commit
405307dea3
|
@ -89,8 +89,8 @@ namespace sd {
|
|||
else {
|
||||
//REQUIRE_TRUE(block.width() == 3, 0, "CUSTOM_OP fused_batch_norm: when isTraining=true then number of input arrays must be equal to 3, but got %i instead !", block.width());
|
||||
std::vector<Nd4jLong> shape = {iD};
|
||||
mean = NDArrayFactory::create_(scale->ordering(), shape, sd::DataType::FLOAT32, block.launchContext());
|
||||
variance = NDArrayFactory::create_(scale->ordering(), shape, sd::DataType::FLOAT32, block.launchContext());
|
||||
mean = NDArrayFactory::create_(scale->ordering(), shape, scale->dataType(), block.launchContext());
|
||||
variance = NDArrayFactory::create_(scale->ordering(), shape, scale->dataType(), block.launchContext());
|
||||
}
|
||||
|
||||
|
||||
|
@ -104,7 +104,7 @@ namespace sd {
|
|||
|
||||
const int restSize = x->lengthOf() / iD;
|
||||
|
||||
auto xAffected = NDArrayFactory::create(x->ordering(), {restSize, iD}, sd::DataType::FLOAT32, block.launchContext());
|
||||
auto xAffected = NDArrayFactory::create(x->ordering(), {restSize, iD}, mean->dataType(), block.launchContext());
|
||||
xAffected.assign(xCast);
|
||||
|
||||
const int restSizeMinusOne = (restSize > 1) ? (restSize - 1) : 1;
|
||||
|
|
|
@ -40,7 +40,7 @@ namespace sd {
|
|||
* TArgs[0] - min for rng
|
||||
* TArgs[1] - max for rng
|
||||
*/
|
||||
CUSTOM_OP_IMPL(randomuniform, -1, 1, true, 0, -1) {
|
||||
CUSTOM_OP_IMPL(randomuniform, -1, 1, true, 0, -2) {
|
||||
// uniform distribution
|
||||
auto rng = block.randomGenerator();
|
||||
auto dtype = DataType::FLOAT32;
|
||||
|
|
|
@ -61,6 +61,29 @@ DECLARE_TYPES(reshape) {
|
|||
->setSameMode(true);
|
||||
}
|
||||
|
||||
|
||||
bool handleOptionalOrder(std::vector<int> &reshapeArgs, char &ordering){
|
||||
if(reshapeArgs.size()>0){
|
||||
//check if any optional negative ordering value is passed
|
||||
auto optional = reshapeArgs[0];
|
||||
if(optional < 0){
|
||||
optional = abs(optional);
|
||||
//check if passed option is allowed. (-1 -> dynamic shape)
|
||||
// in that case we will return back
|
||||
if(optional == 1 ) return true;
|
||||
//in this case it should obey allowed orderings
|
||||
if (optional != 'c' && optional != 'f' ) return false;
|
||||
reshapeArgs.erase( reshapeArgs.begin());
|
||||
//ordering was passed and ok. let's assign
|
||||
ordering = optional;
|
||||
}
|
||||
|
||||
}
|
||||
//skipped
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
DECLARE_SHAPE_FN(reshape) {
|
||||
|
||||
const auto x = INPUT_VARIABLE(0);
|
||||
|
@ -78,26 +101,14 @@ DECLARE_SHAPE_FN(reshape) {
|
|||
*/
|
||||
if (block.width() == 1) {
|
||||
reshapeArgs = *block.getIArguments();
|
||||
if (!reshapeArgs.empty()) {
|
||||
char potentialOrdering = (char)-reshapeArgs[0];
|
||||
orderNew = potentialOrdering;
|
||||
if (potentialOrdering != 'c' && potentialOrdering != 'f') {
|
||||
if(!handleOptionalOrder(reshapeArgs, orderNew)){
|
||||
throw std::runtime_error(
|
||||
"reshape:: Value passed in must be -99 or -102 for the ordering if "
|
||||
"an int array is present. -99 represents c ordering and -102 "
|
||||
"represents f ordering. This number is negative for the long array "
|
||||
"case to flag the difference between an ordering and a dimension "
|
||||
"being specified.");
|
||||
}
|
||||
|
||||
nd4j_debug("Reshape Ordering is %c int ordering is %d\n", orderNew,
|
||||
-reshapeArgs[0]);
|
||||
|
||||
if (orderNew == 'c' || orderNew == 'f')
|
||||
reshapeArgs.erase(
|
||||
reshapeArgs
|
||||
.begin()); // remove first element being order in this case
|
||||
}
|
||||
};
|
||||
} else {
|
||||
reshapeArgs = INPUT_VARIABLE(1)->getBufferAsVector<int>();
|
||||
if (block.numI() > 0) {
|
||||
|
|
|
@ -227,6 +227,7 @@ TEST_F(SparseUtilsTest, RavelIndices_Test) {
|
|||
}
|
||||
|
||||
shape[2] = 30;
|
||||
delete[] shapeInfoBuffer;
|
||||
shapeInfoBuffer = shape::shapeBuffer(rank, sd::DataType::INT64, shape);
|
||||
|
||||
try {
|
||||
|
|
Loading…
Reference in New Issue