Refactored fake_quant_with_min_max_vars op cuda implementation.
parent
c13e945a96
commit
753565145c
|
@ -34,58 +34,47 @@ namespace helpers {
|
|||
// output - output tensor
|
||||
//
|
||||
template <typename T>
|
||||
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||
int lowIntBound = narrowed?1:0;
|
||||
int upperIntBound = 1 << numBits - 1;
|
||||
min->syncToHost();
|
||||
max->syncToHost();
|
||||
const float quant_min_float = static_cast<float>(lowIntBound);
|
||||
const float quant_max_float = static_cast<float>(upperIntBound);
|
||||
T scale = (max->t<T>(0) - min->t<T>(0)) / (quant_max_float - quant_min_float);
|
||||
const T zero_point_from_min = quant_min_float - min->t<T>(0) / scale;
|
||||
|
||||
const uint16_t nudged_zero_point = [zero_point_from_min, lowIntBound,
|
||||
quant_min_float, upperIntBound,
|
||||
quant_max_float] {
|
||||
static void Nudge(T min, T max, int quant_min, int quant_max, T* scale, T* nudged_min, T* nudged_max) {
|
||||
T quant_max_float = static_cast<T>(quant_max);
|
||||
T quant_min_float = static_cast<T>(quant_min);
|
||||
*scale = (max - min) / (quant_max_float - quant_min_float);
|
||||
auto zero_point_from_min = quant_min_float - min / *scale;
|
||||
uint16_t const nudged_zero_point = [zero_point_from_min, quant_min, quant_max, quant_max_float, quant_min_float] {
|
||||
if (zero_point_from_min < quant_min_float) {
|
||||
return static_cast<uint16_t>(lowIntBound);
|
||||
return static_cast<uint16_t>(quant_min);
|
||||
}
|
||||
if (zero_point_from_min > quant_max_float) {
|
||||
return static_cast<uint16_t>(upperIntBound);
|
||||
return static_cast<uint16_t>(quant_max);
|
||||
}
|
||||
return static_cast<uint16_t>(roundf(zero_point_from_min));
|
||||
return nd4j::math::nd4j_round<T,uint16_t>(zero_point_from_min);
|
||||
}();
|
||||
*nudged_min = (quant_min_float - nudged_zero_point) * (*scale);
|
||||
*nudged_max = (quant_max_float - nudged_zero_point) * (*scale);
|
||||
}
|
||||
|
||||
auto nudged_min = (quant_min_float - nudged_zero_point) * (scale);
|
||||
auto nudged_max = (quant_max_float - nudged_zero_point) * (scale);
|
||||
template <typename T>
|
||||
void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||
int lowIntBound = narrowed?1:0;
|
||||
int upperIntBound = (1 << numBits) - 1;
|
||||
min->syncToHost();
|
||||
max->syncToHost();
|
||||
T scale, nudged_min, nudged_max;
|
||||
Nudge(min->t<T>(0), max->t<T>(0), lowIntBound, upperIntBound, &scale, &nudged_min, &nudged_max);
|
||||
|
||||
auto wiseMax = LAMBDA_T(x, nudged_min) {
|
||||
auto wiseMinMaxAndSoOn = LAMBDA_T(x, nudged_min, nudged_max, scale) {
|
||||
T val = x;
|
||||
if (x < nudged_min) {
|
||||
return nudged_min;
|
||||
val = nudged_min;
|
||||
}
|
||||
return x;
|
||||
else if (x > nudged_max) {
|
||||
val = nudged_max;
|
||||
}
|
||||
else
|
||||
val = x;
|
||||
return (math::nd4j_floor<T,T>((val - nudged_min) / scale + T(0.5)) * scale + nudged_min);
|
||||
};
|
||||
|
||||
auto wiseMin = LAMBDA_T(x, nudged_max) {
|
||||
if (x > nudged_max) {
|
||||
return nudged_max;
|
||||
}
|
||||
return x;
|
||||
};
|
||||
|
||||
auto scaleTensor(*input);
|
||||
auto clamped(*input);
|
||||
scaleTensor.assign(scale);
|
||||
input->applyLambda(wiseMin, &clamped);
|
||||
|
||||
clamped.applyLambda(wiseMax, output);
|
||||
*output -= nudged_min;
|
||||
|
||||
(*output) /= scaleTensor;
|
||||
(*output) += T(0.5f);
|
||||
output->applyTransform(transform::Floor, nullptr, nullptr);
|
||||
(*output) *= scaleTensor;
|
||||
(*output) += nudged_min;
|
||||
input->applyLambda(wiseMinMaxAndSoOn, output);
|
||||
}
|
||||
|
||||
void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) {
|
||||
|
|
Loading…
Reference in New Issue