parent
7d85775934
commit
79867f5c5a
|
@ -34,7 +34,7 @@ CUSTOM_OP_IMPL(sruCell, 4, 2, false, 0, 0) {
|
|||
auto xt = INPUT_VARIABLE(0); // input [bS x inSize], bS - batch size, inSize - number of features
|
||||
auto ct_1 = INPUT_VARIABLE(1); // previous cell state ct [bS x inSize], that is at previous time step t-1
|
||||
auto w = INPUT_VARIABLE(2); // weights [inSize x 3*inSize]
|
||||
auto b = INPUT_VARIABLE(3); // biases [1 x 2*inSize]
|
||||
auto b = INPUT_VARIABLE(3); // biases [2*inSize]
|
||||
|
||||
auto ht = OUTPUT_VARIABLE(0); // current cell output [bS x inSize], that is at current time step t
|
||||
auto ct = OUTPUT_VARIABLE(1); // current cell state [bS x inSize], that is at current time step t
|
||||
|
|
|
@ -6511,4 +6511,22 @@ public class SameDiff extends SDBaseOps {
|
|||
public String generateNewVarName(String base, int argIndex) {
|
||||
return generateNewVarName(base, argIndex, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an unused variable name of the format <base>_#.
|
||||
*
|
||||
* Intended to be used for custom variables (like weights), arguments and op outputs should use {@link #generateNewVarName(String, int)}.
|
||||
*/
|
||||
public String generateDistinctCustomVariableName(String base){
|
||||
if(!variables.containsKey(base))
|
||||
return base;
|
||||
|
||||
int inc = 1;
|
||||
|
||||
while(variables.containsKey(base + "_" + inc)){
|
||||
inc++;
|
||||
}
|
||||
|
||||
return base + "_" + inc;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.nd4j.autodiff.samediff.ops;
|
||||
|
||||
import lombok.NonNull;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.*;
|
||||
|
@ -23,6 +24,15 @@ import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.*;
|
|||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs.GRUCellOutputs;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs.LSTMCellOutputs;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs.LSTMLayerOutputs;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs.SRUCellOutputs;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs.SRULayerOutputs;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.GRUWeights;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.LSTMWeights;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.SRUWeights;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
|
||||
/**
|
||||
* SameDiff Recurrent Neural Network operations<br>
|
||||
|
@ -39,90 +49,163 @@ public class SDRNN extends SDOps {
|
|||
|
||||
|
||||
/**
|
||||
* The gru cell
|
||||
*
|
||||
* @param configuration the configuration to use
|
||||
* @return
|
||||
* See {@link #gru(String, SDVariable, SDVariable, GRUWeights)}.
|
||||
*/
|
||||
public List<SDVariable> gru(GRUCellConfiguration configuration) {
|
||||
GRUCell c = new GRUCell(sd, configuration);
|
||||
return Arrays.asList(c.outputVariables());
|
||||
public GRUCellOutputs gru(@NonNull SDVariable x, @NonNull SDVariable hLast, @NonNull GRUWeights weights) {
|
||||
GRUCell c = new GRUCell(sd, x, hLast, weights);
|
||||
return new GRUCellOutputs(c.outputVariables());
|
||||
}
|
||||
|
||||
/**
|
||||
* The gru cell
|
||||
* The GRU cell. Does a single time step operation.
|
||||
*
|
||||
* @param baseName the base name for the gru cell
|
||||
* @param configuration the configuration to use
|
||||
* @return
|
||||
* @param baseName The base name for the gru cell
|
||||
* @param x Input, with shape [batchSize, inSize]
|
||||
* @param hLast Output of the previous cell/time step, with shape [batchSize, numUnits]
|
||||
* @param weights The cell's weights.
|
||||
* @return The cell's outputs.
|
||||
*/
|
||||
public List<SDVariable> gru(String baseName, GRUCellConfiguration configuration) {
|
||||
GRUCell c = new GRUCell(sd, configuration);
|
||||
return Arrays.asList(c.outputVariables(baseName));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* LSTM unit
|
||||
*
|
||||
* @param baseName the base name for outputs
|
||||
* @param configuration the configuration to use
|
||||
* @return
|
||||
*/
|
||||
public SDVariable lstmCell(String baseName, LSTMCellConfiguration configuration) {
|
||||
return new LSTMCell(sd, configuration).outputVariables(baseName)[0];
|
||||
}
|
||||
|
||||
public List<SDVariable> lstmBlockCell(String name, LSTMBlockCellConfiguration configuration){
|
||||
SDVariable[] v = new LSTMBlockCell(sd, configuration).outputVariables(name);
|
||||
return Arrays.asList(v);
|
||||
}
|
||||
|
||||
public List<SDVariable> lstmLayer(String name, LSTMConfiguration configuration){
|
||||
SDVariable[] v = new LSTMLayer(sd, configuration).outputVariables(name);
|
||||
return Arrays.asList(v);
|
||||
public GRUCellOutputs gru(String baseName, @NonNull SDVariable x, @NonNull SDVariable hLast, @NonNull GRUWeights weights) {
|
||||
GRUCell c = new GRUCell(sd, x, hLast, weights);
|
||||
return new GRUCellOutputs(c.outputVariables(baseName));
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple recurrent unit
|
||||
*
|
||||
* @param configuration the configuration for the sru
|
||||
* @return
|
||||
* See {@link #lstmCell(String, SDVariable, SDVariable, SDVariable, LSTMWeights, LSTMConfiguration)}.
|
||||
*/
|
||||
public SDVariable sru(SRUConfiguration configuration) {
|
||||
return new SRU(sd, configuration).outputVariables()[0];
|
||||
public LSTMCellOutputs lstmCell(@NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SDVariable yLast,
|
||||
LSTMWeights weights, LSTMConfiguration config){
|
||||
LSTMBlockCell c = new LSTMBlockCell(sd, x, cLast, yLast, weights, config);
|
||||
return new LSTMCellOutputs(c.outputVariables());
|
||||
}
|
||||
|
||||
/**
|
||||
* Simiple recurrent unit
|
||||
* The LSTM cell. Does a single time step operation.
|
||||
*
|
||||
* @param baseName the base name to use for output variables
|
||||
* @param configuration the configuration for the sru
|
||||
* @return
|
||||
* @param baseName The base name for the lstm cell
|
||||
* @param x Input, with shape [batchSize, inSize]
|
||||
* @param cLast Previous cell state, with shape [batchSize, numUnits]
|
||||
* @param yLast Previous cell output, with shape [batchSize, numUnits]
|
||||
* @param weights The cell's weights.
|
||||
* @param config The cell's config.
|
||||
* @return The cell's outputs.
