diff --git a/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/linalg/factory/Nd4j.java b/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/linalg/factory/Nd4j.java index 9840c0360..a4460480d 100644 --- a/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/linalg/factory/Nd4j.java +++ b/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/linalg/factory/Nd4j.java @@ -209,7 +209,7 @@ public class Nd4j { } /** - * @see #pad(INDArray, int[][], List, PadMode) with zero padding. (zeros for constantValues). + * See {@link #pad(INDArray, int[][], List, PadMode)} with zero padding. (zeros for constantValues). */ public static INDArray pad(INDArray toPad, int[][] padWidth, PadMode padMode) { return pad(toPad, padWidth, ArrayUtil.zerosMatrix(toPad.shape()), padMode); @@ -264,7 +264,7 @@ public class Nd4j { } /** - * @see #pad(INDArray, int[][], List, PadMode) with a 1D int[] for padWidth. + * See {@link #pad(INDArray, int[][], List, PadMode)} with a 1D int[] for padWidth. */ public static INDArray pad(INDArray toPad, int[] padWidth, List constantValues, PadMode padMode) { switch (padMode) { @@ -307,7 +307,7 @@ public class Nd4j { } /** - * @see #pad(INDArray, int[][], List, PadMode) with a 1D int[] for padWidth and zero padding. + * See {@link #pad(INDArray, int[][], List, PadMode)} with a 1D int[] for padWidth and zero padding. */ public static INDArray pad(INDArray toPad, int[] padWidth, PadMode padMode) { return pad(toPad, padWidth, ArrayUtil.zerosMatrix(padWidth), padMode); @@ -327,12 +327,15 @@ public class Nd4j { } /** - * @see #append(INDArray, int, double, int) + * See {@link #append(INDArray, int, double, int)}. This function calls the implementation with appendFlag = false + * to prepend. */ public static INDArray prepend(INDArray arr, int padAmount, double val, int axis) { return appendImpl(arr, padAmount, val, axis, false); } + // For this function we actually want the 'See also' tag. (Private methods do not generate javadoc, This Javadoc for + // maintaining the code.) /** * Append / Prepend shared implementation. * @param appendFlag flag to determine Append / Prepend. @@ -563,7 +566,7 @@ public class Nd4j { } /** - * @see #create(LongShapeDescriptor) + * See {@link #create(LongShapeDescriptor, boolean)} with initialize set to true. */ public static INDArray create(LongShapeDescriptor descriptor) { return create(descriptor, true); @@ -586,7 +589,7 @@ public class Nd4j { } /** - * @see #create(int[], float[]...) + * See {@link #create(int[], float[]...)} */ public static INDArray create(int[] sliceShape, double[]... arrays) { int slices = arrays.length; @@ -652,7 +655,7 @@ public class Nd4j { } /** - * Get the maximum (argmax) or minimum (argmin) values for a dimension. + * Get the maximum values for a dimension. * @param arr input array. * @param dimension the dimension along which to get the maximum * @return array of maximum values. @@ -663,7 +666,7 @@ public class Nd4j { } /** - * @see #argMax(INDArray, int...) + * See {@link #argMax(INDArray, int...)} but return minimum values. */ public static INDArray argMin(INDArray arr, @NonNull int... dimension) { IMin imin = new IMin(arr, dimension); @@ -893,9 +896,9 @@ public class Nd4j { } /** - * Matrix multiplication/dot product + * Matrix multiplication/dot product.
* - * @see #matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean) + * See {@link #matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)} */ public static INDArray matmul(INDArray a, INDArray b, INDArray result){ final Mmul op = new Mmul(a, b, result, null); @@ -903,9 +906,9 @@ public class Nd4j { } /** - * Matrix multiplication/dot product + * Matrix multiplication/dot product.
* - * @see #matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean) + * See {@link #matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)} */ public static INDArray matmul(INDArray a, INDArray b, boolean transposeA, boolean transposeB, boolean transposeResult){ return matmul(a, b, null, transposeA, transposeB, transposeResult); @@ -914,7 +917,7 @@ public class Nd4j { /** * Matrix multiplication/dot product * - * @see #matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean) + * See {@link #matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)} */ public static INDArray matmul(INDArray a, INDArray b){ return matmul(a,b, null); @@ -960,156 +963,157 @@ public class Nd4j { return SPARSE_INSTANCE; } - // TODO: We forward the following methods with a default dimension argument. Doc should say something about that. /** - * @see org.nd4j.linalg.api.ndarray.INDArray#cumsum(int) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#cumsum(int)} with Integer.MAX_VALUE for full array reduction. + * + * @return scalar ndarray. */ public static INDArray cumsum(INDArray compute) { return compute.cumsum(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#max(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#max(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray max(INDArray compute) { return