Working implementation of draw_bounding_boxes op for cpu.

master
shugeo 2019-10-07 15:04:44 +03:00
parent 16a66a65e3
commit 78443ffebf
4 changed files with 99 additions and 2 deletions

View File

@ -1422,6 +1422,7 @@ namespace nd4j {
template <typename T>
void p(const Nd4jLong i, const Nd4jLong j, const Nd4jLong k, const Nd4jLong l, const T value);
void p(const Nd4jLong i, const Nd4jLong j, const Nd4jLong k, const Nd4jLong l, NDArray const& value);
template <typename T>

View File

@ -4187,6 +4187,24 @@ void NDArray::p(const Nd4jLong i, const NDArray& scalar) {
NDArray::registerPrimaryUse({this}, {&scalar});
}
////////////////////////////////////////////////////////////////////////
void NDArray::p(const Nd4jLong i, const Nd4jLong j, const Nd4jLong k, const Nd4jLong l, const NDArray& scalar) {
if(!scalar.isScalar())
throw std::invalid_argument("NDArray::p method: input array must be scalar!");
if (i >= _length)
throw std::invalid_argument("NDArray::p(i, NDArray_scalar): input index is out of array length !");
// void *p = reinterpret_cast<void *>(scalar.getBuffer());
Nd4jLong coords[4] = {i, j, k, l};
auto xOffset = shape::getOffset(getShapeInfo(), coords);
NDArray::preparePrimaryUse({this}, {&scalar}, true);
// BUILD_SINGLE_PARTIAL_SELECTOR(dataType(), templatedSet<, T>(this->getBuffer(), xOffset, p), LIBND4J_TYPES);
BUILD_SINGLE_SELECTOR(scalar.dataType(), templatedSet, (this->getBuffer(), xOffset, scalar.dataType(), scalar.getBuffer()), LIBND4J_TYPES);
NDArray::registerPrimaryUse({this}, {&scalar});
}
//////////////////////////////////////////////////////////////////////////
void NDArray::addRowVector(const NDArray *row, NDArray *target) const {

View File

@ -25,7 +25,53 @@ namespace ops {
namespace helpers {
void drawBoundingBoxesFunctor(nd4j::LaunchContext * context, NDArray* images, NDArray* boxes, NDArray* colors, NDArray* output) {
// images - batch of 3D images with BW (last dim = 1), RGB (last dim = 3) or RGBA (last dim = 4) channel set
// boxes - batch of 2D bounds with last dim (y_start, x_start, y_end, x_end) to compute i and j as
// floor((height - 1 ) * y_start) => rowStart, floor((height - 1) * y_end) => rowEnd
// floor((width - 1 ) * x_start) => colStart, floor((width - 1) * x_end) => colEnd
// height = images->sizeAt(1), width = images->sizeAt(2)
// colors - colors for each box given
// set up color for each box as frame
auto height = images->sizeAt(1);
auto width = images->sizeAt(2);
auto channels = images->sizeAt(3);
auto imageList = images->allTensorsAlongDimension({1, 2, 3}); // split images by batch
auto boxList = boxes->allTensorsAlongDimension({1, 2}); // split boxes by batch
output->assign(images);
for (auto b = 0; b < imageList->size(); ++b) { // loop by batch
// auto image = imageList->at(b);
auto box = boxList->at(b);
auto internalBoxes = box->allTensorsAlongDimension({1});
auto colorSet = colors->allTensorsAlongDimension({1});
for (auto c = 0; c < colorSet->size(); ++c) {
// box with shape
auto internalBox = internalBoxes->at(c);
auto color = colorSet->at(c);
auto rowStart = nd4j::math::nd4j_max(Nd4jLong (0), Nd4jLong ((height - 1) * internalBox->e<float>(0)));
auto rowEnd = nd4j::math::nd4j_min(Nd4jLong (height - 1), Nd4jLong ((height - 1) * internalBox->e<float>(2)));
auto colStart = nd4j::math::nd4j_max(Nd4jLong (0), Nd4jLong ((width - 1) * internalBox->e<float>(1)));
auto colEnd = nd4j::math::nd4j_min(Nd4jLong(width - 1), Nd4jLong ((width - 1) * internalBox->e<float>(3)));
for (auto y = rowStart; y <= rowEnd; y++) {
for (auto e = 0; e < color->lengthOf(); ++e) {
output->p(b, y, colStart, e, color->e(e));
output->p(b, y, colEnd, e, color->e(e));
}
}
for (auto x = colStart + 1; x < colEnd; x++) {
for (auto e = 0; e < color->lengthOf(); ++e) {
output->p(b, rowStart, x, e, color->e(e));
output->p(b, rowEnd, x, e, color->e(e));
}
}
}
delete colorSet;
delete internalBoxes;
}
delete imageList;
delete boxList;
}
}