|
||||
*/
|
||||
public SDVariable sru(String baseName, SRUConfiguration configuration) {
|
||||
return new SRU(sd, configuration).outputVariables(baseName)[0];
|
||||
public LSTMCellOutputs lstmCell(String baseName, @NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SDVariable yLast,
|
||||
@NonNull LSTMWeights weights, @NonNull LSTMConfiguration config){
|
||||
LSTMBlockCell c = new LSTMBlockCell(sd, x, cLast, yLast, weights, config);
|
||||
return new LSTMCellOutputs(c.outputVariables(baseName));
|
||||
}
|
||||
|
||||
/**
|
||||
* An sru cell
|
||||
*
|
||||
* @param configuration the configuration for the sru cell
|
||||
* @return
|
||||
* See {@link #lstmLayer(String, SDVariable, SDVariable, SDVariable, SDVariable, LSTMWeights, LSTMConfiguration)}
|
||||
*/
|
||||
public SDVariable sruCell(SRUCellConfiguration configuration) {
|
||||
return new SRUCell(sd, configuration).outputVariables()[0];
|
||||
public LSTMLayerOutputs lstmLayer(@NonNull SDVariable maxTSLength,
|
||||
@NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SDVariable yLast,
|
||||
@NonNull LSTMWeights weights, @NonNull LSTMConfiguration config){
|
||||
LSTMLayer c = new LSTMLayer(sd, maxTSLength, x, cLast, yLast, weights, config);
|
||||
return new LSTMLayerOutputs(c.outputVariables(), config.getDataFormat());
|
||||
}
|
||||
|
||||
/**
|
||||
* An sru cell
|
||||
*
|
||||
* @param baseName the base name to use for the output variables
|
||||
* @param configuration the configuration for the sru cell
|
||||
* @return
|
||||
* See {@link #lstmLayer(String, SDVariable, SDVariable, SDVariable, SDVariable, LSTMWeights, LSTMConfiguration)}
|
||||
*/
|
||||
public SDVariable sruCell(String baseName, SRUCellConfiguration configuration) {
|
||||
return new SRUCell(sd, configuration).outputVariables(baseName)[0];
|
||||
public LSTMLayerOutputs lstmLayer(int maxTSLength, @NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SDVariable yLast,
|
||||
@NonNull LSTMWeights weights, @NonNull LSTMConfiguration config){
|
||||
return lstmLayer(
|
||||
sd.scalar("lstm_max_ts_length", maxTSLength),
|
||||
x, cLast, yLast, weights, config);
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #lstmLayer(String, SDVariable, SDVariable, SDVariable, SDVariable, LSTMWeights, LSTMConfiguration)}
|
||||
*/
|
||||
public LSTMLayerOutputs lstmLayer(String baseName, int maxTSLength, @NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SDVariable yLast,
|
||||
@NonNull LSTMWeights weights, @NonNull LSTMConfiguration config){
|
||||
if(baseName != null) {
|
||||
return lstmLayer(baseName,
|
||||
sd.scalar(sd.generateDistinctCustomVariableName(baseName + "_max_ts_length"), maxTSLength),
|
||||
x, cLast, yLast, weights, config);
|
||||
} else {
|
||||
return lstmLayer(maxTSLength, x, cLast, yLast, weights, config);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The LSTM layer. Does multiple time steps.
|
||||
*
|
||||
* Input shape depends on data format (in config):<br>
|
||||
* TNS -> [timeSteps, batchSize, inSize]<br>
|
||||
* NST -> [batchSize, inSize, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, inSize]<br>
|
||||
*
|
||||
* @param baseName The base name for the lstm layer
|
||||
* @param x Input, with shape dependent on the data format (in config).
|
||||
* @param cLast Previous/initial cell state, with shape [batchSize, numUnits]
|
||||
* @param yLast Previous/initial cell output, with shape [batchSize, numUnits]
|
||||
* @param weights The layer's weights.
|
||||
* @param config The layer's config.
|
||||
* @return The layer's outputs.
|
||||
*/
|
||||
public LSTMLayerOutputs lstmLayer(String baseName, @NonNull SDVariable maxTSLength,
|
||||
@NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SDVariable yLast,
|
||||
@NonNull LSTMWeights weights, @NonNull LSTMConfiguration config){
|
||||
LSTMLayer c = new LSTMLayer(sd, maxTSLength, x, cLast, yLast, weights, config);
|
||||
return new LSTMLayerOutputs(c.outputVariables(baseName), config.getDataFormat());
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #sruCell(String, SDVariable, SDVariable, SRUWeights)}.
|
||||
*/
|
||||
public SRUCellOutputs sruCell(@NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SRUWeights weights) {
|
||||
return new SRUCellOutputs(new SRUCell(sd, x, cLast, weights).outputVariables());
|
||||
}
|
||||
|
||||
/**
|
||||
* The SRU cell. Does a single time step operation.
|
||||
*
|
||||
* @param baseName The base name for the sru cell
|
||||
* @param x Input, with shape [batchSize, inSize]
|
||||
* @param cLast Previous cell state, with shape [batchSize, inSize]
|
||||
* @param weights The cell's weights.
|
||||
* @return The cell's outputs.
|
||||
*/
|
||||
public SRUCellOutputs sruCell(String baseName, @NonNull SDVariable x, @NonNull SDVariable cLast, @NonNull SRUWeights weights) {
|
||||
return new SRUCellOutputs(new SRUCell(sd, x, cLast, weights).outputVariables(baseName));
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #sru(String, SDVariable, SDVariable, SDVariable, SRUWeights)}
|
||||
*/
|
||||
public SRULayerOutputs sru(@NonNull SDVariable x, @NonNull SDVariable initialC, @NonNull SRUWeights weights) {
|
||||
return sru(x, initialC, null, weights);
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #sru(String, SDVariable, SDVariable, SDVariable, SRUWeights)}
|
||||
*/
|
||||
public SRULayerOutputs sru(String baseName, @NonNull SDVariable x, @NonNull SDVariable initialC, @NonNull SRUWeights weights) {
|
||||
return sru(baseName, x, initialC, null, weights);
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #sru(String, SDVariable, SDVariable, SDVariable, SRUWeights)}
|
||||
*/
|
||||
public SRULayerOutputs sru(@NonNull SDVariable x, @NonNull SDVariable initialC, SDVariable mask, @NonNull SRUWeights weights) {
|
||||
return new SRULayerOutputs(new SRU(sd, x, initialC, mask, weights).outputVariables());
|
||||
}
|
||||
|
||||
/**
|
||||
* The SRU layer. Does a single time step operation.