compute.max(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#min(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#min(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray min(INDArray compute) { return compute.min(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#prod(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#prod(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray prod(INDArray compute) { return compute.prod(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#normmax(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#normmax(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray normmax(INDArray compute) { return compute.normmax(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#norm2(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#norm2(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray norm2(INDArray compute) { return compute.norm2(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#norm1(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#norm1(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray norm1(INDArray compute) { return compute.norm1(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#std(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#std(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray std(INDArray compute) { return compute.std(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#var(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#var(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray var(INDArray compute) { return compute.var(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#sum(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#sum(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray sum(INDArray compute) { return compute.sum(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#mean(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#mean(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray mean(INDArray compute) { return compute.mean(Integer.MAX_VALUE); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#cumsum(int) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#cumsum(int)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray cumsum(INDArray compute, int dimension) { return compute.cumsum(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#max(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#max(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray max(INDArray compute, int dimension) { return compute.max(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#min(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#min(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray min(INDArray compute, int dimension) { return compute.min(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#prod(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#prod(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray prod(INDArray compute, int dimension) { return compute.prod(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#normmax(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#normmax(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray normmax(INDArray compute, int dimension) { return compute.normmax(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#norm2(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#norm2(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray norm2(INDArray compute, int dimension) { return compute.norm2(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#norm1(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#norm1(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray norm1(INDArray compute, int dimension) { return compute.norm1(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#std(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#std(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray std(INDArray compute, int dimension) { return compute.std(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#var(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#var(int...)} with Integer.MAX_VALUE for full array reduction. */ public static INDArray var(INDArray compute, int dimension) { return compute.var(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#sum(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#sum(int...)}with Integer.MAX_VALUE for full array reduction. */ public static INDArray sum(INDArray compute, int dimension) { return compute.sum(dimension); } /** - * @see org.nd4j.linalg.api.ndarray.INDArray#mean(int...) + * See {@link org.nd4j.linalg.api.ndarray.INDArray#mean(int...)