dataType(), false, context);
NDArray betaBroadcasted(broadcasted, beta->dataType(), false, context);
copyAlpha = (alphaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), alpha));
copyBeta = (betaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), beta));
}
// bool directAlpha = alpha->ews() == 1 && alpha->ordering() == 'c';
bool directOutput = output->ews() == 1 && output->ordering() == 'c';
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
PRAGMA_OMP_PARALLEL_FOR
for (auto k = 0; k < shift; k++) {
auto pos = k * step;
auto u = rng.relativeT<T>(k, 0., 1.);
for (auto e = 0; e < step; e++)
if (directOutput) {
outputBuf[pos + e] = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
beta != nullptr ? copyBeta->t<T>(e) * u : u);
}
else {
output->t<T>(pos + e) = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
beta != nullptr ? copyBeta->t<T>(e) * u : u);
}
}
if (beta != nullptr) {
delete copyAlpha;
delete copyBeta;
//delete broadcasted;
}
}
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomGamma_, (context, rng, alpha, beta, output), FLOAT_NATIVE);
}
BUILD_SINGLE_TEMPLATE(template void fillRandomGamma_, (LaunchContext* context,
graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output), FLOAT_NATIVE);
/*
* algorithm Poisson generator based upon the inversion by sequential search:[48]:505
init:
Let x 0, p eλ, s p.
Generate uniform random number u in [0,1].
while u > s do:
x x + 1.
p p * λ / x.
s s + p.
return x.
* */
template <typename T>
void fillRandomPoisson_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
auto shift = output->lengthOf() / lambda->lengthOf();
auto step = lambda->lengthOf();
T* lambdaBuf = lambda->dataBuffer()->primaryAsT<T>();
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
bool directLa = lambda->ews() == 1 && lambda->ordering() == 'c';
bool directOut = output->ews() == 1 && output->ordering() == 'c';
PRAGMA_OMP_PARALLEL_FOR
for (auto k = 0; k < shift; k++) {
auto pos = k * step;
auto u = rng.relativeT<T>(k, 0., 1.);
for (auto e = 0; e < step; e++) {
auto p = math::nd4j_exp<T, T>(-lambda->t<T>(e));
auto s = p;
auto x = T(0.f);
while (u > s) {
x += 1.f;
p *= directLa?lambdaBuf[e]/x:lambda->t<T>(e) / x;
s += p;
}
if (directOut)
outputBuf[pos + e] = x;
else
output->t<T>(pos + e) = x;
}
}
}
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomPoisson_, (context, rng, lambda, output), FLOAT_NATIVE);
}
BUILD_SINGLE_TEMPLATE(template void fillRandomPoisson_, (LaunchContext* context,
graph::RandomGenerator& rng, NDArray* lambda, NDArray* output), FLOAT_TYPES);
}
}
}