|
||||
*
|
||||
* @param baseName The base name for the sru layer
|
||||
* @param x Input, with shape [batchSize, inSize, timeSeriesLength]
|
||||
* @param initialC Initial cell state, with shape [batchSize, inSize]
|
||||
* @param mask An optional dropout mask, with shape [batchSize, inSize]
|
||||
* @param weights The layer's weights.
|
||||
* @return The layer's outputs.
|
||||
*/
|
||||
public SRULayerOutputs sru(String baseName, @NonNull SDVariable x, @NonNull SDVariable initialC, SDVariable mask, @NonNull SRUWeights weights) {
|
||||
return new SRULayerOutputs(new SRU(sd, x, initialC, mask, weights).outputVariables(baseName));
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent;
|
||||
|
||||
import lombok.Getter;
|
||||
import onnx.Onnx;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
|
@ -23,6 +24,7 @@ import org.nd4j.base.Preconditions;
|
|||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.GRUCellConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.GRUWeights;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
import org.tensorflow.framework.NodeDef;
|
||||
|
@ -39,14 +41,15 @@ import java.util.Map;
|
|||
*/
|
||||
public class GRUCell extends DynamicCustomOp {
|
||||
|
||||
private GRUCellConfiguration configuration;
|
||||
@Getter
|
||||
private GRUWeights weights;
|
||||
|
||||
public GRUCell() {
|
||||
}
|
||||
|
||||
public GRUCell(SameDiff sameDiff, GRUCellConfiguration configuration) {
|
||||
super(null, sameDiff, configuration.args());
|
||||
this.configuration = configuration;
|
||||
public GRUCell(SameDiff sameDiff, SDVariable x, SDVariable hLast, GRUWeights weights) {
|
||||
super(null, sameDiff, weights.argsWithInputs(x, hLast));
|
||||
this.weights = weights;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -16,12 +16,15 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent;
|
||||
|
||||
import lombok.Getter;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.LSTMBlockCellConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.LSTMConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.LSTMWeights;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
import org.tensorflow.framework.NodeDef;
|
||||
|
@ -49,10 +52,12 @@ import java.util.Map;
|
|||
* 6: weights - cell peephole (t) connections to output gate, [numUnits]<br>
|
||||
* 7: biases, shape [4*numUnits]<br>
|
||||
* <br>
|
||||
* Input integer arguments: set via {@link LSTMBlockCellConfiguration}<br>
|
||||
* Weights are set via {@link LSTMWeights}.<br>
|
||||
* <br>
|
||||
* Input integer arguments: set via {@link LSTMConfiguration}<br>
|
||||
* 0: if not zero, provide peephole connections<br>
|
||||
* <br>
|
||||
* Input float arguments: set via {@link LSTMBlockCellConfiguration}<br>
|
||||
* Input float arguments: set via {@link LSTMConfiguration}<br>
|
||||
* 0: the bias added to forget gates in order to reduce the scale of forgetting in the beginning of the training<br>
|
||||
* 1: clipping value for cell state, if it is not equal to zero, then cell state is clipped<br>
|
||||
* <br>
|
||||
|
@ -69,15 +74,19 @@ import java.util.Map;
|
|||
*/
|
||||
public class LSTMBlockCell extends DynamicCustomOp {
|
||||
|
||||
private LSTMBlockCellConfiguration configuration;
|
||||
private LSTMConfiguration configuration;
|
||||
|
||||
@Getter
|
||||
private LSTMWeights weights;
|
||||
|
||||
public LSTMBlockCell() {
|
||||
}
|
||||
|
||||
public LSTMBlockCell(SameDiff sameDiff, LSTMBlockCellConfiguration configuration) {
|
||||
super(null, sameDiff, configuration.args());
|
||||
public LSTMBlockCell(SameDiff sameDiff, SDVariable x, SDVariable cLast, SDVariable yLast, LSTMWeights weights, LSTMConfiguration configuration) {
|
||||
super(null, sameDiff, weights.argsWithInputs(x, cLast, yLast));
|
||||
this.configuration = configuration;
|
||||
addIArgument(configuration.iArgs());
|
||||
this.weights = weights;
|
||||
addIArgument(configuration.iArgs(false));
|
||||
addTArgument(configuration.tArgs());
|
||||
}
|
||||
|
||||
|
@ -97,12 +106,12 @@ public class LSTMBlockCell extends DynamicCustomOp {
|
|||
|
||||
@Override
|
||||
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String, AttrValue> attributesForNode, GraphDef graph) {
|
||||
configuration = LSTMBlockCellConfiguration.builder()
|
||||
configuration = LSTMConfiguration.builder()
|
||||
.forgetBias(attributesForNode.get("forget_bias").getF())
|
||||
.clippingCellValue(attributesForNode.get("cell_clip").getF())
|
||||
.peepHole(attributesForNode.get("use_peephole").getB())
|
||||
.build();
|
||||
addIArgument(configuration.iArgs());
|
||||
addIArgument(configuration.iArgs(false));
|
||||
addTArgument(configuration.tArgs());
|
||||
}
|
||||
|
||||
|
@ -113,7 +122,7 @@ public class LSTMBlockCell extends DynamicCustomOp {
|
|||
|
||||
@Override
|
||||
public Map<String, Object> propertiesForFunction() {
|
||||
return configuration.toProperties();
|
||||
return configuration.toProperties(false);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent;
|
||||
|
||||
import lombok.Getter;
|
||||
import lombok.NonNull;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
|
@ -24,6 +25,7 @@ import org.nd4j.linalg.api.buffer.DataType;
|
|||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.LSTMConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.RnnDataFormat;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.LSTMWeights;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
import org.tensorflow.framework.NodeDef;
|
||||
|
@ -75,13 +77,17 @@ public class LSTMLayer extends DynamicCustomOp {
|
|||
|
||||
private LSTMConfiguration configuration;
|
||||
|
||||
@Getter
|
||||
private LSTMWeights weights;
|
||||
|
||||
public LSTMLayer() {
|
||||
}
|
||||
|
||||
public LSTMLayer(@NonNull SameDiff sameDiff, @NonNull LSTMConfiguration configuration) {
|
||||
super(null, sameDiff, configuration.args());
|
||||
public LSTMLayer(@NonNull SameDiff sameDiff, SDVariable maxTSLength, SDVariable x, SDVariable cLast, SDVariable yLast, LSTMWeights weights, LSTMConfiguration configuration) {
|
||||
super(null, sameDiff, weights.argsWithInputs(maxTSLength, x, cLast, yLast));
|
||||
this.configuration = configuration;
|
||||
addIArgument(configuration.iArgs());