}with Integer.MAX_VALUE for full array reduction. */ public static INDArray mean(INDArray compute, int dimension) { return compute.mean(dimension); @@ -1386,7 +1390,8 @@ public class Nd4j { } /** - * Create a buffer equal of length prod(shape) + * Create a buffer equal of length prod(shape). The buffer is 'detached': Not in any memory workspace even if a + * workspace is currently open. * * @param shape the shape of the buffer to create * @param type the opType to create @@ -1430,7 +1435,7 @@ public class Nd4j { } /** - * @see #createBuffer(int[], DataType) + * See {@link #createBuffer(int[], DataType)} */ public static DataBuffer createBuffer(long[] shape, DataType type) { long length = ArrayUtil.prodLong(shape); @@ -1472,7 +1477,7 @@ public class Nd4j { /** - * @see #createBufferDetached(int[], DataType) + * See {@link #createBufferDetached(int[], DataType)} */ public static DataBuffer createBufferDetached(long[] shape, DataType type) { long length = ArrayUtil.prodLong(shape); @@ -1630,7 +1635,7 @@ public class Nd4j { } /** - * @see #createBuffer(DataType dataType, long length, boolean initialize) + * See {@link #createBuffer(DataType dataType, long length, boolean initialize) with default datatype. */ public static DataBuffer createBuffer(long length, boolean initialize) { DataBuffer ret = createBuffer(Nd4j.dataType(), length, initialize); @@ -1680,14 +1685,14 @@ public class Nd4j { } /** - * @see #createBufferDetached(float[]) + * See {@link #createBufferDetached(float[])} */ public static DataBuffer createBufferDetached(double[] data) { return DATA_BUFFER_FACTORY_INSTANCE.createDouble(data); } /** - * @see #createBuffer(float[]) + * See {@link #createBuffer(float[])} */ public static DataBuffer createBuffer(double[] data) { return Nd4j.getMemoryManager().getCurrentWorkspace() == null ? DATA_BUFFER_FACTORY_INSTANCE.createDouble(data) : DATA_BUFFER_FACTORY_INSTANCE.createDouble(data, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -1706,7 +1711,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType) + * See {@link #createTypedBuffer(float[], DataType)} */ public static DataBuffer createTypedBuffer(float[] data, DataType dataType) { val buffer = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -1715,7 +1720,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType) + * See {@link #createTypedBuffer(float[], DataType)} */ public static DataBuffer createTypedBuffer(int[] data, DataType dataType) { val buffer = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -1724,7 +1729,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType) + * See {@link #createTypedBuffer(float[], DataType)} */ public static DataBuffer createTypedBuffer(long[] data, DataType dataType) { val buffer = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -1733,7 +1738,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType) + * See {@link #createTypedBuffer(float[], DataType)} */ public static DataBuffer createTypedBuffer(short[] data, DataType dataType) { val buffer = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -1742,7 +1747,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType) + * See {@link #createTypedBuffer(float[], DataType)} */ public static DataBuffer createTypedBuffer(byte[] data, DataType dataType) { val buffer = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -1751,7 +1756,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType) + * See {@link #createTypedBuffer(float[], DataType)} */ public static DataBuffer createTypedBuffer(boolean[] data, DataType dataType) { val buffer = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -1773,7 +1778,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType, MemoryWorkspace) + * See {@link #createTypedBuffer(float[], DataType, MemoryWorkspace)} */ public static DataBuffer createTypedBuffer(float[] data, DataType dataType, MemoryWorkspace workspace) { val buffer = workspace == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, workspace); @@ -1782,7 +1787,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType, MemoryWorkspace) + * See {@link #createTypedBuffer(float[], DataType, MemoryWorkspace)} */ public static DataBuffer createTypedBuffer(int[] data, DataType dataType, MemoryWorkspace workspace) { val buffer = workspace == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, workspace); @@ -1791,7 +1796,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType, MemoryWorkspace) + * See {@link #createTypedBuffer(float[], DataType, MemoryWorkspace)} */ public static DataBuffer createTypedBuffer(long[] data, DataType dataType, MemoryWorkspace workspace) { val buffer = workspace == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, workspace); @@ -1800,7 +1805,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType, MemoryWorkspace) + * See {@link #createTypedBuffer(float[], DataType, MemoryWorkspace)} */ public static DataBuffer createTypedBuffer(short[] data, DataType dataType, MemoryWorkspace workspace) { val buffer = workspace == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, workspace); @@ -1809,7 +1814,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType, MemoryWorkspace) + * See {@link #createTypedBuffer(float[], DataType, MemoryWorkspace)} */ public static DataBuffer createTypedBuffer(byte[] data, DataType dataType, MemoryWorkspace workspace) { val buffer = workspace == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, workspace); @@ -1818,7 +1823,7 @@ public class Nd4j { } /** - * @see #createTypedBuffer(float[], DataType, MemoryWorkspace) + * See {@link #createTypedBuffer(float[], DataType, MemoryWorkspace)} */ public static DataBuffer createTypedBuffer(boolean[] data, DataType dataType, MemoryWorkspace workspace) { val buffer = workspace == null ? DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false) : DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false, workspace); @@ -1839,7 +1844,7 @@ public class Nd4j { } /** - * @see #createTypedBufferDetached(double[], DataType) + * See {@link #createTypedBufferDetached(double[], DataType)} */ public static DataBuffer createTypedBufferDetached(float[] data, DataType dataType) { val buffer = DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false); @@ -1848,7 +1853,7 @@ public class Nd4j { } /** - * @see #createTypedBufferDetached(double[], DataType) + * See {@link #createTypedBufferDetached(double[], DataType)} */ public static DataBuffer createTypedBufferDetached(int[] data, DataType dataType) { val buffer = DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false); @@ -1857,7 +1862,7 @@ public class Nd4j { } /** - * @see #createTypedBufferDetached(double[], DataType) + * See {@link #createTypedBufferDetached(double[], DataType)} */ public static DataBuffer createTypedBufferDetached(long[] data, DataType dataType) { val buffer = DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false); @@ -1866,7 +1871,7 @@ public class Nd4j { } /** - * @see #createTypedBufferDetached(double[], DataType) + * See {@link #createTypedBufferDetached(double[], DataType)} */ public static DataBuffer createTypedBufferDetached(short[] data, DataType dataType) { val buffer = DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false); @@ -1875,7 +1880,7 @@ public class Nd4j { } /** - * @see #createTypedBufferDetached(double[], DataType) + * See {@link #createTypedBufferDetached(double[], DataType)} */ public static DataBuffer createTypedBufferDetached(byte[] data, DataType dataType) { val buffer = DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false); @@ -1884,7 +1889,7 @@ public class Nd4j { } /** - * @see #createTypedBufferDetached(double[], DataType) + * See {@link #createTypedBufferDetached(double[], DataType)} */ public static DataBuffer createTypedBufferDetached(boolean[] data, DataType dataType) { val buffer = DATA_BUFFER_FACTORY_INSTANCE.create(dataType, data.length, false); @@ -2669,9 +2674,9 @@ public class Nd4j { } /** - * Read array via input stream using standard UTF-8 encoding. + * Read array via input stream. * - * @see #readNumpy(DataType, InputStream, String , Charset) + * See {@link #readNumpy(DataType, InputStream, String , Charset)} using standard UTF-8 encoding */ public static INDArray readNumpy(DataType dataType, String filePath, String split) throws IOException { try(InputStream is = new FileInputStream(filePath)) { @@ -2690,9 +2695,9 @@ public class Nd4j { } /** - * Read array with default split and UTF-8 encoding. + * Read array.
* - * @see #readNumpy(DataType, InputStream, String , Charset) + * See {@link #readNumpy(DataType, InputStream, String , Charset)} with default split and UTF-8 encoding. */ public static INDArray readNumpy(DataType dataType, String filePath) throws IOException { return readNumpy(dataType, filePath, " "); @@ -2701,7 +2706,7 @@ public class Nd4j { /** * Raad an ndarray from an input stream * - * @see #read(DataInputStream) + * See {@link #read(DataInputStream)} */ public static INDArray read(InputStream reader) throws IOException { return read(new DataInputStream(reader)); @@ -3019,7 +3024,7 @@ public class Nd4j { * Create a 1D array of evenly spaced values between {@code begin} (inclusive) and {@code end} (exclusive) * with a step size of 1 * - * @see #arange(double, double, double) + * See {@link #arange(double, double, double)} with step size 1. */ public static INDArray arange(double begin, double end) { INDArray ret = INSTANCE.arange(begin, end, 1); @@ -3030,7 +3035,7 @@ public class Nd4j { * Create a 1D array of evenly spaced values between 0 (inclusive) and {@code end} (exclusive) * with a step size of 1 * - * @see #arange(double, double, double) + * See {@link #arange(double, double, double)} with begin = 0 and step size 1. */ public static INDArray arange(double end) { return arange(0, end); @@ -3096,6 +3101,7 @@ public class Nd4j { return Nd4j.getExecutioner().exec(new Choice(source, probs, target), rng); } + // @see tag works well here. /** * This method samples value from Source array to Target,the default random number generator. * @@ -3114,6 +3120,7 @@ public class Nd4j { * @return */ + // @see tag works well here. /** * This method returns new INDArray instance, sampled from Source array with probabilities given in Probs. * @@ -3128,6 +3135,7 @@ public class Nd4j { return choice(source, probs, createUninitialized(numSamples), rng); } + // @see tag works well here. /** * This method returns new INDArray instance, sampled from Source array with probabilities given in Probs * using the default random number generator. @@ -3170,7 +3178,7 @@ public class Nd4j { } /** - * @see #rand(int[]) + * See {@link #rand(int[])} */ public static