View File

@ -0,0 +1,186 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/random.h>
//#include <NativeOps.h>
#include <vector>
#include <memory>
#include <graph/Context.h>
#include <helpers/RandomLauncher.h>
#include <ShapeUtils.h>
#include <NDArrayFactory.h>
namespace nd4j {
namespace ops {
namespace helpers {
/*
* fillGammaKernel - fill up output with gamma distributed values
*
* uList - uniformly distributed values set
* uLength - length of uList
* alpha - alpha param
* beta - beta param
* output - distributed output.
* */
template <typename T>
static __global__ void fillGammaKernel(T* uList, Nd4jLong uLength, T* alpha, Nd4jLong* alphaShape,
T* beta, Nd4jLong* betaShape, T* output, Nd4jLong* outputShape) {
// fill up
__shared__ Nd4jLong aLength;
if (threadIdx.x == 0) {
aLength = shape::length(alphaShape);
}
__syncthreads();
for (auto k = blockIdx.x; k < (int)uLength; k += gridDim.x) {
auto pos = k * aLength;
auto u = uList[k]; // this is a vector
for (auto e = threadIdx.x; e < (int)aLength; e += blockDim.x) {
auto aIndex = shape::getIndexOffset(e, alphaShape);
auto bIndex = betaShape?shape::getIndexOffset(e, betaShape):-1LL;
auto betaV = T(beta != nullptr ? beta[bIndex] * u : u);
auto zIndex = shape::getIndexOffset(e + pos, outputShape);
output[zIndex] = math::nd4j_igamma<T, T, T>(alpha[aIndex], betaV);
}
}
}
template <typename T>
static void fillRandomGamma_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
// To fill up output need to broadcast alpha and beta to the same shape and in
Nd4jLong* broadcasted = nullptr;
if (beta != nullptr)
ShapeUtils::evalBroadcastShapeInfo(*alpha, *beta, true, broadcasted, context->getWorkspace());
else
broadcasted = alpha->shapeInfo();
auto step = shape::length(broadcasted);
auto shift = output->lengthOf() / step;
auto copyAlpha = alpha;
auto copyBeta = beta;
if (beta != nullptr) {
NDArray alphaBroadcasted(broadcasted, alpha->dataType(), true, context);
NDArray betaBroadcasted(broadcasted, beta->dataType(), true, context);
copyAlpha = (alphaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), alpha));
copyBeta = (betaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), beta));
copyAlpha->tickWriteDevice(); copyBeta->tickWriteDevice();
}
auto stream = context->getCudaStream();
NDArray uniform = NDArrayFactory::create<T>('c', {shift}, context);
uniform.syncToDevice();
// fill up uniform with given length
RandomLauncher::fillUniform(context, rng, &uniform, 0., 1.);
fillGammaKernel<T><<<128, 128, 256, *stream>>>(uniform.dataBuffer()->specialAsT<T>(), shift,
copyAlpha->dataBuffer()->specialAsT<T>(), copyAlpha->specialShapeInfo(),
beta?copyBeta->dataBuffer()->specialAsT<T>():(T*)nullptr,
beta?copyBeta->specialShapeInfo():(Nd4jLong*)nullptr,
output->dataBuffer()->specialAsT<T>(), output->specialShapeInfo());
if (beta != nullptr) {
delete copyAlpha;
delete copyBeta;
//delete broadcasted;
}
}
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
if (beta)
NDArray::prepareSpecialUse({output}, {alpha, beta});
else
NDArray::prepareSpecialUse({output}, {alpha});
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomGamma_, (context, rng, alpha, beta, output), FLOAT_NATIVE);
if (beta)
NDArray::registerSpecialUse({output}, {alpha, beta});
else
NDArray::prepareSpecialUse({output}, {alpha});
}
BUILD_SINGLE_TEMPLATE(template void fillRandomGamma_, (LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output), FLOAT_NATIVE);
/*
* algorithm Poisson generator based upon the inversion by sequential search
*
init:
Let x ← 0, p ← eλ, s ← p.
using uniformly random sequence U (u in U) distributed at [0, 1].
while u > s do:
x ← x + 1.
p ← p * λ / x.
s ← s + p.
return x.
* */
template <typename T>
static __global__ void fillPoissonKernel(T* uList, Nd4jLong uLength, T* lambda, Nd4jLong* lambdaShape, T* output,
Nd4jLong* outputShape) {
__shared__ Nd4jLong step;
if (threadIdx.x == 0) {
step = shape::length(lambdaShape);
}
__syncthreads();
for (auto k = blockIdx.x; k < (int)uLength; k += gridDim.x) {
auto pos = k * step;
auto u = uList[k];
for (auto e = threadIdx.x; e < step; e += blockDim.x) {
auto p = math::nd4j_exp<T,T>(-lambda[e]);
auto s = p;
auto x = T(0.f);
auto lIndex = shape::getIndexOffset(e, lambdaShape);
auto zIndex = shape::getIndexOffset(e + pos, outputShape);
while (u > s) {
x += T(1.);
p *= lambda[lIndex] / x;
s += p;
}
output[zIndex] = x;
}
}
}
template <typename T>
static void fillRandomPoisson_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
auto shift = output->lengthOf() / lambda->lengthOf();
NDArray uniform('c', {shift}, output->dataType());
auto stream = context->getCudaStream();
// fill up uniform with given length
RandomLauncher::fillUniform(context, rng, &uniform, 0., 1.);
fillPoissonKernel<T><<<128, 256, 128, *stream>>>(uniform.dataBuffer()->specialAsT<T>(), uniform.lengthOf(),
lambda->dataBuffer()->specialAsT<T>(), lambda->specialShapeInfo(),
output->dataBuffer()->specialAsT<T>(), output->specialShapeInfo());
}
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
NDArray::prepareSpecialUse({output}, {lambda});
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomPoisson_, (context, rng, lambda, output), FLOAT_NATIVE);
NDArray::registerSpecialUse({output}, {lambda});
}
BUILD_SINGLE_TEMPLATE(template void fillRandomPoisson_, (LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output), FLOAT_NATIVE);
}
}
}

View File

@ -0,0 +1,40 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
//
// Declaration of distribution helpers
//
#ifndef __RANDOM_HELPERS__
#define __RANDOM_HELPERS__
#include <op_boilerplate.h>
#include <NDArray.h>
#include <helpers/helper_random.h>
#include <graph/Context.h>
namespace nd4j {
namespace ops {
namespace helpers {
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output);
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output);
}
}
}
#endif