|
||||
this.weights = weights;
|
||||
addIArgument(configuration.iArgs(true));
|
||||
addTArgument(configuration.tArgs());
|
||||
}
|
||||
|
||||
|
@ -107,7 +113,7 @@ public class LSTMLayer extends DynamicCustomOp {
|
|||
.peepHole(attributesForNode.get("use_peephole").getB())
|
||||
.dataFormat(RnnDataFormat.TNS) //Always time major for TF BlockLSTM
|
||||
.build();
|
||||
addIArgument(configuration.iArgs());
|
||||
addIArgument(configuration.iArgs(true));
|
||||
addTArgument(configuration.tArgs());
|
||||
}
|
||||
|
||||
|
@ -118,7 +124,7 @@ public class LSTMLayer extends DynamicCustomOp {
|
|||
|
||||
@Override
|
||||
public Map<String, Object> propertiesForFunction() {
|
||||
return configuration.toProperties();
|
||||
return configuration.toProperties(true);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -16,11 +16,16 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import lombok.Getter;
|
||||
import lombok.NonNull;
|
||||
import onnx.Onnx;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.imports.NoOpNameFoundException;
|
||||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.SRUConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.SRUWeights;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
import org.tensorflow.framework.NodeDef;
|
||||
|
@ -34,13 +39,18 @@ import java.util.Map;
|
|||
*/
|
||||
public class SRU extends DynamicCustomOp {
|
||||
|
||||
private SRUConfiguration configuration;
|
||||
@Getter
|
||||
private SRUWeights weights;
|
||||
|
||||
@Getter
|
||||
private SDVariable mask;
|
||||
|
||||
public SRU() { }
|
||||
|
||||
public SRU(SameDiff sameDiff, SRUConfiguration configuration) {
|
||||
super(null, sameDiff, configuration.args());
|
||||
this.configuration = configuration;
|
||||
public SRU(@NonNull SameDiff sameDiff, @NonNull SDVariable x, @NonNull SDVariable initialC, SDVariable mask, @NonNull SRUWeights weights) {
|
||||
super(null, sameDiff, wrapFilterNull(x, weights.getWeights(), weights.getBias(), initialC, mask));
|
||||
this.mask = mask;
|
||||
this.weights = weights;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -68,6 +78,4 @@ public class SRU extends DynamicCustomOp {
|
|||
public void initFromOnnx(Onnx.NodeProto node, SameDiff initWith, Map<String, Onnx.AttributeProto> attributesForNode, Onnx.GraphProto graph) {
|
||||
super.initFromOnnx(node, initWith, attributesForNode, graph);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -16,17 +16,18 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent;
|
||||
|
||||
import java.util.Map;
|
||||
import lombok.Getter;
|
||||
import onnx.Onnx;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.imports.NoOpNameFoundException;
|
||||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.SRUCellConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.SRUWeights;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
import org.tensorflow.framework.NodeDef;
|
||||
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* A simple recurrent unit cell.
|
||||
*
|
||||
|
@ -34,14 +35,15 @@ import java.util.Map;
|
|||
*/
|
||||
public class SRUCell extends DynamicCustomOp {
|
||||
|
||||
private SRUCellConfiguration configuration;
|
||||
@Getter
|
||||
private SRUWeights weights;
|
||||
|
||||
public SRUCell() {
|
||||
}
|
||||
|
||||
public SRUCell(SameDiff sameDiff, SRUCellConfiguration configuration) {
|
||||
super(null, sameDiff, configuration.args());
|
||||
this.configuration = configuration;
|
||||
public SRUCell(SameDiff sameDiff, SDVariable x, SDVariable cLast, SRUWeights weights) {
|
||||
super(null, sameDiff, weights.argsWithInputs(x, cLast));
|
||||
this.weights = weights;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -1,57 +0,0 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2019 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.config;
|
||||
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.linalg.util.ArrayUtil;
|
||||
|
||||
import java.util.LinkedHashMap;
|
||||
import java.util.Map;
|
||||
|
||||
@Builder
|
||||
@Data
|
||||
public class LSTMBlockCellConfiguration {
|
||||
|
||||
private boolean peepHole; //IArg(0)
|
||||
private double forgetBias; //TArg(0)
|
||||
private double clippingCellValue; //TArg(1)
|
||||
|
||||
private SDVariable xt, cLast, yLast, W, Wci, Wcf, Wco, b;
|
||||
|
||||
public Map<String,Object> toProperties() {
|
||||
Map<String,Object> ret = new LinkedHashMap<>();
|
||||
ret.put("peepHole",peepHole);
|
||||
ret.put("clippingCellValue",clippingCellValue);
|
||||
ret.put("forgetBias",forgetBias);
|
||||
return ret;
|
||||
}
|
||||
|
||||
public SDVariable[] args() {
|
||||
return new SDVariable[] {xt,cLast, yLast, W, Wci, Wcf, Wco, b};
|
||||
}
|
||||
|
||||
|
||||
public int[] iArgs() {
|
||||
return new int[] {ArrayUtil.fromBoolean(peepHole)};
|
||||
}
|
||||
|
||||
public double[] tArgs() {
|
||||
return new double[] {forgetBias,clippingCellValue};
|
||||
}
|
||||
}
|
|
@ -19,13 +19,15 @@ package org.nd4j.linalg.api.ops.impl.layers.recurrent.config;
|
|||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMBlockCell;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMLayer;
|
||||
import org.nd4j.linalg.util.ArrayUtil;
|
||||
|
||||
import java.util.LinkedHashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* LSTM Configuration - for {@link org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMLayer}
|
||||
* LSTM Configuration - for {@link LSTMLayer} and {@link LSTMBlockCell}
|
||||
*
|
||||
* @author Alex Black
|
||||
*/
|
||||
|
@ -33,29 +35,41 @@ import java.util.Map;
|
|||
@Data
|
||||
public class LSTMConfiguration {
|
||||
|
||||
/**
|
||||
* Whether to provide peephole connections.
|
||||
*/
|
||||
private boolean peepHole; //IArg(0)
|
||||
@Builder.Default private RnnDataFormat dataFormat = RnnDataFormat.TNS; //IArg(1)
|
||||
|
||||
/**
|
||||
* The data format of the input. Only used in {@link LSTMLayer}, ignored in {@link LSTMBlockCell}.
|
||||
*/
|
||||
@Builder.Default private RnnDataFormat dataFormat = RnnDataFormat.TNS; //IArg(1) (only for lstmBlock, not lstmBlockCell)
|
||||
|
||||
/**
|
||||
* The bias added to forget gates in order to reduce the scale of forgetting in the beginning of the training.