INDArray rand(@NonNull long... shape) { INDArray ret = createUninitialized(shape, order()); //INSTANCE.rand(shape, Nd4j.getRandom()); @@ -4031,42 +4039,42 @@ public class Nd4j { } /** - * @see #create(int[], long[], DataType) + * See {@link #create(int[], long[], DataType)} */ public static INDArray create(long[] data, long[] shape, DataType type) { return INSTANCE.create(data, shape, Nd4j.getStrides(shape), type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], DataType) + * See {@link #create(int[], long[], DataType)} */ public static INDArray create(double[] data, long[] shape, DataType type) { return INSTANCE.create(data, shape, Nd4j.getStrides(shape), type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], DataType) + * See {@link #create(int[], long[], DataType)} */ public static INDArray create(float[] data, long[] shape, DataType type) { return INSTANCE.create(data, shape, Nd4j.getStrides(shape), type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], DataType) + * See {@link #create(int[], long[], DataType)} */ public static INDArray create(short[] data, long[] shape, DataType type) { return INSTANCE.create(data, shape, Nd4j.getStrides(shape), type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], DataType) + * See {@link #create(int[], long[], DataType)} */ public static INDArray create(byte[] data, long[] shape, DataType type) { return INSTANCE.create(data, shape, Nd4j.getStrides(shape), type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], DataType) + * See {@link #create(int[], long[], DataType)} */ public static INDArray create(boolean[] data, long[] shape, DataType type) { return INSTANCE.create(data, shape, Nd4j.getStrides(shape), type, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -4089,42 +4097,42 @@ public class Nd4j { } /** - * @see #create(int[], long[], long[], char, DataType) + * See {@link #create(int[], long[], long[], char, DataType)} */ public static INDArray create(long[] data, long[] shape, long[]strides, char order, DataType type) { return INSTANCE.create(data, shape, strides, order, type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], long[], char, DataType) + * See {@link #create(int[], long[], long[], char, DataType)} */ public static INDArray create(double[] data, long[] shape, long[]strides, char order, DataType type) { return INSTANCE.create(data, shape, strides, order, type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], long[], char, DataType) + * See {@link #create(int[], long[], long[], char, DataType)} */ public static INDArray create(float[] data, long[] shape, long[]strides, char order, DataType type) { return INSTANCE.create(data, shape, strides, order, type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], long[], char, DataType) + * See {@link #create(int[], long[], long[], char, DataType)} */ public static INDArray create(short[] data, long[] shape, long[]strides, char order, DataType type) { return INSTANCE.create(data, shape, strides, order, type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], long[], char, DataType) + * See {@link #create(int[], long[], long[], char, DataType)} */ public static INDArray create(byte[] data, long[] shape, long[]strides, char order, DataType type) { return INSTANCE.create(data, shape, strides, order, type, Nd4j.getMemoryManager().getCurrentWorkspace()); } /** - * @see #create(int[], long[], long[], char, DataType) + * See {@link #create(int[], long[], long[], char, DataType)} */ public static INDArray create(boolean[] data, long[] shape, long[]strides, char order, DataType type) { return INSTANCE.create(data, shape, strides, order, type, Nd4j.getMemoryManager().getCurrentWorkspace()); @@ -4237,7 +4245,7 @@ public class Nd4j { } /** - * @see #create(float[], int[]) + * See {@link #create(float[], int[])} */ public static INDArray create(float[] data, long... shape) { if (shape.length == 0 && data.length == 1) { @@ -4256,7 +4264,7 @@ public class Nd4j { } /** - * @see #create(float[], int[]) + * See {@link #create(float[], int[])} */ public static INDArray create(double[] data, long... shape) { if (shape.length == 0 && data.length == 1) { @@ -4439,7 +4447,7 @@ public class Nd4j { } /** - * @see #create(double[], int[], long, char ) + * See {@link #create(double[], int[], long, char )} */ public static INDArray create(double[] data, long[] shape, long offset, char ordering) { if (shape.length == 1) { @@ -4491,7 +4499,7 @@ public class Nd4j { } /** - * @see #create(List, int[]) + * See {@link #create(List, int[])} */ public static INDArray create(List list, long... shape) { checkShapeValues(shape); @@ -4517,7 +4525,7 @@ public class Nd4j { } /** - * @see #create(int , int , int[] , long ) + * See {@link #create(int , int , int[] , long )} */ public static INDArray zeros(int rows, int columns, int[] stride, long offset) { return create(rows, columns, stride, offset); @@ -4540,7 +4548,7 @@ public class Nd4j { } /** - * @see #create(int[] , int[] , long ) + * See {@link #create(int[] , int[] , long )} */ public static INDArray