View File

@ -129,6 +129,47 @@ namespace randomOps {
}
};
template <typename T>
class PoissonDistribution {
public:
no_exec_special
no_exec_special_cuda
method_XY
random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
T lambda = extraParams[0];
T x = helper->relativeT(idx, -nd4j::DataTypeUtils::template max<T>() / 10 , nd4j::DataTypeUtils::template max<T>() / 10);
return x <= (T)0.f ? (T)0.f : nd4j::math::nd4j_igammac<T,T,T>(nd4j::math::nd4j_floor<T,T>(x), lambda);
}
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
T lambda = extraParams[0];
return valueX <= (T)0.f ? (T)0.f : (T)nd4j::math::nd4j_igammac<T,T,T>(nd4j::math::nd4j_floor<T,T>(valueX), lambda);
}
};
template <typename T>
class GammaDistribution {
public:
no_exec_special
no_exec_special_cuda
method_XY
random_def T op(Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
T alpha = extraParams[0];
T beta = extraParams[1];
T x = helper->relativeT(idx, -nd4j::DataTypeUtils::template max<T>() / 10 , nd4j::DataTypeUtils::template max<T>() / 10);
return x <= (T)0.f ? (T)0.f : nd4j::math::nd4j_igamma<T,T,T>(alpha, x * beta);
}
random_def T op(T valueX, Nd4jLong idx, Nd4jLong length, nd4j::graph::RandomGenerator *helper, T *extraParams) {
T alpha = extraParams[0];
T beta = extraParams[1];
return valueX <= (T)0.f ? (T)0.f : nd4j::math::nd4j_igamma<T,T,T>(alpha, beta * valueX);
}
};
/**
* Basic DropOut/DropConnect Op

View File

@ -894,6 +894,10 @@ namespace nd4j {
Z aim = nd4j_pow<X, X, Z>(x, a) / (nd4j_exp<X, Z>(x) * nd4j_gamma<Y, Z>(a));
auto sum = Z(0.);
auto denom = Z(1.);
if (a <= X(0.000001))
//throw std::runtime_error("Cannot calculate gamma for a zero val.");
return Z(0);
for (int i = 0; Z(1./denom) > Z(1.0e-12); i++) {
denom *= (a + i);
sum += nd4j_pow<X, int, Z>(x, i) / denom;

View File

@ -773,6 +773,88 @@ TEST_F(RNGTests, Test_ExponentialDistribution_2) {
delete result;
}
TEST_F(RNGTests, Test_PoissonDistribution_1) {
auto x = NDArrayFactory::create<Nd4jLong>('c', {1}, {10});
auto la = NDArrayFactory::create<float>('c', {2, 3});
auto exp0 = NDArrayFactory::create<float>('c', {10, 2, 3});
la.linspace(1.0);
nd4j::ops::random_poisson op;
auto result = op.execute({&x, &la}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto z = result->at(0);
// z->printIndexedBuffer("Poisson distribution");
ASSERT_TRUE(exp0.isSameShape(z));
ASSERT_FALSE(exp0.equalsTo(z));
delete result;
}
TEST_F(RNGTests, Test_GammaDistribution_1) {
auto x = NDArrayFactory::create<Nd4jLong>('c', {1}, {10});
auto al = NDArrayFactory::create<float>('c', {2, 3});
auto exp0 = NDArrayFactory::create<float>('c', {10, 2, 3});
al.linspace(1.0);
nd4j::ops::random_gamma op;
auto result = op.execute({&x, &al}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto z = result->at(0);
// z->printIndexedBuffer("Gamma distribution");
ASSERT_TRUE(exp0.isSameShape(z));
ASSERT_FALSE(exp0.equalsTo(z));
delete result;
}
TEST_F(RNGTests, Test_GammaDistribution_2) {
auto x = NDArrayFactory::create<Nd4jLong>('c', {1}, {10});
auto al = NDArrayFactory::create<float>('c', {2, 3});
auto be = NDArrayFactory::create<float>('c', {2, 3});
auto exp0 = NDArrayFactory::create<float>('c', {10, 2, 3});
al.linspace(1.0);
be.assign(1.0);
nd4j::ops::random_gamma op;
auto result = op.execute({&x, &al, &be}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto z = result->at(0);
// z->printIndexedBuffer("Gamma distribution");
ASSERT_TRUE(exp0.isSameShape(z));
ASSERT_FALSE(exp0.equalsTo(z));
delete result;
}
TEST_F(RNGTests, Test_GammaDistribution_3) {
auto x = NDArrayFactory::create<Nd4jLong>('c', {1}, {10});
auto al = NDArrayFactory::create<float>('c', {3, 1});
auto be = NDArrayFactory::create<float>('c', {1, 2});
auto exp0 = NDArrayFactory::create<float>('c', {10, 3, 2});
al.linspace(1.0);
be.assign(2.0);
nd4j::ops::random_gamma op;
auto result = op.execute({&x, &al, &be}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto z = result->at(0);
// z->printIndexedBuffer("Gamma distribution");
ASSERT_TRUE(exp0.isSameShape(z));
ASSERT_FALSE(exp0.equalsTo(z));
delete result;
}
namespace nd4j {
namespace tests {
static void fillList(Nd4jLong seed, int numberOfArrays, std::vector<Nd4jLong> &shape, std::vector<NDArray*> &list, nd4j::graph::RandomGenerator *rng) {