|
||||
*/
|
||||
private double forgetBias; //TArg(0)
|
||||
|
||||
/**
|
||||
* Clipping value for cell state, if it is not equal to zero, then cell state is clipped.
|
||||
*/
|
||||
private double clippingCellValue; //TArg(1)
|
||||
|
||||
private SDVariable xt, cLast, yLast, W, Wci, Wcf, Wco, b;
|
||||
|
||||
public Map<String,Object> toProperties() {
|
||||
public Map<String,Object> toProperties(boolean includeDataFormat) {
|
||||
Map<String,Object> ret = new LinkedHashMap<>();
|
||||
ret.put("peepHole",peepHole);
|
||||
ret.put("clippingCellValue",clippingCellValue);
|
||||
ret.put("forgetBias",forgetBias);
|
||||
ret.put("dataFormat", dataFormat);
|
||||
if(includeDataFormat)
|
||||
ret.put("dataFormat", dataFormat);
|
||||
return ret;
|
||||
}
|
||||
|
||||
public SDVariable[] args() {
|
||||
return new SDVariable[] {xt,cLast, yLast, W, Wci, Wcf, Wco, b};
|
||||
}
|
||||
|
||||
|
||||
public int[] iArgs() {
|
||||
return new int[] {ArrayUtil.fromBoolean(peepHole), dataFormat.ordinal()};
|
||||
public int[] iArgs(boolean includeDataFormat) {
|
||||
if(includeDataFormat) {
|
||||
return new int[]{ArrayUtil.fromBoolean(peepHole), dataFormat.ordinal()};
|
||||
} else return new int[]{ArrayUtil.fromBoolean(peepHole)};
|
||||
}
|
||||
|
||||
public double[] tArgs() {
|
||||
|
|
|
@ -1,44 +0,0 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.config;
|
||||
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
|
||||
@Data
|
||||
@Builder
|
||||
public class SRUCellConfiguration {
|
||||
/**
|
||||
*
|
||||
NDArray<T>* xt = INPUT_VARIABLE(0); // input [batchSize x inSize], batchSize - batch size, inSize - number of features
|
||||
NDArray<T>* ct_1 = INPUT_VARIABLE(1); // previous cell state ct [batchSize x inSize], that is at previous time step t-1
|
||||
NDArray<T>* w = INPUT_VARIABLE(2); // weights [inSize x 3*inSize]
|
||||
NDArray<T>* b = INPUT_VARIABLE(3); // biases [1 x 2*inSize]
|
||||
|
||||
NDArray<T>* ht = OUTPUT_VARIABLE(0); // current cell output [batchSize x inSize], that is at current time step t
|
||||
NDArray<T>* ct = OUTPUT_VARIABLE(1); // current cell state [batchSize x inSize], that is at current time step t
|
||||
|
||||
*/
|
||||
private SDVariable xt,ct_1,w,b,h1,ct;
|
||||
|
||||
|
||||
public SDVariable[] args() {
|
||||
return new SDVariable[] {xt,ct_1,w,b,h1,ct};
|
||||
}
|
||||
|
||||
}
|
|
@ -1,38 +0,0 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.config;
|
||||
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
|
||||
@Data
|
||||
@Builder
|
||||
public class SRUConfiguration {
|
||||
/**
|
||||
* NDArray<T>* input = INPUT_VARIABLE(0); // X, input 3d tensor [bS x K x N], N - number of time steps, bS - batch size, K - number of features
|
||||
NDArray<T>* weights = INPUT_VARIABLE(1); // W, 2d tensor of weights [3K x K]
|
||||
NDArray<T>* bias = INPUT_VARIABLE(2); // B, row of biases with twice length [1 x 2*K]
|
||||
NDArray<T>* init = INPUT_VARIABLE(3); // C_{0}, 2d tensor of initial state [bS x K] at time t=0
|
||||
|
||||
*/
|
||||
private SDVariable inputs,weights,bias,init;
|
||||
|
||||
public SDVariable[] args() {
|
||||
return new SDVariable[] {inputs,weights,bias,init};
|
||||
}
|
||||
}
|
|
@ -0,0 +1,62 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import lombok.Getter;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.GRUCell;
|
||||
|
||||
/**
|
||||
* The outputs of a GRU cell ({@link GRUCell}.
|
||||
*/
|
||||
@Getter
|
||||
public class GRUCellOutputs {
|
||||
|
||||
/**
|
||||
* Reset gate output [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable r;
|
||||
|
||||
/**
|
||||
* Update gate output [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable u;
|
||||
|
||||
/**
|
||||
* Cell gate output [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable c;
|
||||
|
||||
/**
|
||||
* Current cell output [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable h;
|
||||
|
||||
public GRUCellOutputs(SDVariable[] outputs){
|
||||
Preconditions.checkArgument(outputs.length == 4,
|
||||
"Must have 4 GRU cell outputs, got %s", outputs.length);
|
||||
|
||||
r = outputs[0];
|
||||
u = outputs[1];
|
||||
c = outputs[2];
|
||||
h = outputs[3];
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all outputs returned by the cell.
|
||||
*/
|
||||
public List<SDVariable> getAllOutputs(){
|
||||
return Arrays.asList(r, u, c, h);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get h, the output of the cell.
|
||||
*
|
||||
* Has shape [batchSize, numUnits].
|
||||
*/
|
||||
public SDVariable getOutput(){
|
||||
return h;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,88 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import lombok.Getter;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMBlockCell;
|
||||
|
||||
/**
|
||||
* The outputs of a LSTM cell ({@link LSTMBlockCell}.
|
||||
*/
|
||||
@Getter
|
||||
public class LSTMCellOutputs {
|
||||
|
||||
/**
|
||||
* Output - input modulation gate activations [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable i;
|
||||
|
||||
/**
|
||||
* Activations, cell state (pre tanh) [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable c;
|
||||
|
||||
/**
|
||||
* Output - forget gate activations [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable f;
|
||||
|
||||
/**
|
||||
* Output - output gate activations [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable o;
|
||||
|
||||
/**
|
||||
* Output - input gate activations [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable z;
|
||||
|
||||
/**
|
||||
* Cell state, post tanh [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable h;
|
||||
|
||||
/**
|
||||
* Current cell output [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable y;
|
||||
|
||||
public LSTMCellOutputs(SDVariable[] outputs){
|
||||
Preconditions.checkArgument(outputs.length == 7,
|
||||
"Must have 7 LSTM cell outputs, got %s", outputs.length);
|
||||
|
||||
i = outputs[0];
|
||||
c = outputs[1];
|
||||
f = outputs[2];
|
||||
o = outputs[3];
|
||||
z = outputs[4];
|
||||
h = outputs[5];
|
||||
y = outputs[6];
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all outputs returned by the cell.