View File

@ -2051,7 +2051,7 @@ TEST_F(DeclarableOpsTests10, Image_DrawBoundingBoxes_1) {
0.3, 0.3, 0.7, 0.7, 0.4, 0.4, 0.6, 0.6
});
NDArray colors = NDArrayFactory::create<float>('c', {2, 3}, {201., 202., 203., 128., 129., 130.});
NDArray colors = NDArrayFactory::create<float>('c', {2, 3}, {201., 202., 203., 127., 128., 129.});
//NDArray<float> ('c', {6}, {0.9f, .75f, .6f, .95f, .5f, .3f});
NDArray expected = NDArrayFactory::create<float>('c', {2,4,5,3}, {
@ -2072,7 +2072,39 @@ TEST_F(DeclarableOpsTests10, Image_DrawBoundingBoxes_1) {
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
result->printIndexedBuffer("Bounded boxes");
result->printBuffer("Bounded boxes");
expected.printBuffer("Bounded expec");
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));
delete results;
}
////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests10, Image_DrawBoundingBoxes_2) {
NDArray images = NDArrayFactory::create<float>('c', {1,9,9,1});
NDArray boxes = NDArrayFactory::create<float>('c', {1, 1, 4}, {0.2, 0.2, 0.7, 0.7});
NDArray colors = NDArrayFactory::create<float>('c', {1, 1}, {0.95});
//NDArray<float> ('c', {6}, {0.9f, .75f, .6f, .95f, .5f, .3f});
NDArray expected = NDArrayFactory::create<float>('c', {1,9,9,1}, {
1.1 , 2.1, 3.1 , 4.1 , 5.1 , 6.1 , 7.1 , 8.1 , 9.1 ,
10.1 , 0.95, 0.95, 0.95, 0.95, 0.95, 16.1 , 17.1 , 18.1 ,
19.1 , 0.95, 21.1, 22.1, 23.1, 0.95, 25.1 , 26.1 , 27.1 ,
28.1 , 0.95, 30.1, 31.1, 32.1, 0.95, 34.1 , 35.1 , 36.1 ,
37.1 , 0.95, 39.1, 40.1, 41.1, 0.95, 43.1 , 44.1 , 45.1 ,
46.1 , 0.95, 0.95, 0.95, 0.95, 0.95, 52.1 , 53.1 , 54.1 ,
55.1 , 56.1, 57.1 , 58.1 , 59.1 , 60.1 , 61.1 , 62.1 , 63.1 ,
64.1 , 65.1, 66.1 , 67.1 , 68.1 , 69.1 , 70.1 , 71.1 , 72.1 ,
73.1 , 74.1, 75.1 , 76.1 , 77.1 , 78.1 , 79.1 , 80.1 , 81.1 });
images.linspace(1.1);
nd4j::ops::draw_bounding_boxes op;
auto results = op.execute({&images, &boxes, &colors}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, results->status());
auto result = results->at(0);
result->printIndexedBuffer("Bounded boxes 2");
ASSERT_TRUE(expected.isSameShapeStrict(result));
ASSERT_TRUE(expected.equalsTo(result));