zeros(int[] shape, int[] stride, long offset) { return create(shape, stride, offset); @@ -4559,7 +4567,7 @@ public class Nd4j { } /** - * @see #create(int, int, int[], char) + * See {@link @see #create(int, int, int[], char)} */ public static INDArray zeros(int rows, int columns, int[] stride) { return create(rows, columns, stride, order()); @@ -4577,7 +4585,7 @@ public class Nd4j { } /** - * @see #create(int[], int[]) + * See {@link #create(int[], int[])} */ public static INDArray create(long[] shape, long[] stride) { return create(shape, stride, order()); @@ -4585,7 +4593,7 @@ public class Nd4j { /** - * @see #create(int[], int[]) + * See {@link #create(int[], int[])} */ public static INDArray zeros(int[] shape, int[] stride) { return create(shape, stride); @@ -4705,7 +4713,7 @@ public class Nd4j { } /** - * @see #create(DataBuffer, int[], int[], long) + * See {@link #create(DataBuffer, int[], int[], long)} */ public static INDArray create(DataBuffer data, long[] shape, long[] strides, long offset) { checkShapeValues(shape); @@ -4713,9 +4721,7 @@ public class Nd4j { } /** - * @see #create(DataBuffer, int[], int[], long) - * - * Uses default strides based on shape. + * See {@link #create(DataBuffer, int[], int[], long)}. Uses default strides based on shape. */ public static INDArray create(DataBuffer data, int[] shape, long offset) { checkShapeValues(shape); @@ -4723,7 +4729,7 @@ public class Nd4j { } /** - * @see #create(DataBuffer data, long[], long[], long, long, char ) + * See {@link #create(DataBuffer data, long[], long[], long, long, char )} */ public static INDArray create(DataBuffer data, int[] newShape, int[] newStride, long offset, char ordering) { checkShapeValues(newShape); @@ -4731,7 +4737,7 @@ public class Nd4j { } /** - * @see #create(DataBuffer data, long[], long[], long, long, char ) + * See {@link #create(DataBuffer data, long[], long[], long, long, char )} */ public static INDArray create(DataBuffer data, long[] newShape, long[] newStride, long offset, char ordering) { checkShapeValues(newShape); @@ -4784,7 +4790,7 @@ public class Nd4j { } /** - * @see #create(DataBuffer, int[]) + * See {@link #create(DataBuffer, int[])} */ public static INDArray create(DataBuffer data, long... shape) { checkShapeValues(shape); @@ -4886,7 +4892,7 @@ public class Nd4j { } /** - * @see #create(double[], int[], char) + * See {@link #create(double[], int[], char)} */ public static INDArray create(float[] data, int[] shape, char ordering) { if (shape.length == 1) { @@ -4900,7 +4906,7 @@ public class Nd4j { } /** - * @see #create(double[], int[], char) + * See {@link #create(double[], int[], char)} */ public static INDArray create(float[] data, long[] shape, char ordering) { checkShapeValues(data.length, shape); @@ -4908,7 +4914,7 @@ public class Nd4j { } /** - * @see #create(double[], int[], char) + * See {@link #create(double[], int[], char)} */ public static INDArray create(double[] data, long[] shape, char ordering) { checkShapeValues(data.length, shape); @@ -5070,7 +5076,7 @@ public class Nd4j { } /** - * @see #create(int[], int[], char) + * See {@link #create(int[], int[], char)} */ public static INDArray create(long[] shape, long[] stride, char ordering) { if(shape.length == 0) @@ -5280,7 +5286,7 @@ public class Nd4j { } /** - * @see #createUninitialized(long[], char) + * See {@link #createUninitialized(long[], char)} */ public static INDArray createUninitializedDetached(int[] shape, char ordering) { if (shape.length == 0) @@ -5306,7 +5312,7 @@ public class Nd4j { } /** - * @see #createUninitialized(long[]) + * See {@link #createUninitialized(long[])} */ public static INDArray createUninitialized(int... shape) { if(shape.length == 0) @@ -5352,7 +5358,7 @@ public class Nd4j { } /** - * @see #createUninitialized(long) + * See {@link #createUninitialized(long)} */ public static INDArray createUninitialized(int length) { return createUninitialized((long)length); @@ -5372,7 +5378,7 @@ public class Nd4j { } /** - * @see #createUninitialized(long) + * See {@link #createUninitialized(long)} */ public static INDArray createUninitializedDetached(int length) { long[] shape = new long[] {length}; @@ -5631,7 +5637,7 @@ public class Nd4j { } /** - * @see #valueArrayOf(long[], double, DataType) + * See {@link #valueArrayOf(long[], double, DataType)} */ public static INDArray valueArrayOf(long[] shape, double value) { if (shape.length == 0) @@ -5663,7 +5669,7 @@ public class Nd4j { } /** - * @see #valueArrayOf(long[], double, DataType) + * See {@link #valueArrayOf(long[], double, DataType)} */ public static INDArray valueArrayOf(long[] shape, long value, DataType type) { if (shape.length == 0) @@ -6076,7 +6082,7 @@ public class Nd4j { } /** - * @see #zeros(int[] , char) + * See {@link #zeros(int[] , char)} */ public static INDArray zeros(long[] shape, char order) { checkShapeValues(shape); @@ -6118,7 +6124,7 @@ public class Nd4j { /** - * @see #ones(int... shape) + * See {@link #ones(int... shape)} */ public static INDArray ones(@NonNull long... shape) { if(shape.length == 0)