|
||||
*/
|
||||
public List<SDVariable> getAllOutputs(){
|
||||
return Arrays.asList(i, c, f, o, z, h, y);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get y, the output of the cell.
|
||||
*
|
||||
* Has shape [batchSize, numUnits].
|
||||
*/
|
||||
public SDVariable getOutput(){
|
||||
return y;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get c, the cell's state.
|
||||
*
|
||||
* Has shape [batchSize, numUnits].
|
||||
*/
|
||||
public SDVariable getState(){
|
||||
return c;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,180 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import lombok.AccessLevel;
|
||||
import lombok.Getter;
|
||||
import org.nd4j.autodiff.samediff.SDIndex;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMLayer;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.RnnDataFormat;
|
||||
|
||||
/**
|
||||
* The outputs of a LSTM layer ({@link LSTMLayer}.
|
||||
*/
|
||||
@Getter
|
||||
public class LSTMLayerOutputs {
|
||||
|
||||
private RnnDataFormat dataFormat;
|
||||
|
||||
/**
|
||||
* Output - input modulation gate activations.
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
private SDVariable i;
|
||||
|
||||
/**
|
||||
* Activations, cell state (pre tanh).
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
private SDVariable c;
|
||||
|
||||
/**
|
||||
* Output - forget gate activations.
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
private SDVariable f;
|
||||
|
||||
/**
|
||||
* Output - output gate activations.
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
private SDVariable o;
|
||||
|
||||
/**
|
||||
* Output - input gate activations.
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
private SDVariable z;
|
||||
|
||||
/**
|
||||
* Cell state, post tanh.
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
private SDVariable h;
|
||||
|
||||
/**
|
||||
* Current cell output.
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
private SDVariable y;
|
||||
|
||||
public LSTMLayerOutputs(SDVariable[] outputs, RnnDataFormat dataFormat){
|
||||
Preconditions.checkArgument(outputs.length == 7,
|
||||
"Must have 7 LSTM layer outputs, got %s", outputs.length);
|
||||
|
||||
i = outputs[0];
|
||||
c = outputs[1];
|
||||
f = outputs[2];
|
||||
o = outputs[3];
|
||||
z = outputs[4];
|
||||
h = outputs[5];
|
||||
y = outputs[6];
|
||||
this.dataFormat = dataFormat;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all outputs returned by the cell.
|
||||
*/
|
||||
public List<SDVariable> getAllOutputs(){
|
||||
return Arrays.asList(i, c, f, o, z, h, y);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get y, the output of the cell for all time steps.
|
||||
*
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
public SDVariable getOutput(){
|
||||
return y;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get c, the cell's state for all time steps.
|
||||
*
|
||||
* Shape depends on data format (in layer config):<br>
|
||||
* TNS -> [timeSteps, batchSize, numUnits]<br>
|
||||
* NST -> [batchSize, numUnits, timeSteps]<br>
|
||||
* NTS -> [batchSize, timeSteps, numUnits]<br>
|
||||
*/
|
||||
public SDVariable getState(){
|
||||
return c;
|
||||
}
|
||||
|
||||
private SDVariable lastOutput = null;
|
||||
|
||||
/**
|
||||
* Get y, the output of the cell, for the last time step.
|
||||
*
|
||||
* Has shape [batchSize, numUnits].
|
||||
*/
|
||||
public SDVariable getLastOutput(){
|
||||
if(lastOutput != null)
|
||||
return lastOutput;
|
||||
|
||||
switch (dataFormat){
|
||||
case TNS:
|
||||
lastOutput = getOutput().get(SDIndex.point(-1), SDIndex.all(), SDIndex.all());
|
||||
break;
|
||||
case NST:
|
||||
lastOutput = getOutput().get(SDIndex.all(), SDIndex.all(), SDIndex.point(-1));
|
||||
break;
|
||||
case NTS:
|
||||
lastOutput = getOutput().get(SDIndex.all(), SDIndex.point(-1), SDIndex.all());
|
||||
break;
|
||||
}
|
||||
return lastOutput;
|
||||
}
|
||||
|
||||
private SDVariable lastState = null;
|
||||
|
||||
/**
|
||||
* Get c, the state of the cell, for the last time step.
|
||||
*
|
||||
* Has shape [batchSize, numUnits].
|
||||
*/
|
||||
public SDVariable getLastState(){
|
||||
if(lastState != null)
|
||||
return lastState;
|
||||
|
||||
switch (dataFormat){
|
||||
case TNS:
|
||||
lastState = getState().get(SDIndex.point(-1), SDIndex.all(), SDIndex.all());
|
||||
break;
|
||||
case NST:
|
||||
lastState = getState().get(SDIndex.all(), SDIndex.all(), SDIndex.point(-1));
|
||||
break;
|
||||
case NTS:
|
||||
lastState = getState().get(SDIndex.all(), SDIndex.point(-1), SDIndex.all());
|
||||
break;
|
||||
}
|
||||
return lastState;
|
||||
}
|
||||
|
||||
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import lombok.Getter;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.GRUCell;
|
||||
|
||||
/**
|
||||
* The outputs of a GRU cell ({@link GRUCell}.
|
||||
*/
|
||||
@Getter
|
||||
public class SRUCellOutputs {
|
||||
|
||||
|
||||
/**
|
||||
* Current cell output [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable h;
|
||||
|
||||
/**
|
||||
* Current cell state [batchSize, numUnits].
|
||||
*/
|
||||
private SDVariable c;
|
||||
|
||||
public SRUCellOutputs(SDVariable[] outputs){
|
||||
Preconditions.checkArgument(outputs.length == 2,
|
||||
"Must have 2 SRU cell outputs, got %s", outputs.length);
|
||||
|
||||
h = outputs[0];
|
||||
c = outputs[1];
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all outputs returned by the cell.
|
||||
*/
|
||||
public List<SDVariable> getAllOutputs(){
|
||||
return Arrays.asList(h, c);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get h, the output of the cell.
|
||||
*
|
||||
* Has shape [batchSize, inSize].
|
||||
*/
|
||||
public SDVariable getOutput(){
|
||||
return h;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get c, the state of the cell.
|
||||
*
|
||||
* Has shape [batchSize, inSize].
|
||||
*/
|
||||
public SDVariable getState(){
|
||||
return c;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,92 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import lombok.AccessLevel;
|
||||
import lombok.Getter;
|
||||
import org.nd4j.autodiff.samediff.SDIndex;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.GRUCell;
|
||||
|
||||
/**
|
||||
* The outputs of a GRU cell ({@link GRUCell}.
|
||||
*/
|
||||
@Getter
|
||||
public class SRULayerOutputs {
|
||||
|
||||
|
||||
/**
|
||||
* Current cell output [batchSize, inSize, timeSeriesLength].
|
||||
*/
|
||||
private SDVariable h;
|
||||
|
||||
/**
|
||||
* Current cell state [batchSize, inSize, timeSeriesLength].
|
||||
*/
|
||||
private SDVariable c;
|
||||
|
||||
public SRULayerOutputs(SDVariable[] outputs){
|
||||
Preconditions.checkArgument(outputs.length == 2,
|
||||
"Must have 2 SRU cell outputs, got %s", outputs.length);
|
||||
|
||||
h = outputs[0];
|
||||
c = outputs[1];
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all outputs returned by the cell.
|
||||
*/
|
||||
public List<SDVariable> getAllOutputs(){
|
||||
return Arrays.asList(h, c);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get h, the output of the cell.
|
||||
*
|
||||
* Has shape [batchSize, inSize, timeSeriesLength].
|
||||
*/
|
||||
public SDVariable getOutput(){
|
||||
return h;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get c, the state of the cell.
|
||||
*
|
||||
* Has shape [batchSize, inSize, timeSeriesLength].
|
||||
*/
|
||||
public SDVariable getState(){
|
||||
return c;
|
||||
}
|
||||
|
||||
private SDVariable lastOutput = null;
|
||||
|
||||
/**
|
||||
* Get y, the output of the cell, for the last time step.
|
||||
*
|
||||
* Has shape [batchSize, inSize].
|
||||
*/
|
||||
public SDVariable getLastOutput(){
|
||||
if(lastOutput != null)
|
||||
return lastOutput;
|
||||
|
||||
lastOutput = getOutput().get(SDIndex.all(), SDIndex.all(), SDIndex.point(-1));
|
||||
return lastOutput;
|
||||
}
|
||||
|
||||
private SDVariable lastState = null;
|
||||
|
||||
/**
|
||||
* Get c, the state of the cell, for the last time step.
|
||||
*
|
||||
* Has shape [batchSize, inSize].
|
||||
*/
|
||||
public SDVariable getLastState(){
|
||||
if(lastState != null)
|
||||
return lastState;
|
||||
|
||||
lastOutput = getOutput().get(SDIndex.all(), SDIndex.all(), SDIndex.point(-1));
|
||||
return lastState;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,51 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.weights;
|
||||
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import lombok.EqualsAndHashCode;
|
||||
import lombok.NonNull;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.GRUCell;
|
||||
|
||||
/**
|
||||
* The weight configuration of a GRU cell. For {@link GRUCell}.
|
||||
*
|
||||
*/
|
||||
@EqualsAndHashCode(callSuper = true)
|
||||
@Data
|
||||
@Builder
|
||||
public class GRUWeights extends RNNWeights {
|
||||
|
||||
/**
|
||||
* Reset and Update gate weights, with a shape of [inSize + numUnits, 2*numUnits].
|
||||
*
|
||||
* The reset weights are the [:, 0:numUnits] subset and the update weights are the [:, numUnits:2*numUnits] subset.
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable ruWeight;
|
||||
|
||||
/**
|
||||
* Cell gate weights, with a shape of [inSize + numUnits, numUnits]
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable cWeight;
|
||||
|
||||
/**
|
||||
* Reset and Update gate bias, with a shape of [2*numUnits]. May be null.
|
||||
*
|
||||
* The reset bias is the [0:numUnits] subset and the update bias is the [numUnits:2*numUnits] subset.
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable ruBias;
|
||||
|
||||
/**
|
||||
* Cell gate bias, with a shape of [numUnits]. May be null.
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable cBias;
|
||||
|
||||
@Override
|
||||
public SDVariable[] args() {
|
||||
return filterNonNull(ruWeight, cWeight, ruBias, cBias);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,57 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.weights;
|
||||
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import lombok.EqualsAndHashCode;
|
||||
import lombok.NonNull;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMBlockCell;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMLayer;
|
||||
|
||||
/**
|
||||
* The weight configuration of a LSTM layer. For {@link LSTMLayer} and {@link LSTMBlockCell}.
|
||||
*
|
||||
*/
|
||||
@EqualsAndHashCode(callSuper = true)
|
||||
@Data
|
||||
@Builder
|
||||
public class LSTMWeights extends RNNWeights {
|
||||
|
||||
/**
|
||||
* Input to hidden weights and hidden to hidden weights, with a shape of [inSize + numUnits, 4*numUnits].
|
||||
*
|
||||
* Input to hidden and hidden to hidden are concatenated in dimension 0,
|
||||
* so the input to hidden weights are [:inSize, :] and the hidden to hidden weights are [inSize:, :].
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable weights;
|
||||
|
||||
/**
|
||||
* Cell peephole (t-1) connections to input modulation gate, with a shape of [numUnits].
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable inputPeepholeWeights;
|
||||
|
||||
/**
|
||||
* Cell peephole (t-1) connections to forget gate, with a shape of [numUnits].
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable forgetPeepholeWeights;
|
||||
|
||||
/**
|
||||
* Cell peephole (t) connections to output gate, with a shape of [numUnits].
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable outputPeepholeWeights;
|
||||
|
||||
/**
|
||||
* Input to hidden and hidden to hidden biases, with shape [1, 4*numUnits].
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable bias;
|
||||
|
||||
@Override
|
||||
public SDVariable[] args() {
|
||||
return filterNonNull(weights, inputPeepholeWeights, forgetPeepholeWeights, outputPeepholeWeights, bias);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,35 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.weights;
|
||||
|
||||
import java.util.Arrays;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.linalg.util.ArrayUtil;
|
||||
|
||||
public abstract class RNNWeights {
|
||||
public abstract SDVariable[] args();
|
||||
|
||||
protected static SDVariable[] filterNonNull(SDVariable... args){
|
||||
int count = 0;
|
||||
for(SDVariable v : args){
|
||||
if(v != null){
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
SDVariable[] res = new SDVariable[count];
|
||||
|
||||
int i = 0;
|
||||
|
||||
for(SDVariable v : args){
|
||||
if(v != null){
|
||||
res[i] = v;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
public SDVariable[] argsWithInputs(SDVariable... inputs){
|
||||
return ArrayUtil.combine(inputs, args());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,37 @@
|
|||
package org.nd4j.linalg.api.ops.impl.layers.recurrent.weights;
|
||||
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import lombok.EqualsAndHashCode;
|
||||
import lombok.NonNull;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.LSTMBlockCell;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.SRU;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.SRUCell;
|
||||
|
||||
/**
|
||||
* The weight configuration of a SRU layer. For {@link SRU} and {@link SRUCell}.
|
||||
*
|
||||
*/
|
||||
@EqualsAndHashCode(callSuper = true)
|
||||
@Data
|
||||
@Builder
|
||||
public class SRUWeights extends RNNWeights {
|
||||
|
||||
/**
|
||||
* Weights, with shape [inSize, 3*inSize].
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable weights;
|
||||
|
||||
/**
|
||||
* Biases, with shape [2*inSize].
|
||||
*/
|
||||
@NonNull
|
||||
private SDVariable bias;
|
||||
|
||||
@Override
|
||||
public SDVariable[] args() {
|
||||
return new SDVariable[]{weights, bias};
|
||||
}
|
||||
}
|
|
@ -16,14 +16,19 @@
|
|||
|
||||
package org.nd4j.autodiff.opvalidation;
|
||||
|
||||
import java.util.Arrays;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.junit.Test;
|
||||
import org.nd4j.autodiff.samediff.SDIndex;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.GRUCellConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.LSTMBlockCellConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.config.LSTMConfiguration;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.outputs.LSTMCellOutputs;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.GRUWeights;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.recurrent.weights.LSTMWeights;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.factory.Nd4jBackend;
|
||||
import org.nd4j.linalg.indexing.NDArrayIndex;
|
||||
|
@ -59,23 +64,18 @@ public class RnnOpValidation extends BaseOpValidation {
|
|||
SDVariable b = sd.constant(Nd4j.rand(DataType.FLOAT, 4*nOut));
|
||||
|
||||
double fb = 1.0;
|
||||
LSTMBlockCellConfiguration conf = LSTMBlockCellConfiguration.builder()
|
||||
.xt(x)
|
||||
.cLast(cLast)
|
||||
.yLast(yLast)
|
||||
.W(W)
|
||||
.Wci(Wci)
|
||||
.Wcf(Wcf)
|
||||
.Wco(Wco)
|
||||
.b(b)
|
||||
LSTMConfiguration conf = LSTMConfiguration.builder()
|
||||
.peepHole(true)
|
||||
.forgetBias(fb)
|
||||
.clippingCellValue(0.0)
|
||||
.build();
|
||||
|
||||
List<SDVariable> v = sd.rnn().lstmBlockCell("lstm", conf); //Output order: i, c, f, o, z, h, y
|
||||
LSTMWeights weights = LSTMWeights.builder().weights(W).bias(b)
|
||||
.inputPeepholeWeights(Wci).forgetPeepholeWeights(Wcf).outputPeepholeWeights(Wco).build();
|
||||
|
||||
LSTMCellOutputs v = sd.rnn().lstmCell(x, cLast, yLast, weights, conf); //Output order: i, c, f, o, z, h, y
|
||||
List<String> toExec = new ArrayList<>();
|
||||
for(SDVariable sdv : v){
|
||||
for(SDVariable sdv : v.getAllOutputs()){
|
||||
toExec.add(sdv.getVarName());
|
||||
}
|
||||
|
||||
|
@ -167,23 +167,18 @@ public class RnnOpValidation extends BaseOpValidation {
|
|||
SDVariable b = sd.constant(Nd4j.zeros(DataType.FLOAT, 8));
|
||||
|
||||
double fb = 1.0;
|
||||
LSTMBlockCellConfiguration conf = LSTMBlockCellConfiguration.builder()
|
||||
.xt(x)
|
||||
.cLast(cLast)
|
||||
.yLast(yLast)
|
||||
.W(W)
|
||||
.Wci(Wci)
|
||||
.Wcf(Wcf)
|
||||
.Wco(Wco)
|
||||
.b(b)
|
||||
LSTMConfiguration conf = LSTMConfiguration.builder()
|
||||
.peepHole(false)
|
||||
.forgetBias(fb)
|
||||
.clippingCellValue(0.0)
|
||||
.build();
|
||||
|
||||
List<SDVariable> v = sd.rnn().lstmBlockCell("lstm", conf); //Output order: i, c, f, o, z, h, y
|
||||
LSTMWeights weights = LSTMWeights.builder().weights(W).bias(b)
|
||||
.inputPeepholeWeights(Wci).forgetPeepholeWeights(Wcf).outputPeepholeWeights(Wco).build();
|
||||
|
||||
LSTMCellOutputs v = sd.rnn().lstmCell(x, cLast, yLast, weights, conf); //Output order: i, c, f, o, z, h, y
|
||||
List<String> toExec = new ArrayList<>();
|
||||
for(SDVariable sdv : v){
|
||||
for(SDVariable sdv : v.getAllOutputs()){
|
||||
toExec.add(sdv.getVarName());
|
||||
}
|
||||
|
||||
|
@ -228,16 +223,14 @@ public class RnnOpValidation extends BaseOpValidation {
|
|||
SDVariable bc = sd.constant(Nd4j.rand(DataType.FLOAT, nOut));
|
||||
|
||||
double fb = 1.0;
|
||||
GRUCellConfiguration conf = GRUCellConfiguration.builder()
|
||||
.xt(x)
|
||||
.hLast(hLast)
|
||||
.Wru(Wru)
|
||||
.Wc(Wc)
|
||||
.bru(bru)
|
||||
.bc(bc)
|
||||
GRUWeights weights = GRUWeights.builder()
|
||||
.ruWeight(Wru)
|
||||
.cWeight(Wc)
|
||||
.ruBias(bru)
|
||||
.cBias(bc)
|
||||
.build();
|
||||
|
||||
List<SDVariable> v = sd.rnn().gru("gru", conf);
|
||||
List<SDVariable> v = sd.rnn().gru("gru", x, hLast, weights).getAllOutputs();
|
||||
List<String> toExec = new ArrayList<>();
|
||||
for(SDVariable sdv : v){
|
||||
toExec.add(sdv.getVarName());
|
||||
|
|
|
@ -23,6 +23,7 @@ import lombok.NoArgsConstructor;
|
|||
|
||||
import java.io.Serializable;
|
||||
import java.util.Arrays;
|
||||
import org.nd4j.base.Preconditions;
|
||||
|
||||
/**
|
||||
* Simple pair implementation
|
||||
|
@ -86,4 +87,10 @@ public class Pair<K, V> implements Serializable {
|
|||
public static <T, E> Pair<T,E> pairOf(T key, E value) {
|
||||
return new Pair<T, E>(key, value);
|
||||
}
|
||||
|
||||
public static <T> Pair<T, T> fromArray(T[] arr){
|
||||
Preconditions.checkArgument(arr.length == 2,
|
||||
"Can only create a pair from an array with two values, got %s", arr.length);
|
||||
return new Pair<>(arr[0], arr[1]);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue