Eliminated error with resize implementation. (#418)
* Eliminated error with resize implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored resize caller implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored image.resize op helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Added dumb implementations for missed resize methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added resize_images op. Refactored image_resize op. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored matrix_band_part op and test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored resize_images op to comply with preserve_aspect_ratio flag properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored resize_images and tests for resizeArea method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored resize methods and test. Signed-off-by: shugeo <sgazeos@gmail.com> * Added new methods for TF2 resize op. Signed-off-by: shugeo <sgazeos@gmail.com> * Portion of resize algorithms from TF2 Signed-off-by: shugeo <sgazeos@gmail.com> * Added routine to process resize with given algorithm. Signed-off-by: shugeo <sgazeos@gmail.com> * Added new image resize via scale and translate process helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Cpu implementation for V2 image resize operation helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Added implementation for lancos5 algorithm of resize and test. Signed-off-by: shugeo <sgazeos@gmail.com> * Added prints for span computing. Signed-off-by: shugeo <sgazeos@gmail.com> * The first working implementation and tests for lancos5 resize. Signed-off-by: shugeo <sgazeos@gmail.com> * Eliminated waste prints. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored image_resize op and tests." Signed-off-by: shugeo <sgazeos@gmail.com> * Lanczos3 resize implementation and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Implemented bicubic resize algorithm and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Added a couple of tests and cosmetic changes with image resize helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Added bilinear implementation for image resize. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored bicubic algorithm and also implement area and neighbor algoritms for image resize on cpu arch. Signed-off-by: shugeo <sgazeos@gmail.com> * Added a couple of tests for nearest neighbor and area resize. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes for cpu implementation and added cuda implementation for resize methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Separated cuda implementation of v2 image resize. Signed-off-by: shugeo <sgazeos@gmail.com> * Added kernels for span calculation and span gathering with new image resize cuda implementation. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored cuda implementation of image resize kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Finished the first working implementation of image resize op and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed resize_images and image_resize ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored shape construction and output validation. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed test to properly initalized with float. Signed-off-by: shugeo <sgazeos@gmail.com> * Added 3D input opotunity for resize ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed test for resize_images op. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed test and call for resize_images op. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored image_resize op output data type handling for nearest neighbors method and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed issue with wrong resize method. Signed-off-by: shugeo <sgazeos@gmail.com> * Added checkup for wrong resize methods for resize ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored resize methods and test. Signed-off-by: shugeo <sgazeos@gmail.com> * Added output data type validation for given resize method. Signed-off-by: shugeo <sgazeos@gmail.com> * - ResizeMethod rearranged in order to match C++ side - minor test fix Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored resize_images op. Signed-off-by: shugeo <sgazeos@gmail.com> Co-authored-by: raver119@gmail.com <raver119@gmail.com>master
parent
5568b9d72f
commit
2aed216c2a
|
@ -1,5 +1,5 @@
|
||||||
/*******************************************************************************
|
/*******************************************************************************
|
||||||
* Copyright (c) 2019 Konduit K.K.
|
* Copyright (c) 2020 Konduit K.K.
|
||||||
*
|
*
|
||||||
* This program and the accompanying materials are made available under the
|
* This program and the accompanying materials are made available under the
|
||||||
* terms of the Apache License, Version 2.0 which is available at
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
@ -32,57 +32,65 @@ namespace sd {
|
||||||
auto size = INPUT_VARIABLE(1);
|
auto size = INPUT_VARIABLE(1);
|
||||||
|
|
||||||
auto output = OUTPUT_VARIABLE(0);
|
auto output = OUTPUT_VARIABLE(0);
|
||||||
|
|
||||||
int width;
|
int width;
|
||||||
int height;
|
int height;
|
||||||
bool preserveAspectRatio = false; // - default value
|
|
||||||
bool antialias = false;
|
bool antialias = false;
|
||||||
REQUIRE_TRUE(size->lengthOf() == 2, 0, "resize_bilinear: Resize params is a pair of values, not %lld.", size->lengthOf());
|
REQUIRE_TRUE(size->lengthOf() == 2, 0, "image_resize: Resize params is a pair of values, not %lld.", size->lengthOf());
|
||||||
width = size->e<int>(0);
|
width = size->e<int>(1);
|
||||||
height = size->e<int>(1);
|
height = size->e<int>(0);
|
||||||
if (block.getBArguments()->size()) {
|
if (block.numB() == 2) {
|
||||||
preserveAspectRatio = B_ARG(0);
|
antialias = B_ARG(1);
|
||||||
if (block.getBArguments()->size() > 1)
|
|
||||||
antialias = B_ARG(1);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
auto method = helpers::ImageResizeMethods::kResizeBilinear;
|
auto method = helpers::ImageResizeMethods::kResizeBilinear;
|
||||||
if (block.numI() == 1) {
|
if (block.numI() == 1) {
|
||||||
method = (helpers::ImageResizeMethods)INT_ARG(0);
|
method = (helpers::ImageResizeMethods)INT_ARG(0);
|
||||||
}
|
}
|
||||||
|
REQUIRE_TRUE(method == helpers::ImageResizeMethods::kResizeNearest || output->dataType() == DataType::FLOAT32, 0, "image_resize: Output data type should be FLOAT32 for this method %i", (int)method );
|
||||||
|
REQUIRE_TRUE(method >= helpers::ImageResizeMethods::kResizeFirst && method <= helpers::ImageResizeMethods::kResizeLast, 0, "image_resize: Resize method should be between %i and %i, but %i was given.", (int)helpers::ImageResizeMethods::kResizeFirst, (int)helpers::ImageResizeMethods::kResizeLast, (int)method);
|
||||||
|
auto inRank = image->rankOf();
|
||||||
|
REQUIRE_TRUE(inRank >=3 && inRank <=4, 0, "image_resize: Input rank should be 4 or 3, but %i given.", image->rankOf());
|
||||||
|
auto source = inRank == 4?image->reshape(image->ordering(), {image->sizeAt(0), image->sizeAt(1), image->sizeAt(2), image->sizeAt(3)}):image->reshape(image->ordering(), {1, image->sizeAt(0), image->sizeAt(1), image->sizeAt(2)});
|
||||||
|
auto target = inRank == 4?output->reshape(output->ordering(), {output->sizeAt(0), output->sizeAt(1), output->sizeAt(2), output->sizeAt(3)}, false) : output->reshape(output->ordering(), {1, output->sizeAt(0), output->sizeAt(1), output->sizeAt(2)}, false);
|
||||||
|
|
||||||
return helpers::resizeFunctor(block.launchContext(), image, width, height, method, preserveAspectRatio, antialias, output);
|
return helpers::resizeFunctor(block.launchContext(), image, width, height, method, antialias, output);
|
||||||
}
|
}
|
||||||
|
|
||||||
DECLARE_SHAPE_FN(image_resize) {
|
DECLARE_SHAPE_FN(image_resize) {
|
||||||
auto shapeList = SHAPELIST();
|
|
||||||
auto in = inputShape->at(0);
|
auto in = inputShape->at(0);
|
||||||
|
|
||||||
Nd4jLong* outputShape;
|
Nd4jLong* outputShape;
|
||||||
|
auto method = helpers::ImageResizeMethods::kResizeBilinear;
|
||||||
|
if (block.numI() == 1) {
|
||||||
|
method = (helpers::ImageResizeMethods)INT_ARG(0);
|
||||||
|
}
|
||||||
|
|
||||||
int width;
|
int width;
|
||||||
int height;
|
int height;
|
||||||
|
double ratio = shape::sizeAt(in, 1) / (0.0 + shape::sizeAt(in, 2));
|
||||||
auto newImageSize = INPUT_VARIABLE(1);
|
auto newImageSize = INPUT_VARIABLE(1);
|
||||||
REQUIRE_TRUE(newImageSize->lengthOf() == 2, 0, "resize_bilinear: Resize params is a pair of values, not %i.", newImageSize->lengthOf());
|
REQUIRE_TRUE(newImageSize->lengthOf() == 2, 0, "resize_bilinear: Resize params is a pair of values, not %i.", newImageSize->lengthOf());
|
||||||
REQUIRE_TRUE(block.numI() <= 1, 0, "resize_bilinear: Resize params already given by the second param. Int params are expensive.");
|
REQUIRE_TRUE(block.numI() <= 1, 0, "resize_bilinear: Resize params already given by the second param. Int params are expensive.");
|
||||||
width = newImageSize->e<int>(0);
|
width = newImageSize->e<int>(1);
|
||||||
height = newImageSize->e<int>(1);
|
height = newImageSize->e<int>(0);
|
||||||
|
if (block.numB() > 0) {
|
||||||
ALLOCATE(outputShape, block.getWorkspace(), shape::shapeInfoLength(4), Nd4jLong);
|
if (B_ARG(0)) {
|
||||||
outputShape[0] = 4;
|
width = math::nd4j_ceil<double, int>(height / ratio);
|
||||||
outputShape[1] = in[1];
|
}
|
||||||
outputShape[2] = width;
|
}
|
||||||
outputShape[3] = height;
|
auto dtype = DataType::FLOAT32;
|
||||||
outputShape[4] = in[4];
|
if (method == helpers::ImageResizeMethods::kResizeNearest)
|
||||||
ShapeUtils::updateStridesAndType(outputShape, in, shape::order(in));
|
dtype = ArrayOptions::dataType(in);
|
||||||
|
auto shape = ConstantShapeHelper::getInstance()->createShapeInfo(dtype, 'c', shape::rank(in) == 4?std::vector<Nd4jLong>{in[1], height, width, in[4]}:std::vector<Nd4jLong>{ height, width, in[4]});
|
||||||
|
|
||||||
shapeList->push_back(CONSTANT(outputShape));
|
return SHAPELIST(shape);
|
||||||
return shapeList;
|
|
||||||
}
|
}
|
||||||
DECLARE_TYPES(image_resize) {
|
DECLARE_TYPES(image_resize) {
|
||||||
getOpDescriptor()
|
getOpDescriptor()
|
||||||
->setAllowedInputTypes(0, {ALL_FLOATS})
|
->setAllowedInputTypes(0, {ALL_INTS, ALL_FLOATS})
|
||||||
->setAllowedInputTypes(1, {ALL_INTS})
|
->setAllowedInputTypes(1, {ALL_INTS})
|
||||||
->setAllowedOutputTypes({ALL_FLOATS});
|
->setAllowedOutputTypes({ALL_FLOATS, ALL_INTS});
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,135 @@
|
||||||
|
/*******************************************************************************
|
||||||
|
* Copyright (c) 2020 Konduit K.K.
|
||||||
|
*
|
||||||
|
* This program and the accompanying materials are made available under the
|
||||||
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
* License for the specific language governing permissions and limitations
|
||||||
|
* under the License.
|
||||||
|
*
|
||||||
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
//
|
||||||
|
// @author sgazeos@gmail.com
|
||||||
|
//
|
||||||
|
|
||||||
|
#include <system/op_boilerplate.h>
|
||||||
|
#if NOT_EXCLUDED(OP_resize_images)
|
||||||
|
|
||||||
|
#include <ops/declarable/CustomOperations.h>
|
||||||
|
#include <ops/declarable/helpers/image_resize.h>
|
||||||
|
|
||||||
|
namespace sd {
|
||||||
|
namespace ops {
|
||||||
|
CUSTOM_OP_IMPL(resize_images, 1, 1, false, 0, 0) {
|
||||||
|
|
||||||
|
auto image = INPUT_VARIABLE(0);
|
||||||
|
|
||||||
|
auto output = OUTPUT_VARIABLE(0);
|
||||||
|
int width = output->sizeAt(2);
|
||||||
|
int height = output->sizeAt(1);
|
||||||
|
int method = helpers::ImageResizeMethods::kResizeBilinear;
|
||||||
|
if (block.width() > 1) {
|
||||||
|
auto size = INPUT_VARIABLE(1);
|
||||||
|
REQUIRE_TRUE(size->lengthOf() == 2, 0, "resize_images: Resize params is a pair of values, not %lld.", size->lengthOf());
|
||||||
|
// width = size->e<int>(1);
|
||||||
|
// height = size->e<int>(0);
|
||||||
|
if (block.width() > 2) {
|
||||||
|
auto methodT = INPUT_VARIABLE(2);
|
||||||
|
|
||||||
|
REQUIRE_TRUE(methodT->isZ() && methodT->isScalar(), 0, "resize_images: Method tensor should be integer scalar, but rank of %i tensor given.", methodT->rankOf());
|
||||||
|
method = methodT->e<int>(0);
|
||||||
|
}
|
||||||
|
else if (block.numI() == 1) {
|
||||||
|
method = I_ARG(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
REQUIRE_TRUE(block.numI() > 1 && block.numI() < 4, 0, "resize_images: Method and size should be given properly.");
|
||||||
|
if(block.numI() == 3) { // full stack of args
|
||||||
|
// height = I_ARG(0);
|
||||||
|
// width = I_ARG(1);
|
||||||
|
method = I_ARG(2);
|
||||||
|
}
|
||||||
|
else if (block.numI() == 2) {
|
||||||
|
// height = I_ARG(0);
|
||||||
|
// width = I_ARG(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
bool preserveAspectRatio = false; // - default value
|
||||||
|
bool alignCorners = false;
|
||||||
|
if (block.numB()) {
|
||||||
|
alignCorners = B_ARG(0);
|
||||||
|
if (block.numB() > 1)
|
||||||
|
preserveAspectRatio = B_ARG(1);
|
||||||
|
}
|
||||||
|
REQUIRE_TRUE(method >= helpers::ImageResizeMethods::kResizeFirst && method <= helpers::ImageResizeMethods::kResizeOldLast, 0, "resize_images: Resize method should be between %i and %i, but %i was given.", (int)helpers::ImageResizeMethods::kResizeFirst, (int)helpers::ImageResizeMethods::kResizeOldLast, (int)method);
|
||||||
|
REQUIRE_TRUE(method == helpers::ImageResizeMethods::kResizeNearest || output->dataType() == DataType::FLOAT32, 0, "image_resize: Output data type should be FLOAT32 for this method %i", (int)method );
|
||||||
|
|
||||||
|
auto inRank = image->rankOf();
|
||||||
|
REQUIRE_TRUE(inRank >=3 && inRank <=4, 0, "image_resize: Input rank should be 4 or 3, but %i given.", inRank);
|
||||||
|
|
||||||
|
auto source = inRank == 4?image->reshape(image->ordering(), {image->sizeAt(0), image->sizeAt(1), image->sizeAt(2), image->sizeAt(3)}):image->reshape(image->ordering(), {1, image->sizeAt(0), image->sizeAt(1), image->sizeAt(2)});
|
||||||
|
auto target = inRank == 4?output->reshape(output->ordering(), {output->sizeAt(0), output->sizeAt(1), output->sizeAt(2), output->sizeAt(3)}, false) : output->reshape(output->ordering(), {1, output->sizeAt(0), output->sizeAt(1), output->sizeAt(2)}, false);
|
||||||
|
|
||||||
|
return helpers::resizeImagesFunctor(block.launchContext(), &source, width, height, (helpers::ImageResizeMethods)method, alignCorners, &target);
|
||||||
|
}
|
||||||
|
|
||||||
|
DECLARE_SHAPE_FN(resize_images) {
|
||||||
|
auto shapeList = SHAPELIST();
|
||||||
|
auto in = inputShape->at(0);
|
||||||
|
|
||||||
|
Nd4jLong* outputShape;
|
||||||
|
|
||||||
|
int width;
|
||||||
|
int height;
|
||||||
|
if (block.width() > 1) {
|
||||||
|
auto size = INPUT_VARIABLE(1);
|
||||||
|
REQUIRE_TRUE(size->lengthOf() == 2, 0, "resize_images: Resize params is a pair of values, not %lld.", size->lengthOf());
|
||||||
|
width = size->e<int>(1);
|
||||||
|
height = size->e<int>(0);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
REQUIRE_TRUE(block.numI() > 1 && block.numI() < 4, 0, "resize_images: Method and size should be given properly.");
|
||||||
|
if(block.numI() == 3) { // full stack of args
|
||||||
|
height = I_ARG(0);
|
||||||
|
width = I_ARG(1);
|
||||||
|
}
|
||||||
|
else if (block.numI() == 2) {
|
||||||
|
height = I_ARG(0);
|
||||||
|
width = I_ARG(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
double ratio = shape::sizeAt(in, 1) / (0.0 + shape::sizeAt(in, 2));
|
||||||
|
if (block.numB() > 1) {
|
||||||
|
if (B_ARG(1)) {
|
||||||
|
width = math::nd4j_ceil<double, int>(height / ratio);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<Nd4jLong> shape;
|
||||||
|
if (shape::rank(in) == 4)
|
||||||
|
shape = {in[1], height, width, in[4]};
|
||||||
|
else if (shape::rank(in) == 3)
|
||||||
|
shape = {height, width, in[3]};
|
||||||
|
|
||||||
|
auto outShape = ConstantShapeHelper::getInstance()->createShapeInfo(DataType::FLOAT32, shape::order(in), shape);
|
||||||
|
return SHAPELIST(outShape);
|
||||||
|
}
|
||||||
|
DECLARE_TYPES(resize_images) {
|
||||||
|
getOpDescriptor()
|
||||||
|
->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS})
|
||||||
|
->setAllowedInputTypes(1, {ALL_INTS})
|
||||||
|
->setAllowedOutputTypes({DataType::FLOAT32});
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
|
@ -25,14 +25,27 @@
|
||||||
|
|
||||||
namespace sd {
|
namespace sd {
|
||||||
namespace ops {
|
namespace ops {
|
||||||
CONFIGURABLE_OP_IMPL(matrix_band_part, 1, 1, true, 0, 2) {
|
CONFIGURABLE_OP_IMPL(matrix_band_part, 1, 1, true, 0, 0) {
|
||||||
|
|
||||||
auto input = INPUT_VARIABLE(0);
|
auto input = INPUT_VARIABLE(0);
|
||||||
|
|
||||||
auto output = OUTPUT_VARIABLE(0);
|
auto output = OUTPUT_VARIABLE(0);
|
||||||
Nd4jLong minLower = INT_ARG(0);
|
|
||||||
Nd4jLong maxUpper = INT_ARG(1);
|
|
||||||
|
|
||||||
|
Nd4jLong minLower(0LL);
|
||||||
|
Nd4jLong maxUpper(0LL);
|
||||||
|
if (block.width() == 1) {
|
||||||
|
REQUIRE_TRUE(block.numI() == 2, 0, "matrix_band_part: min and max band numbers should be given before.");
|
||||||
|
minLower = INT_ARG(0);
|
||||||
|
maxUpper = INT_ARG(1);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
REQUIRE_TRUE(block.width() == 3, 0, "matrix_band_part: min and max band numbers should be given as scalars before.");
|
||||||
|
auto minLowerT = INPUT_VARIABLE(1);
|
||||||
|
auto maxUpperT = INPUT_VARIABLE(2);
|
||||||
|
REQUIRE_TRUE(minLowerT->isScalar() && maxUpperT->isScalar(), 0, "matrix_band_part: min and max should be scalars, but %i and %i ranks given", minLowerT->rankOf(), maxUpperT->rankOf());
|
||||||
|
minLower = minLowerT->e<Nd4jLong>(0);
|
||||||
|
maxUpper = maxUpperT->e<Nd4jLong>(0);
|
||||||
|
}
|
||||||
REQUIRE_TRUE(input->rankOf() >= 2, 0, "matrix_band_part: Input rank should be 2 or greater.");
|
REQUIRE_TRUE(input->rankOf() >= 2, 0, "matrix_band_part: Input rank should be 2 or greater.");
|
||||||
Nd4jLong N = input->sizeAt(-2);
|
Nd4jLong N = input->sizeAt(-2);
|
||||||
Nd4jLong M = input->sizeAt(-1);
|
Nd4jLong M = input->sizeAt(-1);
|
||||||
|
@ -49,9 +62,10 @@ namespace sd {
|
||||||
|
|
||||||
DECLARE_TYPES(matrix_band_part) {
|
DECLARE_TYPES(matrix_band_part) {
|
||||||
getOpDescriptor()
|
getOpDescriptor()
|
||||||
->setAllowedInputTypes({ALL_INTS, ALL_FLOATS})
|
->setAllowedInputTypes(0, {ALL_INTS, ALL_FLOATS})
|
||||||
->setAllowedInputTypes({ALL_INTS, ALL_FLOATS})
|
->setAllowedInputTypes(1, {ALL_INTS})
|
||||||
->setSameMode(true);
|
->setAllowedInputTypes(2, {ALL_INTS})
|
||||||
|
->setAllowedInputTypes({ALL_INTS, ALL_FLOATS});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -85,6 +85,7 @@ namespace ops {
|
||||||
*/
|
*/
|
||||||
#if NOT_EXCLUDED(OP_rgb_to_yuv)
|
#if NOT_EXCLUDED(OP_rgb_to_yuv)
|
||||||
DECLARE_CONFIGURABLE_OP(yuv_to_rgb, 1, 1, true, 0, 0);
|
DECLARE_CONFIGURABLE_OP(yuv_to_rgb, 1, 1, true, 0, 0);
|
||||||
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Rgb To Yiq
|
* Rgb To Yiq
|
||||||
|
@ -108,8 +109,156 @@ namespace ops {
|
||||||
DECLARE_CONFIGURABLE_OP(yiq_to_rgb, 1, 1, true, 0, 0);
|
DECLARE_CONFIGURABLE_OP(yiq_to_rgb, 1, 1, true, 0, 0);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
}
|
/**
|
||||||
}
|
* resize_images - resize image with given size and method
|
||||||
|
* there are 4 methods allowed: RESIZE_BILINEAR(0), RESIZE_NEIGHBOR(1), RESIZE_AREA(2) and RESIZE_BICUBIC(3)
|
||||||
|
* inputs:
|
||||||
|
* 0 - 4D tensor with shape {batch, height, width, channels}
|
||||||
|
* 1 - 1D integer tensor with {new_height, new_width} (optional)
|
||||||
|
* 2 - 0D integer tensor with method (0 to 3) (optional)
|
||||||
|
*
|
||||||
|
* int args:
|
||||||
|
* 0 - new_height
|
||||||
|
* 1 - new_width
|
||||||
|
* 2 - method
|
||||||
|
*
|
||||||
|
* bool args:
|
||||||
|
* 0 - align corners (default false) - optional
|
||||||
|
* 1 - preserve_aspect_ratio (default false) - optional
|
||||||
|
*
|
||||||
|
* CAUTION: one of methods can be used to give size and method - as tensors or as int args only
|
||||||
|
*
|
||||||
|
* output:
|
||||||
|
* 0 - 4D float32 tensor with shape {batch, new_height, new_width, channels}
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
#if NOT_EXCLUDED(OP_resize_images)
|
||||||
|
DECLARE_CUSTOM_OP(resize_images, 1,1,false, 0, 0);
|
||||||
|
#endif
|
||||||
|
|
||||||
#endif
|
/**
|
||||||
|
* This op make bilinear or nearest neighbor interpolated resize for given tensor
|
||||||
|
*
|
||||||
|
* input array:
|
||||||
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels) numeric type
|
||||||
|
* 1 - 2D-Tensor with shape (num_boxes, 4) float type
|
||||||
|
* 2 - 1D-Tensor with shape (num_boxes) int type
|
||||||
|
* 3 - 1D-Tensor with 2 values (newWidth, newHeight) (optional) int type
|
||||||
|
*
|
||||||
|
* float arguments (optional)
|
||||||
|
* 0 - exprapolation_value (optional) default 0.f
|
||||||
|
*
|
||||||
|
* int arguments: (optional)
|
||||||
|
* 0 - mode (default 0 - bilinear interpolation)
|
||||||
|
*
|
||||||
|
* output array:
|
||||||
|
* the 4D-Tensor with resized to crop_size images given - float type
|
||||||
|
*/
|
||||||
|
#if NOT_EXCLUDED(OP_crop_and_resize)
|
||||||
|
DECLARE_CUSTOM_OP(crop_and_resize, 4, 1, false, -1, -1);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This op make bilinear interpolated resize for given tensor
|
||||||
|
*
|
||||||
|
* input array:
|
||||||
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
||||||
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
||||||
|
*
|
||||||
|
* int arguments: (optional)
|
||||||
|
* 0 - new width
|
||||||
|
* 1 - new height
|
||||||
|
*
|
||||||
|
* output array:
|
||||||
|
* the 4D-Tensor with calculated backproped dots
|
||||||
|
*
|
||||||
|
* CAUTION: either size tensor or a pair of int params should be provided.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if NOT_EXCLUDED(OP_resize_bilinear)
|
||||||
|
DECLARE_CUSTOM_OP(resize_bilinear, 1, 1, false, 0, -2);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This op make nearest neighbor interpolated resize for given tensor
|
||||||
|
*
|
||||||
|
* input array:
|
||||||
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
||||||
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
||||||
|
*
|
||||||
|
* int arguments: (optional)
|
||||||
|
* 0 - new width
|
||||||
|
* 1 - new height
|
||||||
|
*
|
||||||
|
* output array:
|
||||||
|
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
||||||
|
*
|
||||||
|
* CAUTION: either size tensor or a pair of int params should be provided.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if NOT_EXCLUDED(OP_resize_nearest_neighbor)
|
||||||
|
DECLARE_CUSTOM_OP(resize_nearest_neighbor, 1, 1, false, 0, -2);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This op make bicubic interpolated resize for given tensor
|
||||||
|
*
|
||||||
|
* input array:
|
||||||
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
||||||
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
||||||
|
*
|
||||||
|
* output array:
|
||||||
|
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
#if NOT_EXCLUDED(OP_resize_bicubic)
|
||||||
|
DECLARE_CUSTOM_OP(resize_bicubic, 1, 1, false, 0, -2);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This op make area interpolated resize (as OpenCV INTER_AREA algorithm) for given tensor
|
||||||
|
*
|
||||||
|
* input array:
|
||||||
|
* 0 - images - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
||||||
|
* 1 - size - 1D-Tensor with 2 values (newWidth, newHeight) (if missing a pair of integer args should be provided).
|
||||||
|
*
|
||||||
|
* int args: - proveded only when size tensor is missing
|
||||||
|
* 0 - new height
|
||||||
|
* 1 - new width
|
||||||
|
* boolean args:
|
||||||
|
* 0 - align_corners - optional (default is false)
|
||||||
|
*
|
||||||
|
* output array:
|
||||||
|
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
#if NOT_EXCLUDED(OP_resize_area)
|
||||||
|
DECLARE_CUSTOM_OP(resize_area, 1, 1, false, 0, -2);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This op make interpolated resize for given tensor with given algorithm.
|
||||||
|
* Supported algorithms are bilinear, bicubic, nearest_neighbor, lanczos5, gaussian, area and mitchellcubic.
|
||||||
|
*
|
||||||
|
* input array:
|
||||||
|
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
||||||
|
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
||||||
|
*
|
||||||
|
* optional int args:
|
||||||
|
* 0 - algorithm - bilinear by default
|
||||||
|
* optional bool args:
|
||||||
|
* 0 - preserve_aspect_ratio - default False
|
||||||
|
* 1 - antialias - default False
|
||||||
|
*
|
||||||
|
* output array:
|
||||||
|
* the 4D-Tensor with resized by given algorithm image (shape is {batch, newWidth, newHeight, channels})
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#if NOT_EXCLUDED(OP_image_resize)
|
||||||
|
DECLARE_CUSTOM_OP(image_resize, 2, 1, false, 0, 0);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -1771,130 +1771,6 @@ namespace sd {
|
||||||
DECLARE_CUSTOM_OP(reduce_logsumexp, 1, 1, false, 0, 0);
|
DECLARE_CUSTOM_OP(reduce_logsumexp, 1, 1, false, 0, 0);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make bilinear or nearest neighbor interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels) numeric type
|
|
||||||
* 1 - 2D-Tensor with shape (num_boxes, 4) float type
|
|
||||||
* 2 - 1D-Tensor with shape (num_boxes) int type
|
|
||||||
* 3 - 1D-Tensor with 2 values (newWidth, newHeight) (optional) int type
|
|
||||||
*
|
|
||||||
* float arguments (optional)
|
|
||||||
* 0 - exprapolation_value (optional) default 0.f
|
|
||||||
*
|
|
||||||
* int arguments: (optional)
|
|
||||||
* 0 - mode (default 0 - bilinear interpolation)
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized to crop_size images given - float type
|
|
||||||
*/
|
|
||||||
#if NOT_EXCLUDED(OP_crop_and_resize)
|
|
||||||
DECLARE_CUSTOM_OP(crop_and_resize, 4, 1, false, -1, -1);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make bilinear interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
|
||||||
*
|
|
||||||
* int arguments: (optional)
|
|
||||||
* 0 - new width
|
|
||||||
* 1 - new height
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with calculated backproped dots
|
|
||||||
*
|
|
||||||
* CAUTION: either size tensor or a pair of int params should be provided.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#if NOT_EXCLUDED(OP_resize_bilinear)
|
|
||||||
DECLARE_CUSTOM_OP(resize_bilinear, 1, 1, false, 0, -2);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make nearest neighbor interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
|
||||||
*
|
|
||||||
* int arguments: (optional)
|
|
||||||
* 0 - new width
|
|
||||||
* 1 - new height
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
* CAUTION: either size tensor or a pair of int params should be provided.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#if NOT_EXCLUDED(OP_resize_nearest_neighbor)
|
|
||||||
DECLARE_CUSTOM_OP(resize_nearest_neighbor, 1, 1, false, 0, -2);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make bicubic interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
#if NOT_EXCLUDED(OP_resize_bicubic)
|
|
||||||
DECLARE_CUSTOM_OP(resize_bicubic, 1, 1, false, 0, -2);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make area interpolated resize (as OpenCV INTER_AREA algorithm) for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - images - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - size - 1D-Tensor with 2 values (newWidth, newHeight) (if missing a pair of integer args should be provided).
|
|
||||||
*
|
|
||||||
* int args: - proveded only when size tensor is missing
|
|
||||||
* 0 - new height
|
|
||||||
* 1 - new width
|
|
||||||
* boolean args:
|
|
||||||
* 0 - align_corners - optional (default is false)
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
#if NOT_EXCLUDED(OP_resize_area)
|
|
||||||
DECLARE_CUSTOM_OP(resize_area, 1, 1, false, 0, -2);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make interpolated resize for given tensor with given algorithm.
|
|
||||||
* Supported algorithms are bilinear, bicubic, nearest_neighbor.
|
|
||||||
* Need to implement to full compatibility with TF: lanczos5, gaussian, area and mitchellcubic
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
|
||||||
*
|
|
||||||
* optional int args:
|
|
||||||
* 0 - algorithm - bilinear by default
|
|
||||||
* optional bool args:
|
|
||||||
* 0 - preserve_aspect_ratio - default False
|
|
||||||
* 1 - antialias - default False
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized by given algorithm image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
#if NOT_EXCLUDED(OP_image_resize)
|
|
||||||
DECLARE_CUSTOM_OP(image_resize, 2, 1, false, 0, 0);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Copy a tensor setting everything outside a central band in each innermost matrix
|
* Copy a tensor setting everything outside a central band in each innermost matrix
|
||||||
*
|
*
|
||||||
|
|
|
@ -418,17 +418,17 @@ namespace helpers {
|
||||||
// Allocate and initialize coefficients table using Bicubic
|
// Allocate and initialize coefficients table using Bicubic
|
||||||
// convolution algorithm.
|
// convolution algorithm.
|
||||||
// https://en.wikipedia.org/wiki/Bicubic_interpolation
|
// https://en.wikipedia.org/wiki/Bicubic_interpolation
|
||||||
float* coeffs_table = new float[(kTableSize + 1) * 2];
|
float* coeffsTable = new float[(kTableSize + 1) * 2];
|
||||||
auto func = PRAGMA_THREADS_FOR {
|
auto func = PRAGMA_THREADS_FOR {
|
||||||
for (auto i = start; i <= stop; ++i) {
|
for (auto i = start; i <= stop; ++i) {
|
||||||
float x = i * 1.0 / kTableSize;
|
float x = i * 1.0 / kTableSize;
|
||||||
coeffs_table[i * 2] = ((a + 2) * x - (a + 3)) * x * x + 1;
|
coeffsTable[i * 2] = ((a + 2) * x - (a + 3)) * x * x + 1;
|
||||||
x += 1.0;
|
x += 1.0;
|
||||||
coeffs_table[i * 2 + 1] = ((a * x - 5 * a) * x + 8 * a) * x - 4 * a;
|
coeffsTable[i * 2 + 1] = ((a * x - 5 * a) * x + 8 * a) * x - 4 * a;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
samediff::Threads::parallel_for(func, 0, kTableSize);
|
samediff::Threads::parallel_for(func, 0, kTableSize);
|
||||||
return coeffs_table;
|
return coeffsTable;
|
||||||
}
|
}
|
||||||
|
|
||||||
const float* getCoeffsTable(const bool use_keys_cubic) {
|
const float* getCoeffsTable(const bool use_keys_cubic) {
|
||||||
|
@ -988,25 +988,392 @@ namespace helpers {
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
int resizeAreaFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
int resizeAreaFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const alignCorners, NDArray* output) {
|
||||||
bool const alignCorners, NDArray* output) {
|
|
||||||
BUILD_SINGLE_SELECTOR(image->dataType(), return resizeAreaFunctor_, (context, image, width, height, alignCorners, output), NUMERIC_TYPES);
|
BUILD_SINGLE_SELECTOR(image->dataType(), return resizeAreaFunctor_, (context, image, width, height, alignCorners, output), NUMERIC_TYPES);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* resize as TF v.2.x implemented (with preserve aspect ratio and antialias flags routines
|
||||||
|
* */
|
||||||
|
// An interface for integrated scale functors.
|
||||||
|
struct IKernelFunc {
|
||||||
|
virtual float operator()(float x) const = 0;
|
||||||
|
virtual float radius() const = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct LanczosKernelFunc : public IKernelFunc {
|
||||||
|
// Pass 1 for Lanczos1 kernel, 3 for Lanczos3 etc.
|
||||||
|
explicit LanczosKernelFunc(float const radius) : _radius(radius) {}
|
||||||
|
float operator()(float x) const {
|
||||||
|
float const kPI = 3.141592653589793f;
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x > _radius) return 0.f;
|
||||||
|
// Need to special case the limit case of sin(x) / x when x is zero.
|
||||||
|
if (x <= 1.e-3f) {
|
||||||
|
return 1.f;
|
||||||
|
}
|
||||||
|
return _radius * std::sin(kPI * x) * std::sin(kPI * x / _radius) / (kPI * kPI * x * x);
|
||||||
|
}
|
||||||
|
float radius() const { return _radius; }
|
||||||
|
const float _radius;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct GaussianKernelFunc : public IKernelFunc {
|
||||||
|
static constexpr float kRadiusMultiplier = 3.0f;
|
||||||
|
// https://en.wikipedia.org/wiki/Gaussian_function
|
||||||
|
// We use sigma = 0.5, as suggested on p. 4 of Ken Turkowski's "Filters
|
||||||
|
// for Common Resampling Tasks" for kernels with a support of 3 pixels:
|
||||||
|
// www.realitypixels.com/turk/computergraphics/ResamplingFilters.pdf
|
||||||
|
// This implies a radius of 1.5,
|
||||||
|
explicit GaussianKernelFunc(float radius = 1.5f)
|
||||||
|
: _radius(radius), _sigma(radius / kRadiusMultiplier) {}
|
||||||
|
float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x >= _radius) return 0.0f;
|
||||||
|
return std::exp(-x * x / (2.0 * _sigma * _sigma));
|
||||||
|
}
|
||||||
|
float radius() const { return _radius; }
|
||||||
|
const float _radius;
|
||||||
|
const float _sigma; // Gaussian standard deviation
|
||||||
|
};
|
||||||
|
|
||||||
|
struct BoxKernelFunc : public IKernelFunc {
|
||||||
|
float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
return x < 0.5f ? 1.f : x == 0.5f ? 0.5f : 0.f;
|
||||||
|
}
|
||||||
|
float radius() const { return 1.f; }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct TriangleKernelFunc : public IKernelFunc {
|
||||||
|
// https://en.wikipedia.org/wiki/Triangle_function
|
||||||
|
float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
return x < 1.f ? 1.f - x : 0.f;
|
||||||
|
}
|
||||||
|
float radius() const { return 1.f; }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct KeysCubicKernelFunc : public IKernelFunc {
|
||||||
|
// http://ieeexplore.ieee.org/document/1163711/
|
||||||
|
// R. G. Keys. Cubic convolution interpolation for digital image
|
||||||
|
// processing. IEEE Transactions on Acoustics, Speech, and Signal
|
||||||
|
// Processing, 29(6):1153–1160, 1981.
|
||||||
|
float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x >= 2.0f) {
|
||||||
|
return 0.0f;
|
||||||
|
} else if (x >= 1.0f) {
|
||||||
|
return ((-0.5f * x + 2.5f) * x - 4.0f) * x + 2.0f;
|
||||||
|
} else {
|
||||||
|
return ((1.5f * x - 2.5f) * x) * x + 1.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
float radius() const { return 2.f; }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MitchellCubicKernelFunc : public IKernelFunc {
|
||||||
|
// https://doi.org/10.1145/378456.378514
|
||||||
|
// D. P. Mitchell and A. N. Netravali. Reconstruction filters in computer
|
||||||
|
// graphics. Computer Graphics (Proceedings of ACM SIGGRAPH 1988),
|
||||||
|
// 22(4):221–228, 1988.
|
||||||
|
float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x >= 2.f) {
|
||||||
|
return 0.f;
|
||||||
|
} else if (x >= 1.f) {
|
||||||
|
return (((-7.f / 18.f) * x + 2.f) * x - 10.f / 3.f) * x + 16.f / 9.f;
|
||||||
|
} else {
|
||||||
|
return (((7.f / 6.f) * x - 2.f) * x) * x + 8.f / 9.f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
float radius() const { return 2.f; }
|
||||||
|
};
|
||||||
|
|
||||||
|
// A pre-computed span of pixels along a single dimension.
|
||||||
|
// The output pixel will be the weighted sum of pixels starting from start.
|
||||||
|
struct Spans {
|
||||||
|
// The maximum span size of any output pixel.
|
||||||
|
int _spanSize;
|
||||||
|
// int32 tensor with shape {outputSize}.
|
||||||
|
NDArray _starts;
|
||||||
|
|
||||||
|
// float32 tensor of size {outputSize, spanSize}.
|
||||||
|
// The output pixel at x is computed as:
|
||||||
|
// dot_product(input[starts[x]:starts[x]+span_size], weights[x]).
|
||||||
|
NDArray _weights;
|
||||||
|
};
|
||||||
|
|
||||||
|
static int
|
||||||
|
computeSpans(IKernelFunc* kernel, Nd4jLong const outSize, Nd4jLong const inSize, float const scale, float const translate, bool const antialias, Spans& spans) {
|
||||||
|
// When sampling, we need the inverse scale and translation, to map from an
|
||||||
|
// output to an input pixel.
|
||||||
|
float const invScale = 1.f / scale;
|
||||||
|
float const invTranslate = -invScale * translate;
|
||||||
|
// When downsampling the kernel should be scaled since we want to low pass
|
||||||
|
// filter and interpolate, but when upsampling it should not be since we only
|
||||||
|
// want to interpolate.
|
||||||
|
float const kernelScale = antialias ? math::nd4j_max(invScale, 1.f) : 1.f;
|
||||||
|
spans._spanSize = math::nd4j_min(2 * static_cast<int>(std::ceil(kernel->radius() * kernelScale)) + 1, static_cast<int>(inSize));
|
||||||
|
spans._starts = NDArrayFactory::create<int>('c', {outSize});
|
||||||
|
spans._weights = NDArrayFactory::create<float>('c', {outSize, spans._spanSize});
|
||||||
|
|
||||||
|
auto startsVec = spans._starts.bufferAsT<int>();
|
||||||
|
auto weightsVector = spans._weights.bufferAsT<float>();
|
||||||
|
spans._weights.nullify();
|
||||||
|
|
||||||
|
const float invKernelScale = 1.f / kernelScale;
|
||||||
|
int maxSpanSize = 0;
|
||||||
|
std::vector<float> tempWeights;
|
||||||
|
|
||||||
|
// return value if within bounds or bounds otherwise
|
||||||
|
auto boundsAmp = [](Nd4jLong const low, Nd4jLong const high, Nd4jLong const value) {
|
||||||
|
if (high < value) return high;
|
||||||
|
if (value < low) return low;
|
||||||
|
return value;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (auto x = 0LL; x < outSize; ++x) {
|
||||||
|
const float columnFloat = x + 0.5f;
|
||||||
|
const float sampleFloat = columnFloat * invScale + invTranslate;
|
||||||
|
|
||||||
|
// Don't sample when the sampling location is outside the source image.
|
||||||
|
if (sampleFloat < 0 || sampleFloat > inSize) {
|
||||||
|
// Add an empty span.
|
||||||
|
startsVec[x] = 0;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
Nd4jLong spanStart = math::nd4j_ceil<float,float>(sampleFloat - kernel->radius() * kernelScale - 0.5f);
|
||||||
|
Nd4jLong spanEnd = math::nd4j_floor<float, float>(sampleFloat + kernel->radius() * kernelScale - 0.5f);
|
||||||
|
spanStart = boundsAmp(0LL, inSize - 1, spanStart);
|
||||||
|
spanEnd = boundsAmp(0LL, inSize - 1, spanEnd) + 1;
|
||||||
|
int const spanSize = spanEnd - spanStart;
|
||||||
|
if (spanSize > spans._spanSize) {
|
||||||
|
return Status::CODE(ND4J_STATUS_BAD_INPUT, "Span is too large: "); // + spanSize + " vs " + spans._spanSize);//, spanSize, spans._spanSize));
|
||||||
|
}
|
||||||
|
float totalWeightSum = 0.f;
|
||||||
|
tempWeights.clear();
|
||||||
|
for (int source = spanStart; source < spanEnd; ++source) {
|
||||||
|
float kernelPos = static_cast<float>(source) + 0.5f - sampleFloat;
|
||||||
|
float weight = (*kernel)(kernelPos * invKernelScale);
|
||||||
|
totalWeightSum += weight;
|
||||||
|
tempWeights.push_back(weight);
|
||||||
|
}
|
||||||
|
maxSpanSize = std::max(maxSpanSize, spanSize);
|
||||||
|
if (math::nd4j_abs(totalWeightSum) >= 1000.f * DataTypeUtils::min<float>()) { //
|
||||||
|
auto totalWeightSumInverted = 1.0f / totalWeightSum;
|
||||||
|
auto outIndex = spans._spanSize * x;
|
||||||
|
for (auto weight : tempWeights) {
|
||||||
|
weightsVector[outIndex] = weight * totalWeightSumInverted;
|
||||||
|
++outIndex;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
startsVec[x] = spanStart;
|
||||||
|
}
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename X, typename Z>
|
||||||
|
static void gatherRows(int const spanSize, int const* starts, Z const* weights, X const* imagePtr, Nd4jLong const inputHeight, Nd4jLong const inputWidth, Nd4jLong const outputHeight,
|
||||||
|
Nd4jLong const outputWidth, Nd4jLong const channels, Z* outputPtr) {
|
||||||
|
auto inRowSize = inputWidth * channels;
|
||||||
|
auto outRowSize = outputWidth * channels;
|
||||||
|
|
||||||
|
auto addScaledVector = [](const X* inVector, int vectorLen, Z weight, Z* outVector) {
|
||||||
|
Z* outVecEnd = outVector + vectorLen;
|
||||||
|
for (; outVector != outVecEnd; ++outVector, ++inVector) {
|
||||||
|
*outVector += weight * static_cast<Z>(*inVector);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
for (int y = 0; y < outputHeight; ++y) {
|
||||||
|
Z* outRowData = outputPtr + outRowSize * y;
|
||||||
|
memset(outRowData, '\0', outRowSize * sizeof(Z));// std::fill(outRowData, outRowData + outRowSize, 0.f);
|
||||||
|
int inRow = starts[y];
|
||||||
|
auto inRowData = imagePtr + inRowSize * inRow;
|
||||||
|
auto weightsStart = weights + y * spanSize;
|
||||||
|
auto realSpanSize = math::nd4j_min(starts[y] + spanSize, static_cast<int>(inputHeight)) - starts[y];
|
||||||
|
auto weightsEnd = weightsStart + realSpanSize;
|
||||||
|
for (auto weightPtr = weightsStart; weightPtr != weightsEnd; ++weightPtr) {
|
||||||
|
addScaledVector(inRowData, inRowSize, *weightPtr, outRowData);
|
||||||
|
inRowData += inRowSize;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Z>
|
||||||
|
static void gatherColumns(int const spanSize, int const* starts, Z const* weights, Z const* imagesPtr, Nd4jLong const inputHeight, Nd4jLong const inputWidth, Nd4jLong const outputHeight, Nd4jLong const outputWidth, Nd4jLong channels, Z* outputPtr) {
|
||||||
|
auto inRowSize = inputWidth * channels;
|
||||||
|
auto outRowSize = outputWidth * channels;
|
||||||
|
|
||||||
|
for (auto y = 0LL; y < outputHeight; ++y) {
|
||||||
|
auto inputRowStart = imagesPtr + inRowSize * y;
|
||||||
|
auto outPixels = outputPtr + outRowSize * y;
|
||||||
|
for (auto x = 0LL; x < outputWidth; ++x, outPixels += channels) {
|
||||||
|
auto inPixels = inputRowStart + starts[x] * channels;
|
||||||
|
auto weightsStart = weights + x * spanSize;
|
||||||
|
auto realSpanSize = math::nd4j_min(starts[x] + spanSize, static_cast<int>(inputWidth)) - starts[x];
|
||||||
|
auto weightsEnd = weightsStart + realSpanSize;
|
||||||
|
for (int c = 0; c < channels; ++c) {
|
||||||
|
outPixels[c] = 0.0f;
|
||||||
|
}
|
||||||
|
for (auto weightPtr = weightsStart; weightPtr != weightsEnd; ++weightPtr) {
|
||||||
|
Z w = *weightPtr;
|
||||||
|
for (int c = 0; c < channels; ++c) {
|
||||||
|
outPixels[c] += w * static_cast<Z>(inPixels[c]);
|
||||||
|
}
|
||||||
|
inPixels += channels;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename X, typename Z>
|
||||||
|
static void gatherSpans(int const rowSpanSize, NDArray const& rowStarts, NDArray const& rowWeights, int const colSpanSize, NDArray const& columnStarts, NDArray const& columnWeights, NDArray const* images, NDArray& intermediate, NDArray* output) {
|
||||||
|
auto batchSize = images->sizeAt(0);
|
||||||
|
auto inputHeight = images->sizeAt(1);
|
||||||
|
auto inputWidth = images->sizeAt(2);
|
||||||
|
auto channels = images->sizeAt(3);
|
||||||
|
|
||||||
|
auto outputHeight = output->sizeAt(1);
|
||||||
|
auto outputWidth = output->sizeAt(2);
|
||||||
|
|
||||||
|
auto inputPixPerBatch = inputWidth * inputHeight * channels;
|
||||||
|
auto intermediatePixPerBatch = inputWidth * outputHeight * channels;
|
||||||
|
auto outputPixPerBatch = outputWidth * outputHeight * channels;
|
||||||
|
Z* intermediatePtr = intermediate.bufferAsT<Z>();
|
||||||
|
|
||||||
|
const X* imagePtr = images->bufferAsT<X>();
|
||||||
|
Z* outPtr = output->bufferAsT<Z>();
|
||||||
|
for (int b = 0; b < batchSize; ++b, imagePtr += inputPixPerBatch,
|
||||||
|
intermediatePtr += intermediatePixPerBatch,
|
||||||
|
outPtr += outputPixPerBatch) {
|
||||||
|
gatherRows<X,Z>(rowSpanSize, rowStarts.bufferAsT<int>(), rowWeights.bufferAsT<Z>(),
|
||||||
|
imagePtr, inputHeight, inputWidth, outputHeight,
|
||||||
|
inputWidth, channels, intermediatePtr);
|
||||||
|
gatherColumns<Z>(colSpanSize, columnStarts.bufferAsT<int>(), columnWeights.bufferAsT<Z>(),
|
||||||
|
intermediatePtr, outputHeight, inputWidth, outputHeight, outputWidth, channels, outPtr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename X, typename Z>
|
||||||
|
static int resizeKernel(IKernelFunc* transformationKernel, NDArray const* input, Nd4jLong outWidth, Nd4jLong outHeight, bool antialias, NDArray* output) {
|
||||||
|
Nd4jLong const batchSize = input->sizeAt(0);
|
||||||
|
Nd4jLong const inputHeight = input->sizeAt(1);
|
||||||
|
Nd4jLong const inputWidth = input->sizeAt(2);
|
||||||
|
Nd4jLong const channels = input->sizeAt(3);
|
||||||
|
|
||||||
|
Z rowScale = Z(outHeight) / Z(inputHeight);
|
||||||
|
Z columnScale = Z(outWidth) / Z(inputWidth);
|
||||||
|
|
||||||
|
// Return if the output is empty.
|
||||||
|
if (output->lengthOf() == 0) return Status::OK();
|
||||||
|
|
||||||
|
Spans colSpans;
|
||||||
|
|
||||||
|
auto res = computeSpans(transformationKernel, outWidth, inputWidth, columnScale, 0.f, antialias, colSpans);
|
||||||
|
if (res != Status::OK()) return res;
|
||||||
|
Spans rowSpans;
|
||||||
|
res = computeSpans(transformationKernel, outHeight, inputHeight, rowScale, 0.f, antialias, rowSpans);
|
||||||
|
|
||||||
|
NDArray intermediate = NDArrayFactory::create<Z>('c', {batchSize, outHeight, inputWidth, channels});
|
||||||
|
|
||||||
|
//const functor::Spans& const_row_spans = row_spans;
|
||||||
|
//typename TTypes<int32, 1>::ConstTensor row_starts(
|
||||||
|
//const_row_spans.starts.tensor<int32, 1>());
|
||||||
|
auto& rowStarts = rowSpans._starts; // shape {outWidth}
|
||||||
|
auto& rowWeights = rowSpans._weights; // shape {outWidth, numSpans}
|
||||||
|
auto& columnStarts = colSpans._starts; // shape {outHeights}
|
||||||
|
auto& columnWeights = colSpans._weights; // shape {outHeights, numSpans}
|
||||||
|
|
||||||
|
gatherSpans<X, Z>(rowSpans._spanSize, rowStarts, rowWeights, colSpans._spanSize, columnStarts, columnWeights, input, intermediate, output);
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeBilinear(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
auto kernel = std::unique_ptr<IKernelFunc>(new TriangleKernelFunc());
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,
|
||||||
|
(kernel.get(), image, (Nd4jLong) width, (Nd4jLong) height, antialias, output),
|
||||||
|
NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeBilinear: Unknown error occured.");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeBicubic(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
if (antialias) {
|
||||||
|
auto kernel = std::unique_ptr<IKernelFunc>(new KeysCubicKernelFunc());
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,
|
||||||
|
(kernel.get(), image, (Nd4jLong) width, (Nd4jLong) height, antialias, output),
|
||||||
|
NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return resizeBicubicFunctorA(context, image, width, height, false, true, output);
|
||||||
|
}
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeBicubic: Unknown error occured.");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeNeighbor(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
return resizeNeighborFunctor(context, image, width, height, false, true, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeArea(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
return resizeAreaFunctor(context, image, width, height, false, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeLanczos3(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
auto kernel = std::unique_ptr<IKernelFunc>(new LanczosKernelFunc(3.f));
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel, (kernel.get(), image, (Nd4jLong)width, (Nd4jLong)height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeLanczos3: Unknown error occured.");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeLanczos5(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
auto kernel = std::unique_ptr<IKernelFunc>(new LanczosKernelFunc(5.f));
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel, (kernel.get(), image, (Nd4jLong)width, (Nd4jLong)height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeLanczos5: Unknown error occured.");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeGaussian(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
auto kernel = std::unique_ptr<IKernelFunc>(new GaussianKernelFunc());
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel, (kernel.get(), image, (Nd4jLong)width, (Nd4jLong)height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeGaussian: Unknown error occured.");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeMitchellcubic(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
auto kernel = std::unique_ptr<IKernelFunc>(new MitchellCubicKernelFunc());
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel, (kernel.get(), image, (Nd4jLong)width, (Nd4jLong)height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeMitchelcubic: Unknown error occured.");
|
||||||
|
}
|
||||||
|
|
||||||
|
// ------------------------------------------------------------------------------------------------------------------ //
|
||||||
|
int resizeImagesFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
||||||
|
ImageResizeMethods method, bool alignCorners, NDArray* output) {
|
||||||
|
switch (method) {
|
||||||
|
case kResizeBilinear:
|
||||||
|
return resizeBilinearFunctor(context, image, width, height, alignCorners, false, output);
|
||||||
|
case kResizeNearest:
|
||||||
|
return resizeNeighborFunctor(context, image, width, height, alignCorners, false, output);
|
||||||
|
case kResizeBicubic:
|
||||||
|
return resizeBicubicFunctor(context, image, width, height, alignCorners, false, output);
|
||||||
|
case kResizeArea:
|
||||||
|
return resizeAreaFunctor(context, image, width, height, alignCorners, output);
|
||||||
|
}
|
||||||
|
nd4j_printf("helper::resizeImagesFunctor: Wrong resize method %i\n", (int)method);
|
||||||
|
return Status::CODE(ND4J_STATUS_BAD_INPUT, "helper::resizeImagesFunctor: Wrong resize method");
|
||||||
|
}
|
||||||
// ------------------------------------------------------------------------------------------------------------------ //
|
// ------------------------------------------------------------------------------------------------------------------ //
|
||||||
int resizeFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
int resizeFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
||||||
ImageResizeMethods method, bool preserveAspectRatio, bool antialias, NDArray* output) {
|
ImageResizeMethods method, bool antialias, NDArray* output) {
|
||||||
switch (method) {
|
switch (method) {
|
||||||
case kResizeBilinear: return resizeBilinearFunctor(context, image, width, height, false, false, output); break;
|
case kResizeBilinear: return resizeBilinear(context, image, width, height, antialias, output);
|
||||||
case kResizeNearest: return resizeNeighborFunctor(context, image, width, height, false, false, output); break;
|
case kResizeNearest: return resizeNeighbor(context, image, width, height, antialias, output);
|
||||||
case kResizeBicubic: return resizeBicubicFunctor(context, image, width, height, preserveAspectRatio, antialias, output); break;
|
case kResizeBicubic: return resizeBicubic(context, image, width, height, antialias, output);
|
||||||
case kResizeArea: return resizeAreaFunctor(context, image, width, height, preserveAspectRatio, output);
|
case kResizeArea: return resizeArea(context, image, width, height, antialias, output);
|
||||||
case kResizeLanczos5:
|
case kResizeLanczos3: return resizeLanczos3(context, image, width, height, antialias, output);
|
||||||
case kResizeGaussian:
|
case kResizeLanczos5: return resizeLanczos5(context, image, width, height, antialias, output);
|
||||||
case kResizeMitchelcubic:
|
case kResizeGaussian: return resizeGaussian(context, image, width, height, antialias, output);
|
||||||
throw std::runtime_error("helper::resizeFunctor: Non implemented yet.");
|
case kResizeMitchellcubic: return resizeMitchellcubic(context, image, width, height, antialias, output);
|
||||||
}
|
}
|
||||||
return ND4J_STATUS_OK;
|
nd4j_printf("helper::resizeFunctor: Wrong resize method %i\n", (int)method);
|
||||||
|
return Status::CODE(ND4J_STATUS_BAD_INPUT, "helper::resizeFunctor: Wrong resize method");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -35,6 +35,7 @@ limitations under the License.
|
||||||
|
|
||||||
#include <ops/declarable/helpers/image_resize.h>
|
#include <ops/declarable/helpers/image_resize.h>
|
||||||
#include <exceptions/cuda_exception.h>
|
#include <exceptions/cuda_exception.h>
|
||||||
|
#include <array/NDArrayFactory.h>
|
||||||
|
|
||||||
namespace sd {
|
namespace sd {
|
||||||
namespace ops {
|
namespace ops {
|
||||||
|
@ -1203,20 +1204,22 @@ namespace helpers {
|
||||||
BUILD_SINGLE_TEMPLATE(template int resizeBicubicFunctorA_, (sd::LaunchContext * context,
|
BUILD_SINGLE_TEMPLATE(template int resizeBicubicFunctorA_, (sd::LaunchContext * context,
|
||||||
NDArray const* image, int width, int height, bool const alignCorners, bool const halfPixelCenters, NDArray* output), NUMERIC_TYPES);
|
NDArray const* image, int width, int height, bool const alignCorners, bool const halfPixelCenters, NDArray* output), NUMERIC_TYPES);
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
int resizeFunctor(sd::LaunchContext * context, NDArray const* image, int width, int height,
|
// ------------------------------------------------------------------------------------------------------------------ //
|
||||||
ImageResizeMethods method, bool preserveAspectRatio, bool antialias, NDArray* output) {
|
int resizeImagesFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
||||||
|
ImageResizeMethods method, bool alignCorners, NDArray* output) {
|
||||||
switch (method) {
|
switch (method) {
|
||||||
case kResizeBilinear: return resizeBilinearFunctor(context, image, width, height, false, false, output); break;
|
case kResizeBilinear:
|
||||||
case kResizeNearest: return resizeNeighborFunctor(context, image, width, height, false, false, output); break;
|
return resizeBilinearFunctor(context, image, width, height, alignCorners, false, output);
|
||||||
case kResizeBicubic: return resizeBicubicFunctor(context, image, width, height, preserveAspectRatio, antialias, output); break;
|
case kResizeNearest:
|
||||||
case kResizeLanczos5:
|
return resizeNeighborFunctor(context, image, width, height, alignCorners, false, output);
|
||||||
case kResizeGaussian:
|
case kResizeBicubic:
|
||||||
|
return resizeBicubicFunctor(context, image, width, height, alignCorners, false, output);
|
||||||
case kResizeArea:
|
case kResizeArea:
|
||||||
case kResizeMitchelcubic:
|
return resizeAreaFunctor(context, image, width, height, alignCorners, output);
|
||||||
throw std::runtime_error("helper::resizeFunctor: Non implemented yet.");
|
default:
|
||||||
|
throw std::runtime_error("helper::resizeImagesFunctor: Wrong resize method.");
|
||||||
}
|
}
|
||||||
return ND4J_STATUS_OK;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
|
@ -0,0 +1,497 @@
|
||||||
|
#include <array/NDArrayFactory.h>
|
||||||
|
#include <exceptions/cuda_exception.h>
|
||||||
|
#include <ops/declarable/helpers/image_resize.h>
|
||||||
|
#include <helpers/PointersManager.h>
|
||||||
|
|
||||||
|
namespace sd {
|
||||||
|
namespace ops {
|
||||||
|
namespace helpers {
|
||||||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||||||
|
// resize v2 implementation //
|
||||||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||||||
|
// A functional interface for a scale kernels.
|
||||||
|
//struct IKernelFunc {
|
||||||
|
// _CUDA_HD virtual float operator()(float x) const = 0;
|
||||||
|
// _CUDA_HD virtual float radius() const = 0;
|
||||||
|
// _CUDA_HD virtual size_t size() const = 0;
|
||||||
|
//};
|
||||||
|
|
||||||
|
struct LanczosKernelFunc /*: public IKernelFunc*/ {
|
||||||
|
// Pass 1 for Lanczos1 kernel, 3 for Lanczos3 etc.
|
||||||
|
explicit LanczosKernelFunc(float const radius) : _radius(radius) {}
|
||||||
|
_CUDA_HD float operator()(float x) const {
|
||||||
|
float const kPI = 3.141592653589793f;
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x > _radius) return 0.f;
|
||||||
|
// Need to special case the limit case of sin(x) / x when x is zero.
|
||||||
|
if (x <= 1.e-3f) {
|
||||||
|
return 1.f;
|
||||||
|
}
|
||||||
|
return _radius * std::sin(kPI * x) * std::sin(kPI * x / _radius) / (kPI * kPI * x * x);
|
||||||
|
}
|
||||||
|
_CUDA_HD float radius() const { return _radius; }
|
||||||
|
const float _radius;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct GaussianKernelFunc /*: public IKernelFunc*/ {
|
||||||
|
static constexpr float kRadiusMultiplier = 3.0f;
|
||||||
|
// https://en.wikipedia.org/wiki/Gaussian_function
|
||||||
|
// We use sigma = 0.5, as suggested on p. 4 of Ken Turkowski's "Filters
|
||||||
|
// for Common Resampling Tasks" for kernels with a support of 3 pixels:
|
||||||
|
// www.realitypixels.com/turk/computergraphics/ResamplingFilters.pdf
|
||||||
|
// This implies a radius of 1.5,
|
||||||
|
explicit GaussianKernelFunc(float radius = 1.5f)
|
||||||
|
: _radius(radius), _sigma(radius / kRadiusMultiplier) {}
|
||||||
|
_CUDA_HD float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x >= _radius) return 0.0f;
|
||||||
|
return std::exp(-x * x / (2.0 * _sigma * _sigma));
|
||||||
|
}
|
||||||
|
_CUDA_HD float radius() const { return _radius; }
|
||||||
|
const float _radius;
|
||||||
|
const float _sigma; // Gaussian standard deviation
|
||||||
|
};
|
||||||
|
|
||||||
|
struct BoxKernelFunc /*: public IKernelFunc*/ {
|
||||||
|
_CUDA_HD float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
return x < 0.5f ? 1.f : x == 0.5f ? 0.5f : 0.f;
|
||||||
|
}
|
||||||
|
_CUDA_HD float radius() const { return 1.f; }
|
||||||
|
_CUDA_HD size_t size() const { return sizeof(BoxKernelFunc); }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct TriangleKernelFunc /*: public IKernelFunc*/ {
|
||||||
|
// https://en.wikipedia.org/wiki/Triangle_function
|
||||||
|
_CUDA_HD float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
return x < 1.f ? 1.f - x : 0.f;
|
||||||
|
}
|
||||||
|
_CUDA_HD float radius() const { return 1.f; }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct KeysCubicKernelFunc /*: public IKernelFunc*/ {
|
||||||
|
// http://ieeexplore.ieee.org/document/1163711/
|
||||||
|
// R. G. Keys. Cubic convolution interpolation for digital image
|
||||||
|
// processing. IEEE Transactions on Acoustics, Speech, and Signal
|
||||||
|
// Processing, 29(6):1153–1160, 1981.
|
||||||
|
_CUDA_HD float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x >= 2.0f) {
|
||||||
|
return 0.0f;
|
||||||
|
} else if (x >= 1.0f) {
|
||||||
|
return ((-0.5f * x + 2.5f) * x - 4.0f) * x + 2.0f;
|
||||||
|
} else {
|
||||||
|
return ((1.5f * x - 2.5f) * x) * x + 1.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
_CUDA_HD float radius() const { return 2.f; }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MitchellCubicKernelFunc/* : public IKernelFunc*/ {
|
||||||
|
// https://doi.org/10.1145/378456.378514
|
||||||
|
// D. P. Mitchell and A. N. Netravali. Reconstruction filters in computer
|
||||||
|
// graphics. Computer Graphics (Proceedings of ACM SIGGRAPH 1988),
|
||||||
|
// 22(4):221–228, 1988.
|
||||||
|
_CUDA_HD float operator()(float x) const {
|
||||||
|
x = math::nd4j_abs(x);
|
||||||
|
if (x >= 2.f) {
|
||||||
|
return 0.f;
|
||||||
|
} else if (x >= 1.f) {
|
||||||
|
return (((-7.f / 18.f) * x + 2.f) * x - 10.f / 3.f) * x + 16.f / 9.f;
|
||||||
|
} else {
|
||||||
|
return (((7.f / 6.f) * x - 2.f) * x) * x + 8.f / 9.f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
_CUDA_HD float radius() const { return 2.f; }
|
||||||
|
};
|
||||||
|
|
||||||
|
// A pre-computed span of pixels along a single dimension.
|
||||||
|
// The output pixel will be the weighted sum of pixels starting from start.
|
||||||
|
struct Spans {
|
||||||
|
// The maximum span size of any output pixel.
|
||||||
|
int _spanSize;
|
||||||
|
// int32 tensor with shape {outputSize}.
|
||||||
|
NDArray _starts;
|
||||||
|
|
||||||
|
// float32 tensor of size {outputSize, spanSize}.
|
||||||
|
// The output pixel at x is computed as:
|
||||||
|
// dot_product(input[starts[x]:starts[x]+span_size], weights[x]).
|
||||||
|
NDArray _weights;
|
||||||
|
};
|
||||||
|
|
||||||
|
static inline _CUDA_HD Nd4jLong boundsAmp(Nd4jLong const low, Nd4jLong const high, Nd4jLong const value) {
|
||||||
|
if (high < value) return high;
|
||||||
|
if (value < low) return low;
|
||||||
|
return value;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename TKernelFunc>
|
||||||
|
static __global__ void computeSpansKernel(TKernelFunc* kernel, int* startsVec, float* weightsVector, Nd4jLong outSize, Nd4jLong inSize, float kernelScale, int spanSize, float const invScale, float const invTranslate, float invKernelScale, float* tempWeightsBuf) {
|
||||||
|
|
||||||
|
// return value if within bounds or bounds otherwise
|
||||||
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
auto step = blockDim.x * gridDim.x;
|
||||||
|
__shared__ int maxSpanSize;
|
||||||
|
|
||||||
|
if (threadIdx.x == 0 && blockIdx.x == 0) {
|
||||||
|
maxSpanSize = 0;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (auto x = tid; x < outSize; x += step) {
|
||||||
|
const float columnFloat = x + 0.5f;
|
||||||
|
const float sampleFloat = columnFloat * invScale + invTranslate;
|
||||||
|
|
||||||
|
// Don't sample when the sampling location is outside the source image.
|
||||||
|
if (sampleFloat < 0 || sampleFloat > inSize) {
|
||||||
|
// Add an empty span.
|
||||||
|
startsVec[x] = 0;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
Nd4jLong spanStart = math::nd4j_ceil<float,float>(sampleFloat - kernel->radius() * kernelScale - 0.5f);
|
||||||
|
Nd4jLong spanEnd = math::nd4j_floor<float, float>(sampleFloat + kernel->radius() * kernelScale - 0.5f);
|
||||||
|
spanStart = boundsAmp(0LL, inSize - 1, spanStart);
|
||||||
|
spanEnd = boundsAmp(0LL, inSize - 1, spanEnd) + 1;
|
||||||
|
int const spanSize = spanEnd - spanStart;
|
||||||
|
if (spanSize > spanSize) {
|
||||||
|
return ; //throw "Exception"; ////return Status::CODE(ND4J_STATUS_BAD_INPUT, "Span is too large: "); // + spanSize + " vs " + spans._spanSize);//, spanSize, spans._spanSize));
|
||||||
|
}
|
||||||
|
float totalWeightSum = 0.f;
|
||||||
|
auto tempWeights = &tempWeightsBuf[x];
|
||||||
|
auto actualWeights = 0;
|
||||||
|
for (int source = spanStart; source < spanEnd; ++source) {
|
||||||
|
float kernelPos = static_cast<float>(source) + 0.5f - sampleFloat;
|
||||||
|
float weight = (*kernel)(kernelPos * invKernelScale);
|
||||||
|
totalWeightSum += weight;
|
||||||
|
tempWeights[actualWeights++] = weight;
|
||||||
|
}
|
||||||
|
maxSpanSize = math::nd4j_max(maxSpanSize, spanSize);
|
||||||
|
if (math::nd4j_abs(totalWeightSum) >= 1000.f * DataTypeUtils::min<float>()) { //
|
||||||
|
auto totalWeightSumInverted = 1.0f / totalWeightSum;
|
||||||
|
auto outIndex = spanSize * x;
|
||||||
|
for (auto weightIndex = 0; weightIndex < actualWeights; ++weightIndex) {
|
||||||
|
weightsVector[outIndex] = tempWeights[weightIndex] * totalWeightSumInverted;
|
||||||
|
++outIndex;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
startsVec[x] = spanStart;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename TKernelFunc>
|
||||||
|
static int computeSpans(LaunchContext* context, TKernelFunc& kernel, Nd4jLong const outSize, Nd4jLong const inSize, float const scale, float const translate, bool const antialias, Spans& spans) {
|
||||||
|
// When sampling, we need the inverse scale and translation, to map from an
|
||||||
|
// output to an input pixel.
|
||||||
|
float const invScale = 1.f / scale;
|
||||||
|
float const invTranslate = -invScale * translate;
|
||||||
|
// When downsampling the kernel should be scaled since we want to low pass
|
||||||
|
// filter and interpolate, but when upsampling it should not be since we only
|
||||||
|
// want to interpolate.
|
||||||
|
float const kernelScale = antialias ? math::nd4j_max(invScale, 1.f) : 1.f;
|
||||||
|
spans._spanSize = math::nd4j_min(2 * static_cast<int>(std::ceil(kernel.radius() * kernelScale)) + 1, static_cast<int>(inSize));
|
||||||
|
spans._starts = NDArrayFactory::create<int>('c', {outSize}); spans._starts.syncToHost();
|
||||||
|
spans._weights = NDArrayFactory::create<float>('c', {outSize, spans._spanSize}); spans._weights.syncToHost();
|
||||||
|
|
||||||
|
auto startsVec = reinterpret_cast<int*>(spans._starts.buffer());
|
||||||
|
auto weightsVector = reinterpret_cast<float*>(spans._weights.buffer());
|
||||||
|
spans._weights.nullify();
|
||||||
|
|
||||||
|
const float invKernelScale = 1.f / kernelScale;
|
||||||
|
// NDArray tempWeights = NDArrayFactory::create<float>('c', {outSize, spans._spanSize});
|
||||||
|
// auto tempWeightsBuf = reinterpret_cast<float*>(tempWeights.specialBuffer());
|
||||||
|
// PointersManager mg(context, "ops::helpers::computeSpans");
|
||||||
|
// auto specialKernel = reinterpret_cast<TKernelFunc*>(mg.replicatePointer(&kernel, sizeof(TKernelFunc)));
|
||||||
|
auto stream = context->getCudaStream();
|
||||||
|
//computeSpansKernel<TKernelFunc><<<1, 1, 128, *stream>>>(specialKernel, startsVec, weightsVector, outSize, inSize, kernelScale, spans._spanSize, invScale, invTranslate, invKernelScale, tempWeightsBuf);
|
||||||
|
auto maxSpanSize = 0;
|
||||||
|
std::vector<float> tempWeights;
|
||||||
|
for (auto x = 0; x < outSize; x ++) {
|
||||||
|
const float columnFloat = x + 0.5f;
|
||||||
|
const float sampleFloat = columnFloat * invScale + invTranslate;
|
||||||
|
|
||||||
|
// Don't sample when the sampling location is outside the source image.
|
||||||
|
if (sampleFloat < 0 || sampleFloat > inSize) {
|
||||||
|
// Add an empty span.
|
||||||
|
startsVec[x] = 0;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
Nd4jLong spanStart = math::nd4j_ceil<float,float>(sampleFloat - kernel.radius() * kernelScale - 0.5f);
|
||||||
|
Nd4jLong spanEnd = math::nd4j_floor<float, float>(sampleFloat + kernel.radius() * kernelScale - 0.5f);
|
||||||
|
spanStart = boundsAmp(0LL, inSize - 1, spanStart);
|
||||||
|
spanEnd = boundsAmp(0LL, inSize - 1, spanEnd) + 1;
|
||||||
|
int const spanSize = spanEnd - spanStart;
|
||||||
|
if (spanSize > spans._spanSize) {
|
||||||
|
return Status::CODE(ND4J_STATUS_BAD_INPUT, "Span is too large: "); // + spanSize + " vs " + spans._spanSize);//, spanSize, spans._spanSize));
|
||||||
|
}
|
||||||
|
float totalWeightSum = 0.f;
|
||||||
|
tempWeights.clear();
|
||||||
|
|
||||||
|
for (int source = spanStart; source < spanEnd; ++source) {
|
||||||
|
float kernelPos = static_cast<float>(source) + 0.5f - sampleFloat;
|
||||||
|
float weight = kernel(kernelPos * invKernelScale);
|
||||||
|
totalWeightSum += weight;
|
||||||
|
tempWeights.push_back(weight);
|
||||||
|
}
|
||||||
|
maxSpanSize = math::nd4j_max(maxSpanSize, spanSize);
|
||||||
|
if (math::nd4j_abs(totalWeightSum) >= 1000.f * DataTypeUtils::min<float>()) { //
|
||||||
|
auto totalWeightSumInverted = 1.0f / totalWeightSum;
|
||||||
|
auto outIndex = spans._spanSize * x;
|
||||||
|
for (auto weightIndex = 0; weightIndex < tempWeights.size(); ++weightIndex) {
|
||||||
|
weightsVector[outIndex++] = tempWeights[weightIndex] * totalWeightSumInverted;
|
||||||
|
// ++outIndex;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
startsVec[x] = spanStart;
|
||||||
|
}
|
||||||
|
spans._starts.tickWriteHost(); spans._weights.tickWriteHost();
|
||||||
|
spans._starts.syncToDevice();
|
||||||
|
spans._weights.syncToDevice();
|
||||||
|
// cudaStreamSynchronize(*stream);
|
||||||
|
return Status::OK();
|
||||||
|
}
|
||||||
|
|
||||||
|
//template int computeSpans(LaunchContext* context, TriangleKernelFunc& kernel, Nd4jLong const outSize, Nd4jLong const inSize, float const scale, float const translate, bool const antialias, Spans& spans);
|
||||||
|
|
||||||
|
|
||||||
|
template <typename X, typename Z>
|
||||||
|
static __device__ void gatherRows(int const spanSize, int const* starts, Z const* weights, X const* imagePtr, Nd4jLong const inputHeight, Nd4jLong const inputWidth, Nd4jLong const outputHeight,
|
||||||
|
Nd4jLong const outputWidth, Nd4jLong const channels, Z* outputPtr) {
|
||||||
|
auto inRowSize = inputWidth * channels;
|
||||||
|
auto outRowSize = outputWidth * channels;
|
||||||
|
|
||||||
|
auto addScaledVector = [](const X* inVector, int vectorLen, Z weight, Z* outVector) {
|
||||||
|
Z* outVecEnd = outVector + vectorLen;
|
||||||
|
for (; outVector != outVecEnd; ++outVector, ++inVector) {
|
||||||
|
*outVector += weight * static_cast<Z>(*inVector);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
for (int y = 0; y < outputHeight; ++y) {
|
||||||
|
Z* outRowData = outputPtr + outRowSize * y;
|
||||||
|
memset(outRowData, '\0', outRowSize * sizeof(Z));// std::fill(outRowData, outRowData + outRowSize, 0.f);
|
||||||
|
int inRow = starts[y];
|
||||||
|
auto inRowData = imagePtr + inRowSize * inRow;
|
||||||
|
auto weightsStart = weights + y * spanSize;
|
||||||
|
auto realSpanSize = math::nd4j_min(starts[y] + spanSize, static_cast<int>(inputHeight)) - starts[y];
|
||||||
|
auto weightsEnd = weightsStart + realSpanSize;
|
||||||
|
for (auto weightPtr = weightsStart; weightPtr != weightsEnd; ++weightPtr) {
|
||||||
|
addScaledVector(inRowData, inRowSize, *weightPtr, outRowData);
|
||||||
|
inRowData += inRowSize;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Z>
|
||||||
|
static __device__ void gatherColumns(int const spanSize, int const* starts, Z const* weights, Z const* imagesPtr, Nd4jLong const inputHeight, Nd4jLong const inputWidth, Nd4jLong const outputHeight, Nd4jLong const outputWidth, Nd4jLong channels, Z* outputPtr) {
|
||||||
|
auto inRowSize = inputWidth * channels;
|
||||||
|
auto outRowSize = outputWidth * channels;
|
||||||
|
|
||||||
|
for (auto y = 0LL; y < outputHeight; ++y) {
|
||||||
|
auto inputRowStart = imagesPtr + inRowSize * y;
|
||||||
|
auto outPixels = outputPtr + outRowSize * y;
|
||||||
|
for (auto x = 0LL; x < outputWidth; ++x, outPixels += channels) {
|
||||||
|
auto inPixels = inputRowStart + starts[x] * channels;
|
||||||
|
auto weightsStart = weights + x * spanSize;
|
||||||
|
auto realSpanSize = math::nd4j_min(starts[x] + spanSize, static_cast<int>(inputWidth)) - starts[x];
|
||||||
|
auto weightsEnd = weightsStart + realSpanSize;
|
||||||
|
for (int c = 0; c < channels; ++c) {
|
||||||
|
outPixels[c] = 0.0f;
|
||||||
|
}
|
||||||
|
for (auto weightPtr = weightsStart; weightPtr != weightsEnd; ++weightPtr) {
|
||||||
|
Z w = *weightPtr;
|
||||||
|
for (int c = 0; c < channels; ++c) {
|
||||||
|
outPixels[c] += w * static_cast<Z>(inPixels[c]);
|
||||||
|
}
|
||||||
|
inPixels += channels;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename X, typename Z>
|
||||||
|
static __global__ void batchedGatherSpan(Nd4jLong batchSize, Nd4jLong inputWidth, Nd4jLong inputHeight, Nd4jLong outputWidth, Nd4jLong outputHeight, Nd4jLong channels, int rowSpanSize, int const* rowStartsBuf, Z const* rowWeightBuf, int columnSpanSize, int const* columnStartsBuf, Z const* columnWeightBuf, X const* pImages, Z* pIntermediate, Z* pOutput,
|
||||||
|
Nd4jLong inputPixPerBatch, Nd4jLong intermediatePixPerBatch, Nd4jLong outputPixPerBatch) {
|
||||||
|
|
||||||
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
auto step = blockDim.x * gridDim.x;
|
||||||
|
|
||||||
|
for (int b = tid; b < batchSize; b += step) {
|
||||||
|
auto imagePtr = pImages + b * inputPixPerBatch;
|
||||||
|
auto intermediatePtr = pIntermediate + b * intermediatePixPerBatch;
|
||||||
|
auto outputPtr = pOutput + b * outputPixPerBatch;
|
||||||
|
gatherRows<X, Z>(rowSpanSize, rowStartsBuf, rowWeightBuf,
|
||||||
|
imagePtr, inputHeight, inputWidth, outputHeight,
|
||||||
|
inputWidth, channels, intermediatePtr);
|
||||||
|
gatherColumns<Z>(columnSpanSize, columnStartsBuf, columnWeightBuf,
|
||||||
|
intermediatePtr, outputHeight, inputWidth, outputHeight, outputWidth, channels, outputPtr);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename X, typename Z>
|
||||||
|
static void gatherSpans(LaunchContext* context, int const rowSpanSize, NDArray const& rowStarts, NDArray const& rowWeights, int const colSpanSize, NDArray const& columnStarts, NDArray const& columnWeights, NDArray const* images, NDArray& intermediate, NDArray* output) {
|
||||||
|
auto batchSize = images->sizeAt(0);
|
||||||
|
auto inputHeight = images->sizeAt(1);
|
||||||
|
auto inputWidth = images->sizeAt(2);
|
||||||
|
auto channels = images->sizeAt(3);
|
||||||
|
|
||||||
|
auto outputHeight = output->sizeAt(1);
|
||||||
|
auto outputWidth = output->sizeAt(2);
|
||||||
|
|
||||||
|
auto inputPixPerBatch = inputWidth * inputHeight * channels;
|
||||||
|
auto intermediatePixPerBatch = inputWidth * outputHeight * channels;
|
||||||
|
auto outputPixPerBatch = outputWidth * outputHeight * channels;
|
||||||
|
auto intermediatePtr = reinterpret_cast<Z*>(intermediate.specialBuffer());
|
||||||
|
|
||||||
|
auto imagePtr = reinterpret_cast<X const*>(images->specialBuffer());
|
||||||
|
auto outputPtr = reinterpret_cast<Z*>(output->specialBuffer());
|
||||||
|
auto stream = context->getCudaStream();
|
||||||
|
auto rowStartsBuf = reinterpret_cast<int const*>(rowStarts.specialBuffer());
|
||||||
|
auto rowWeightBuf = reinterpret_cast<Z const*>(rowWeights.specialBuffer());
|
||||||
|
auto columnStartsBuf = reinterpret_cast<int const*>(columnStarts.specialBuffer());
|
||||||
|
auto columnWeightBuf = reinterpret_cast<Z const*>(columnWeights.specialBuffer());
|
||||||
|
batchedGatherSpan<X,Z><<<128, 128, 256, *stream>>>(batchSize, inputWidth, inputHeight, outputWidth, outputHeight, channels, rowSpanSize, rowStartsBuf, rowWeightBuf, colSpanSize, columnStartsBuf, columnWeightBuf, imagePtr, intermediatePtr, outputPtr, inputPixPerBatch, intermediatePixPerBatch, outputPixPerBatch);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename X, typename Z>
|
||||||
|
static int resizeKernel(LaunchContext* context, ImageResizeMethods method, NDArray const* input, Nd4jLong outWidth, Nd4jLong outHeight, bool antialias, NDArray* output) {
|
||||||
|
Nd4jLong const batchSize = input->sizeAt(0);
|
||||||
|
Nd4jLong const inputHeight = input->sizeAt(1);
|
||||||
|
Nd4jLong const inputWidth = input->sizeAt(2);
|
||||||
|
Nd4jLong const channels = input->sizeAt(3);
|
||||||
|
NDArray::prepareSpecialUse({output}, {input});
|
||||||
|
Z rowScale = Z(outHeight) / Z(inputHeight);
|
||||||
|
Z columnScale = Z(outWidth) / Z(inputWidth);
|
||||||
|
|
||||||
|
// Return if the output is empty.
|
||||||
|
if (output->lengthOf() == 0) return Status::OK();
|
||||||
|
|
||||||
|
Spans colSpans;
|
||||||
|
Spans rowSpans;
|
||||||
|
auto res = Status::OK();
|
||||||
|
switch(method) {
|
||||||
|
case kResizeBilinear: {
|
||||||
|
TriangleKernelFunc kernel;
|
||||||
|
res = computeSpans(context, kernel, outWidth, inputWidth, columnScale, 0.f, antialias,
|
||||||
|
colSpans);
|
||||||
|
if (res != Status::OK()) return res;
|
||||||
|
res = computeSpans(context, kernel, outHeight, inputHeight, rowScale, 0.f, antialias, rowSpans);
|
||||||
|
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case kResizeBicubic: {
|
||||||
|
KeysCubicKernelFunc kernel;
|
||||||
|
res = computeSpans(context, kernel, outWidth, inputWidth, columnScale, 0.f, antialias,
|
||||||
|
colSpans);
|
||||||
|
if (res != Status::OK()) return res;
|
||||||
|
res = computeSpans(context, kernel, outHeight, inputHeight, rowScale, 0.f, antialias, rowSpans);
|
||||||
|
} break;
|
||||||
|
case kResizeLanczos3:{
|
||||||
|
LanczosKernelFunc kernel(3.f);
|
||||||
|
res = computeSpans(context, kernel, outWidth, inputWidth, columnScale, 0.f, antialias,
|
||||||
|
colSpans);
|
||||||
|
if (res != Status::OK()) return res;
|
||||||
|
res = computeSpans(context, kernel, outHeight, inputHeight, rowScale, 0.f, antialias, rowSpans);
|
||||||
|
|
||||||
|
} break;
|
||||||
|
|
||||||
|
case kResizeLanczos5: {
|
||||||
|
LanczosKernelFunc kernel(5.f);
|
||||||
|
res = computeSpans(context, kernel, outWidth, inputWidth, columnScale, 0.f, antialias,
|
||||||
|
colSpans);
|
||||||
|
if (res != Status::OK()) return res;
|
||||||
|
res = computeSpans(context, kernel, outHeight, inputHeight, rowScale, 0.f, antialias, rowSpans);
|
||||||
|
|
||||||
|
} break;
|
||||||
|
case kResizeGaussian: {
|
||||||
|
GaussianKernelFunc kernel;
|
||||||
|
res = computeSpans(context, kernel, outWidth, inputWidth, columnScale, 0.f, antialias,
|
||||||
|
colSpans);
|
||||||
|
if (res != Status::OK()) return res;
|
||||||
|
res = computeSpans(context, kernel, outHeight, inputHeight, rowScale, 0.f, antialias, rowSpans);
|
||||||
|
|
||||||
|
} break;
|
||||||
|
case kResizeMitchellcubic:{
|
||||||
|
MitchellCubicKernelFunc kernel;
|
||||||
|
res = computeSpans(context, kernel, outWidth, inputWidth, columnScale, 0.f, antialias,
|
||||||
|
colSpans);
|
||||||
|
if (res != Status::OK()) return res;
|
||||||
|
res = computeSpans(context, kernel, outHeight, inputHeight, rowScale, 0.f, antialias, rowSpans);
|
||||||
|
|
||||||
|
} break;
|
||||||
|
};
|
||||||
|
|
||||||
|
NDArray intermediate = NDArrayFactory::create<Z>('c', {batchSize, outHeight, inputWidth, channels});
|
||||||
|
|
||||||
|
//const functor::Spans& const_row_spans = row_spans;
|
||||||
|
//typename TTypes<int32, 1>::ConstTensor row_starts(
|
||||||
|
//const_row_spans.starts.tensor<int32, 1>());
|
||||||
|
auto& rowStarts = rowSpans._starts; // shape {outWidth}
|
||||||
|
auto& rowWeights = rowSpans._weights; // shape {outWidth, numSpans}
|
||||||
|
auto& columnStarts = colSpans._starts; // shape {outHeights}
|
||||||
|
auto& columnWeights = colSpans._weights; // shape {outHeights, numSpans}
|
||||||
|
|
||||||
|
gatherSpans<X, Z>(context, rowSpans._spanSize, rowStarts, rowWeights, colSpans._spanSize, columnStarts, columnWeights, input, intermediate, output);
|
||||||
|
|
||||||
|
NDArray::registerSpecialUse({output}, {input});
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static int resizeTriangle(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
// std::unique_ptr<IKernelFunc> kernel(new TriangleKernelFunc);
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,(context, kResizeBilinear, image, width, height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeTriangle: This resize method is avaliable in future versions");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeLanczos3(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
// std::unique_ptr<IKernelFunc> kernel(new LanczosKernelFunc(3.f));
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,(context, kResizeLanczos3, image, width, height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeLanczos3: This resize method is avaliable in future versions");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeLanczos5(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
// std::unique_ptr<IKernelFunc> kernel(new LanczosKernelFunc(5.f));
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,(context, kResizeLanczos5, image, width, height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeLanczos5: This resize method is avaliable in future versions");
|
||||||
|
}
|
||||||
|
|
||||||
|
static int resizeGaussian(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,(context, kResizeGaussian, image, width, height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeGaussian: This resize method is avaliable in future versions");
|
||||||
|
}
|
||||||
|
static int resizeMitchellcubic(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,(context, kResizeMitchellcubic, image, width, height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeMitchelcubic: This resize method is avaliable in future versions");
|
||||||
|
}
|
||||||
|
static int resizeKeycubic(sd::LaunchContext * context, NDArray const* image, int const width, int const height, bool const antialias, NDArray* output) {
|
||||||
|
if (!antialias)
|
||||||
|
return resizeBicubicFunctorA(context, image, width, height, false, true, output);
|
||||||
|
BUILD_DOUBLE_SELECTOR(image->dataType(), output->dataType(), return resizeKernel,(context, kResizeBicubic, image, width, height, antialias, output), NUMERIC_TYPES, FLOAT_TYPES_1);
|
||||||
|
return Status::CODE(ND4J_STATUS_VALIDATION, "helpers::resizeKeycubic: This resize method is avaliable in future versions");
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
int resizeFunctor(sd::LaunchContext * context, NDArray const* image, int width, int height,
|
||||||
|
ImageResizeMethods method, bool antialias, NDArray* output) {
|
||||||
|
switch (method) {
|
||||||
|
case kResizeBilinear: return resizeTriangle(context, image, width, height, antialias, output);
|
||||||
|
case kResizeNearest: return resizeNeighborFunctor(context, image, width, height, false, true, output);
|
||||||
|
case kResizeBicubic: return resizeKeycubic(context, image, width, height, antialias, output);
|
||||||
|
case kResizeLanczos3: return resizeLanczos3(context, image, width, height, antialias, output);
|
||||||
|
case kResizeLanczos5: return resizeLanczos5(context, image, width, height, antialias, output);
|
||||||
|
case kResizeGaussian: return resizeGaussian(context, image, width, height, antialias, output);
|
||||||
|
case kResizeArea: return resizeAreaFunctor(context, image, width, height, false, output);
|
||||||
|
case kResizeMitchellcubic: return resizeMitchellcubic(context, image, width, height, antialias, output);
|
||||||
|
default:
|
||||||
|
nd4j_printf("helper::resizeFunctor: Wrong resize method %i\n", (int)method);
|
||||||
|
throw std::runtime_error("helper::resizeFunctor: Wrong resize method.");
|
||||||
|
}
|
||||||
|
return ND4J_STATUS_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -28,13 +28,17 @@ namespace ops {
|
||||||
namespace helpers {
|
namespace helpers {
|
||||||
|
|
||||||
enum ImageResizeMethods {
|
enum ImageResizeMethods {
|
||||||
kResizeBilinear = 1,
|
kResizeBilinear = 0, // as java require
|
||||||
kResizeBicubic,
|
|
||||||
kResizeNearest,
|
kResizeNearest,
|
||||||
|
kResizeBicubic,
|
||||||
|
kResizeArea,
|
||||||
kResizeGaussian,
|
kResizeGaussian,
|
||||||
|
kResizeLanczos3,
|
||||||
kResizeLanczos5,
|
kResizeLanczos5,
|
||||||
kResizeMitchelcubic,
|
kResizeMitchellcubic,
|
||||||
kResizeArea
|
kResizeFirst = kResizeBilinear,
|
||||||
|
kResizeLast = kResizeMitchellcubic,
|
||||||
|
kResizeOldLast = kResizeArea
|
||||||
};
|
};
|
||||||
|
|
||||||
int resizeBilinearFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
int resizeBilinearFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
||||||
|
@ -49,7 +53,10 @@ namespace helpers {
|
||||||
bool const alignCorners, NDArray* output);
|
bool const alignCorners, NDArray* output);
|
||||||
|
|
||||||
int resizeFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
int resizeFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
||||||
ImageResizeMethods method, bool preserveAspectRatio, bool antialias, NDArray* output);
|
ImageResizeMethods method, bool antialias, NDArray* output);
|
||||||
|
|
||||||
|
int resizeImagesFunctor(sd::LaunchContext * context, NDArray const* image, int const width, int const height,
|
||||||
|
ImageResizeMethods method, bool alignCorners, NDArray* output);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -396,6 +396,29 @@ TEST_F(DeclarableOpsTests10, TestMarixBandPart_Test_1) {
|
||||||
ASSERT_TRUE(exp.equalsTo(results.at(0)));
|
ASSERT_TRUE(exp.equalsTo(results.at(0)));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////
|
||||||
|
TEST_F(DeclarableOpsTests10, TestMarixBandPart_Test_2) {
|
||||||
|
|
||||||
|
auto x = NDArrayFactory::create<double>('c', {2, 3, 3});
|
||||||
|
auto minD = NDArrayFactory::create<int>(1);
|
||||||
|
auto maxD = NDArrayFactory::create<int>(1);
|
||||||
|
auto exp = NDArrayFactory::create<double>('c', {2, 3, 3});
|
||||||
|
x.linspace(1);
|
||||||
|
exp.linspace(1);
|
||||||
|
exp.p(0, 0, 2, 0.);
|
||||||
|
exp.p(1, 0, 2, 0.);
|
||||||
|
exp.p(0, 2, 0, 0.);
|
||||||
|
exp.p(1, 2, 0, 0.);
|
||||||
|
|
||||||
|
sd::ops::matrix_band_part op;
|
||||||
|
auto results = op.evaluate({&x, &minD, &maxD}, {}, {});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
//results.at(0)->printIndexedBuffer("MBP Test1");
|
||||||
|
//exp.printIndexedBuffer("MBP Expec");
|
||||||
|
ASSERT_TRUE(exp.equalsTo(results.at(0)));
|
||||||
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
TEST_F(DeclarableOpsTests10, atan2_test1) {
|
TEST_F(DeclarableOpsTests10, atan2_test1) {
|
||||||
|
|
||||||
|
@ -1528,6 +1551,71 @@ TEST_F(DeclarableOpsTests10, ImageResizeBilinear_Test01) {
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests10, ResizeImages_Test1) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<float>('c', {2, 4, 5, 3});
|
||||||
|
input.linspace(1.);
|
||||||
|
|
||||||
|
auto expected = NDArrayFactory::create<float>('c', {2, 7, 9, 3}, {
|
||||||
|
1.f, 2.f, 3.f, 2.6666667f, 3.6666667f, 4.666667f, 4.3333335f, 5.3333335f, 6.3333335f, 6.f,
|
||||||
|
7.f, 8.f, 7.666667f, 8.666667f, 9.666667f, 9.333334f, 10.333334f, 11.333334f, 11.f, 12.f,
|
||||||
|
13.f, 12.666667f, 13.666667f, 14.666667f, 13.f, 14.f, 15.f, 9.571429f, 10.571429f, 11.571429f,
|
||||||
|
11.238095f, 12.238095f, 13.238095f, 12.904762f, 13.904762f, 14.904762f, 14.571429f, 15.571429f, 16.57143f,
|
||||||
|
16.238096f, 17.238096f, 18.238096f, 17.904762f, 18.904762f, 19.904762f, 19.57143f, 20.57143f, 21.57143f,
|
||||||
|
21.238096f, 22.238096f, 23.238096f, 21.57143f, 22.57143f, 23.57143f, 18.142859f, 19.142859f, 20.142859f,
|
||||||
|
19.809525f, 20.809525f, 21.809525f, 21.476192f, 22.476192f, 23.476192f, 23.142859f, 24.142859f, 25.142859f,
|
||||||
|
24.809526f, 25.809526f, 26.809526f, 26.476192f, 27.476192f, 28.476192f, 28.142859f, 29.142859f, 30.142859f,
|
||||||
|
29.809526f, 30.809526f, 31.809526f, 30.142859f, 31.142859f, 32.142857f, 26.714287f, 27.714287f, 28.714287f,
|
||||||
|
28.380955f, 29.380955f, 30.380955f, 30.04762f, 31.04762f, 32.047623f, 31.714287f, 32.714287f, 33.714287f,
|
||||||
|
33.380955f, 34.380955f, 35.380955f, 35.047623f, 36.047623f, 37.047623f, 36.714287f, 37.714287f, 38.714287f,
|
||||||
|
38.380955f, 39.380955f, 40.380955f, 38.714287f, 39.714287f, 40.714287f, 35.285717f, 36.285717f, 37.285717f,
|
||||||
|
36.952385f, 37.952385f, 38.952385f, 38.61905f, 39.61905f, 40.61905f, 40.285717f, 41.285717f, 42.285717f,
|
||||||
|
41.952385f, 42.952385f, 43.952385f, 43.61905f, 44.61905f, 45.61905f, 45.285717f, 46.285717f, 47.285717f,
|
||||||
|
46.952385f, 47.952385f, 48.952385f, 47.285717f, 48.285717f, 49.285717f, 43.857143f, 44.857143f, 45.857143f,
|
||||||
|
45.52381f, 46.52381f, 47.52381f, 47.190475f, 48.190475f, 49.190475f, 48.857143f, 49.857143f, 50.857143f,
|
||||||
|
50.52381f, 51.52381f, 52.52381f, 52.190475f, 53.190475f, 54.190475f, 53.857143f, 54.857143f, 55.857143f,
|
||||||
|
55.52381f, 56.52381f, 57.52381f, 55.857143f, 56.857143f, 57.857143f, 46.f, 47.f, 48.f,
|
||||||
|
47.666668f, 48.666668f, 49.666668f, 49.333332f, 50.333332f, 51.333332f, 51.f, 52.f, 53.f,
|
||||||
|
52.666668f, 53.666668f, 54.666668f, 54.333332f, 55.333332f, 56.333332f, 56.f, 57.f, 58.f,
|
||||||
|
57.666668f, 58.666668f, 59.666668f, 58.f, 59.f, 60.f, 61.f, 62.f, 63.f,
|
||||||
|
62.666668f, 63.666668f, 64.666664f, 64.333336f, 65.333336f, 66.333336f, 66.f, 67.f, 68.f,
|
||||||
|
67.666664f, 68.666664f, 69.666664f, 69.333336f, 70.333336f, 71.333336f, 71.f, 72.f, 73.f,
|
||||||
|
72.666664f, 73.666664f, 74.666664f, 73.f, 74.f, 75.f, 69.57143f, 70.57143f, 71.57143f,
|
||||||
|
71.2381f, 72.2381f, 73.23809f, 72.90476f, 73.90476f, 74.90476f, 74.57143f, 75.57143f, 76.57143f,
|
||||||
|
76.23809f, 77.23809f, 78.23809f, 77.90476f, 78.90476f, 79.90476f, 79.57143f, 80.57143f, 81.57143f,
|
||||||
|
81.23809f, 82.23809f, 83.23809f, 81.57143f, 82.57143f, 83.57143f, 78.14286f, 79.14286f, 80.14286f,
|
||||||
|
79.809525f, 80.809525f, 81.809525f, 81.4762f, 82.4762f, 83.4762f, 83.14286f, 84.14286f, 85.14286f,
|
||||||
|
84.809525f, 85.809525f, 86.809525f, 86.4762f, 87.4762f, 88.4762f, 88.14286f, 89.14286f, 90.14286f,
|
||||||
|
89.809525f, 90.809525f, 91.809525f, 90.14286f, 91.14286f, 92.14286f, 86.71429f, 87.71429f, 88.71429f,
|
||||||
|
88.38095f, 89.38095f, 90.38095f, 90.04762f, 91.04762f, 92.04762f, 91.71429f, 92.71429f, 93.71429f,
|
||||||
|
93.38095f, 94.38095f, 95.38095f, 95.04762f, 96.04762f, 97.04762f, 96.71429f, 97.71429f, 98.71429f,
|
||||||
|
98.38095f, 99.38095f, 100.38095f, 98.71429f, 99.71429f, 100.71429f, 95.28571f, 96.28571f, 97.28571f,
|
||||||
|
96.95238f, 97.95238f, 98.95238f, 98.61905f, 99.61905f, 100.61905f, 100.28571f, 101.28571f, 102.28571f,
|
||||||
|
101.95238f, 102.95238f, 103.95238f, 103.61905f, 104.61905f, 105.61905f, 105.28571f, 106.28571f, 107.28571f,
|
||||||
|
106.95238f, 107.95238f, 108.95238f, 107.28571f, 108.28571f, 109.28571f, 103.85715f, 104.85715f, 105.85715f,
|
||||||
|
105.5238f, 106.5238f, 107.5238f,107.190475f,108.190475f,109.190475f, 108.85715f, 109.85715f, 110.85715f,
|
||||||
|
110.5238f, 111.5238f, 112.5238f,112.190475f,113.190475f,114.190475f, 113.85715f, 114.85715f, 115.85715f,
|
||||||
|
115.5238f, 116.5238f, 117.5238f, 115.85715f, 116.85715f, 117.85715f, 106.f, 107.f, 108.f,
|
||||||
|
107.666664f,108.666664f,109.666664f,109.333336f,110.333336f,111.333336f, 111.f, 112.f, 113.f,
|
||||||
|
112.666664f,113.666664f,114.666664f,114.333336f,115.333336f,116.333336f, 116.f, 117.f, 118.f,
|
||||||
|
117.666664f,118.666664f,119.666664f, 118.f, 119.f, 120.f
|
||||||
|
});
|
||||||
|
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 11});
|
||||||
|
sd::ops::resize_images op;
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {0}, {false, true}); // resize with bilinear method
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
NDArray *result = results.at(0);
|
||||||
|
|
||||||
|
// result->printBuffer("Resized to 7x9");
|
||||||
|
// expected.printBuffer("Expect for 7x9");
|
||||||
|
// result.printShapeInfo("Output shape");
|
||||||
|
// expected.printShapeInfo("Expect shape");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
TEST_F(DeclarableOpsTests10, ImageResizeBilinear_Test02) {
|
TEST_F(DeclarableOpsTests10, ImageResizeBilinear_Test02) {
|
||||||
|
|
||||||
NDArray input = NDArrayFactory::create<float>('c', {2, 5,5,3}, {
|
NDArray input = NDArrayFactory::create<float>('c', {2, 5,5,3}, {
|
||||||
|
|
|
@ -25,6 +25,7 @@
|
||||||
#include <ops/ops.h>
|
#include <ops/ops.h>
|
||||||
#include <helpers/GradCheck.h>
|
#include <helpers/GradCheck.h>
|
||||||
#include <helpers/MmulHelper.h>
|
#include <helpers/MmulHelper.h>
|
||||||
|
#include <ops/declarable/helpers/image_resize.h>
|
||||||
|
|
||||||
using namespace sd;
|
using namespace sd;
|
||||||
|
|
||||||
|
@ -1346,6 +1347,34 @@ TEST_F(DeclarableOpsTests11, ImageResizeArea_Test8) {
|
||||||
ASSERT_TRUE(expected.equalsTo(result));
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests11, ResizeImages_Test8) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 3, 3, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9
|
||||||
|
});
|
||||||
|
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 6, 6, 1}, {
|
||||||
|
// 1.f, 1.f, 2.f, 2.f, 3.f, 3.f, 1.f, 1.f, 2.f, 2.f, 3.f, 3.f, 4.f, 4.f, 5.f, 5.f, 6.f, 6.f, 4.f, 4.f, 5.f, 5.f,
|
||||||
|
// 6.f, 6.f, 7.f, 7.f, 8.f, 8.f, 9.f, 9.f, 7.f, 7.f, 8.f, 8.f, 9.f, 9.f
|
||||||
|
1.f , 1.f , 1.5f, 2.f , 2.f, 3.f, 1.f , 1.f , 1.5f, 2.f , 2.f, 3.f,
|
||||||
|
2.5f, 2.5f, 3.f, 3.5f, 3.5f, 4.5f, 4.f , 4.f , 4.5f , 5.f, 5.f, 6.f ,
|
||||||
|
4.f, 4.f, 4.5f , 5.f, 5.f, 6.f, 7.f , 7.f , 7.5f , 8.f , 8.f , 9.f
|
||||||
|
});
|
||||||
|
//input.linspace(1);
|
||||||
|
// auto size = NDArrayFactory::create<int>({6, 6});
|
||||||
|
sd::ops::resize_images op;
|
||||||
|
auto results = op.evaluate({&input}, {}, {6, 8, ops::helpers::kResizeArea}, {true, true}); // resize_area to 6x8 with align corners and preserve aspect ratio of input image
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
NDArray* result = results.at(0);
|
||||||
|
|
||||||
|
// result->printBuffer("Area Resized to 6x6");
|
||||||
|
// expected.printBuffer("Area Expect for 6x6");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////
|
||||||
TEST_F(DeclarableOpsTests11, ImageResizeArea_Test9) {
|
TEST_F(DeclarableOpsTests11, ImageResizeArea_Test9) {
|
||||||
|
|
||||||
|
@ -1354,7 +1383,10 @@ TEST_F(DeclarableOpsTests11, ImageResizeArea_Test9) {
|
||||||
});
|
});
|
||||||
|
|
||||||
NDArray expected = NDArrayFactory::create<float>('c', {1, 10, 10, 4}, {
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 10, 10, 4}, {
|
||||||
1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333336f, 8.999999f, 9.999999f, 11.000000f, 11.999999f, 8.999999f, 9.999999f, 11.000000f, 11.999999f, 8.999998f, 9.999997f, 10.999997f, 11.999997f, 13.000003f, 14.000004f, 15.000003f, 16.000004f, 13.000003f, 14.000004f, 15.000003f, 16.000004f, 13.000003f, 14.000004f, 15.000003f, 16.000004f, 15.666671f, 16.666672f, 17.666672f, 18.666672f, 17.000006f, 18.000004f, 19.000006f, 20.000004f, 17.000006f, 18.000004f, 19.000006f, 20.000004f, 18.333344f, 19.333344f, 20.333345f, 21.333344f, 21.000006f, 22.000006f, 23.000006f, 24.000006f, 21.000006f, 22.000006f, 23.000006f, 24.000006f, 21.000002f, 22.000000f, 23.000002f, 24.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 15.666667f, 16.666668f, 17.666668f, 18.666668f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 18.333340f, 19.333340f, 20.333342f, 21.333340f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 20.999996f, 21.999996f, 22.999994f, 23.999996f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 15.666667f, 16.666668f, 17.666668f, 18.666668f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 18.333340f, 19.333340f, 20.333342f, 21.333340f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 20.999996f, 21.999996f, 22.999994f, 23.999996f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 15.666667f, 16.666668f, 17.666668f, 18.666668f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 18.333340f, 19.333340f, 20.333342f, 21.333340f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 20.999996f, 21.999996f, 22.999994f, 23.999996f, 12.999995f, 13.999995f, 14.999994f, 15.999994f, 12.999995f, 13.999995f, 14.999994f, 15.999994f, 12.999995f, 13.999995f, 14.999994f, 15.999994f, 15.666661f, 16.666662f, 17.666660f, 18.666660f, 16.999994f, 17.999994f, 18.999992f, 19.999992f, 16.999994f, 17.999994f, 18.999992f, 19.999992f, 18.333334f, 19.333332f, 20.333334f, 21.333332f, 20.999992f, 21.999992f, 22.999990f, 23.999992f, 20.999992f, 21.999992f, 22.999990f, 23.999992f, 20.999989f, 21.999989f, 22.999987f, 23.999987f
|
1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f,
|
||||||
|
3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f,
|
||||||
|
5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f,
|
||||||
|
11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333337f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 9.000000f, 10.000000f, 11.000000f, 12.000000f, 8.999998f, 9.999998f, 10.999998f, 11.999998f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 1.000000f, 2.000000f, 3.000000f, 4.000000f, 3.666667f, 4.666667f, 5.666667f, 6.666667f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 5.000000f, 6.000000f, 7.000000f, 8.000000f, 6.333336f, 7.333336f, 8.333336f, 9.333336f, 8.999999f, 9.999999f, 11.000000f, 11.999999f, 8.999999f, 9.999999f, 11.000000f, 11.999999f, 8.999998f, 9.999997f, 10.999997f, 11.999997f, 13.000003f, 14.000004f, 15.000003f, 16.000004f, 13.000003f, 14.000004f, 15.000003f, 16.000004f, 13.000003f, 14.000004f, 15.000003f, 16.000004f, 15.666671f, 16.666672f, 17.666672f, 18.666672f, 17.000006f, 18.000004f, 19.000006f, 20.000004f, 17.000006f, 18.000004f, 19.000006f, 20.000004f, 18.333344f, 19.333344f, 20.333345f, 21.333344f, 21.000006f, 22.000006f, 23.000006f, 24.000006f, 21.000006f, 22.000006f, 23.000006f, 24.000006f, 21.000002f, 22.000000f, 23.000002f, 24.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 15.666667f, 16.666668f, 17.666668f, 18.666668f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 18.333340f, 19.333340f, 20.333342f, 21.333340f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 20.999996f, 21.999996f, 22.999994f, 23.999996f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 15.666667f, 16.666668f, 17.666668f, 18.666668f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 18.333340f, 19.333340f, 20.333342f, 21.333340f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 20.999996f, 21.999996f, 22.999994f, 23.999996f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 13.000000f, 14.000001f, 15.000000f, 16.000000f, 15.666667f, 16.666668f, 17.666668f, 18.666668f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 17.000002f, 18.000000f, 19.000002f, 20.000000f, 18.333340f, 19.333340f, 20.333342f, 21.333340f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 21.000002f, 22.000000f, 22.999998f, 24.000000f, 20.999996f, 21.999996f, 22.999994f, 23.999996f, 12.999995f, 13.999995f, 14.999994f, 15.999994f, 12.999995f, 13.999995f, 14.999994f, 15.999994f, 12.999995f, 13.999995f, 14.999994f, 15.999994f, 15.666661f, 16.666662f, 17.666660f, 18.666660f, 16.999994f, 17.999994f, 18.999992f, 19.999992f, 16.999994f, 17.999994f, 18.999992f, 19.999992f, 18.333334f, 19.333332f, 20.333334f, 21.333332f, 20.999992f, 21.999992f, 22.999990f, 23.999992f, 20.999992f, 21.999992f, 22.999990f, 23.999992f, 20.999989f, 21.999989f, 22.999987f, 23.999987f
|
||||||
|
|
||||||
});
|
});
|
||||||
//input.linspace(1);
|
//input.linspace(1);
|
||||||
|
|
|
@ -27,6 +27,7 @@
|
||||||
#include <helpers/ConstantTadHelper.h>
|
#include <helpers/ConstantTadHelper.h>
|
||||||
#include <helpers/PointersManager.h>
|
#include <helpers/PointersManager.h>
|
||||||
#include <helpers/MmulHelper.h>
|
#include <helpers/MmulHelper.h>
|
||||||
|
#include <ops/declarable/helpers/image_resize.h>
|
||||||
|
|
||||||
using namespace sd;
|
using namespace sd;
|
||||||
|
|
||||||
|
@ -2821,6 +2822,330 @@ TEST_F(DeclarableOpsTests12, QR_Test_2) {
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test1) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<float>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
0.628328f, 0.97913796f, 1.8058043f, 2.563919f, 2.844548f,
|
||||||
|
3.6026628f, 4.4293294f, 4.7801394f, 2.9474494f, 3.2982588f,
|
||||||
|
4.1249247f, 4.8830395f, 5.1636696f, 5.9217834f, 6.7484493f,
|
||||||
|
7.09926f, 8.165832f, 8.516642f, 9.3433075f, 10.101422f,
|
||||||
|
10.382052f, 11.140167f, 11.966835f, 12.317646f, 10.924093f,
|
||||||
|
11.274903f, 12.10157f, 12.859686f, 13.140315f, 13.898429f,
|
||||||
|
14.725095f, 15.075906f, 13.682358f, 14.033167f, 14.859833f,
|
||||||
|
15.617949f, 15.898578f, 16.656693f, 17.48336f, 17.834171f,
|
||||||
|
18.900742f, 19.251549f, 20.078213f, 20.83633f, 21.11696f,
|
||||||
|
21.875074f, 22.701742f, 23.052553f, 21.219858f, 21.57067f,
|
||||||
|
22.397337f, 23.155449f, 23.436079f, 24.194195f, 25.020863f,
|
||||||
|
25.371672f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with lancos5 without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeLanczos5}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Lancos5 Resized to 7x8");
|
||||||
|
// expected.printBuffer("Lancos5 Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test2) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
0.628328f, 0.97913796f, 1.8058043f, 2.563919f, 2.844548f,
|
||||||
|
3.6026628f, 4.4293294f, 4.7801394f, 2.9474494f, 3.2982588f,
|
||||||
|
4.1249247f, 4.8830395f, 5.1636696f, 5.9217834f, 6.7484493f,
|
||||||
|
7.09926f, 8.165832f, 8.516642f, 9.3433075f, 10.101422f,
|
||||||
|
10.382052f, 11.140167f, 11.966835f, 12.317646f, 10.924093f,
|
||||||
|
11.274903f, 12.10157f, 12.859686f, 13.140315f, 13.898429f,
|
||||||
|
14.725095f, 15.075906f, 13.682358f, 14.033167f, 14.859833f,
|
||||||
|
15.617949f, 15.898578f, 16.656693f, 17.48336f, 17.834171f,
|
||||||
|
18.900742f, 19.251549f, 20.078213f, 20.83633f, 21.11696f,
|
||||||
|
21.875074f, 22.701742f, 23.052553f, 21.219858f, 21.57067f,
|
||||||
|
22.397337f, 23.155449f, 23.436079f, 24.194195f, 25.020863f,
|
||||||
|
25.371672f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with lanczos5 without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeLanczos5}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result.printBuffer("Lanczos5 Resized to 8x7");
|
||||||
|
// expected.printBuffer("Lanczos5 Expect for 8x7");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test3) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
0.6537938f, 1.0309073f, 1.8018917f, 2.4606667f, 2.9888396f, 3.6476145f, 4.418599f,
|
||||||
|
4.7957115f, 3.1913466f, 3.5684595f, 4.3394437f, 4.998219f, 5.526393f, 6.185168f,
|
||||||
|
6.956152f, 7.3332644f, 7.626866f, 8.00398f, 8.774965f, 9.433739f, 9.961912f,
|
||||||
|
10.620688f, 11.391673f, 11.7687845f, 10.929041f, 11.306154f, 12.077138f, 12.735914f,
|
||||||
|
13.264087f, 13.922862f, 14.693848f, 15.07096f, 14.231217f, 14.60833f, 15.379314f,
|
||||||
|
16.038086f, 16.56626f, 17.225037f, 17.996023f, 18.373135f, 18.666735f, 19.043848f,
|
||||||
|
19.814833f, 20.473606f, 21.00178f, 21.660557f, 22.431541f, 22.808653f, 21.204287f,
|
||||||
|
21.581398f, 22.352386f, 23.01116f, 23.539333f, 24.19811f, 24.969095f, 25.346205f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with lanczos3 without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeLanczos3}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result.printBuffer("Lanczos3 Resized to 8x7");
|
||||||
|
// expected.printBuffer("Lanczos3 Expect for 8x7");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test4) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
1.4150869f, 1.7928237f, 2.4084527f, 3.0680697f, 3.6419308f, 4.301548f, 4.9171767f,
|
||||||
|
5.294914f, 4.012885f, 4.390622f, 5.0062513f, 5.6658688f, 6.23973f, 6.899347f,
|
||||||
|
7.514975f, 7.8927126f, 7.358912f, 7.736648f, 8.352278f, 9.011895f, 9.585756f,
|
||||||
|
10.245375f, 10.861001f, 11.238739f, 11.060086f, 11.437822f, 12.0534525f, 12.713069f,
|
||||||
|
13.28693f, 13.946548f, 14.562176f, 14.939912f, 14.761261f, 15.138998f, 15.754629f,
|
||||||
|
16.414246f, 16.988108f, 17.647724f, 18.263351f, 18.641088f, 18.107288f, 18.485023f,
|
||||||
|
19.100655f, 19.760273f, 20.334133f, 20.993752f, 21.609377f, 21.987114f, 20.705086f,
|
||||||
|
21.082823f, 21.698452f, 22.35807f, 22.93193f, 23.591549f, 24.207174f, 24.584913f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with gaussian without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeGaussian}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result.printBuffer("Lanczos3 Resized to 8x7");
|
||||||
|
// expected.printBuffer("Lanczos3 Expect for 8x7");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test5) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
0.6372399f, 1.0536414f, 1.7716959f, 2.3966959f, 3.0216959f, 3.6466963f, 4.3647504f, 4.781152f,
|
||||||
|
3.3926036f, 3.8090053f, 4.5270596f, 5.1520596f, 5.7770596f, 6.4020596f, 7.1201134f, 7.5365143f,
|
||||||
|
7.358708f, 7.7751093f, 8.493164f, 9.118163f, 9.743165f, 10.368165f, 11.086218f, 11.502619f,
|
||||||
|
10.928043f, 11.344445f, 12.0625f, 12.6875f, 13.3125f, 13.9375f, 14.655554f, 15.071955f,
|
||||||
|
14.49738f, 14.913782f, 15.631836f, 16.256836f, 16.881836f, 17.506836f, 18.22489f, 18.64129f,
|
||||||
|
18.463486f, 18.879889f, 19.597942f, 20.222942f, 20.847942f, 21.472942f, 22.190996f, 22.607397f,
|
||||||
|
21.218851f, 21.635252f, 22.353308f, 22.978308f, 23.603308f, 24.228308f, 24.946362f, 25.362762f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with bicubic without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeBicubic}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Bicubic Resized to 7x8");
|
||||||
|
// expected.printBuffer("Bicubic Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test6) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
0.63678247f, 1.0531839f, 1.7712381f, 2.396238f, 3.021238f , 3.646238f, 4.364292f, 4.780694f,
|
||||||
|
3.3934183f, 3.8098197f, 4.5278745f, 5.1528745f, 5.7778745f, 6.402874f, 7.1209283f, 7.5373297f,
|
||||||
|
7.3566165f, 7.7730184f, 8.491073f, 9.116073f, 9.741073f, 10.366074f , 11.084127f , 11.500528f,
|
||||||
|
10.928043f, 11.344445f, 12.0625f , 12.6875f , 13.3125f , 13.9375f , 14.655554f, 15.071955f , 14.499474f , 14.915876f , 15.633932f, 16.25893f, 16.883932f, 17.508932f, 18.226984f , 18.643385f,
|
||||||
|
18.46267f, 18.87907f, 19.597128f, 20.222126f , 20.847128f, 21.472126f, 22.190182f , 22.606583f , 21.219305f, 21.635706f ,
|
||||||
|
22.353762f, 22.978762f , 23.603762f , 24.228764f, 24.946815f , 25.363216f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with bicubic with antialising and without aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeBicubic}, {false, true});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Bicubic Resized to 7x8");
|
||||||
|
// expected.printBuffer("Bicubic Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test7) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
0.98593485f, 1.3872082f, 2.0625007f, 2.6875007f, 3.3125012f, 3.937501f, 4.612794f, 5.014066f,
|
||||||
|
3.6096964f, 4.01097f, 4.6862626f, 5.311262f, 5.936263f, 6.561262f, 7.2365556f, 7.637828f,
|
||||||
|
7.4145045f, 7.8157787f, 8.491071f, 9.116072f, 9.741073f, 10.366072f, 11.041365f, 11.4426365f,
|
||||||
|
10.985933f, 11.387209f, 12.062499f, 12.687501f, 13.312502f, 13.9375f, 14.612794f, 15.014066f,
|
||||||
|
14.557361f, 14.958637f, 15.633926f, 16.25893f, 16.88393f, 17.508926f, 18.18422f, 18.585491f,
|
||||||
|
18.36217f, 18.763443f, 19.438736f, 20.063736f, 20.688738f, 21.313736f, 21.98903f, 22.3903f,
|
||||||
|
20.985931f, 21.387209f, 22.0625f, 22.6875f, 23.3125f, 23.937498f, 24.612793f, 25.014061f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with Mitchell cubic with antialising and without aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeMitchellcubic}, {false, true});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Mitchell cubic Resized to 7x8");
|
||||||
|
// expected.printBuffer("Mitchell cubic Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test8) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
1.f , 1.4375f , 2.0625f , 2.6875f , 3.3125f , 3.9375f , 4.5625f , 5.f ,
|
||||||
|
3.8571427f, 4.2946424f, 4.9196424f, 5.5446424f, 6.1696424f, 6.7946424f, 7.4196424f, 7.8571424f,
|
||||||
|
7.4285717f, 7.8660717f, 8.491072f , 9.116072f , 9.741072f , 10.366072f , 10.991072f , 11.428572f ,
|
||||||
|
11.f , 11.4375f , 12.0625f , 12.6875f , 13.3125f , 13.9375f , 14.5625f , 15.f ,
|
||||||
|
14.571429f , 15.008929f, 15.633929f, 16.25893f , 16.88393f , 17.50893f , 18.13393f , 18.57143f ,
|
||||||
|
18.142857f , 18.580357f, 19.205357f, 19.830357f , 20.455357f , 21.080357f , 21.705357f , 22.142857f ,
|
||||||
|
21.f , 21.4375f , 22.0625f , 22.6875f , 23.3125f , 23.9375f , 24.5625f , 25.f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with bilinear without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeBilinear}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Bilinear Resized to 7x8");
|
||||||
|
// expected.printBuffer("Bilinear Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test9) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
1.f , 1.4f , 2.f , 2.8f , 3.2f , 4.f , 4.6f , 5.f ,
|
||||||
|
4.f , 4.4f , 5.f , 5.8f , 6.2f , 7.f , 7.6f , 8.f ,
|
||||||
|
6.999998f, 7.399998f, 7.999998f, 8.799997f, 9.199997f, 9.999997f, 10.599997f, 10.999996f,
|
||||||
|
11.f, 11.399999f, 12.f, 12.799999f, 13.199999f, 13.999998f, 14.599998f, 14.999999f,
|
||||||
|
15.f, 15.4f, 16.f, 16.8f, 17.2f, 18.f, 18.6f, 19.f, 17.999989f,
|
||||||
|
18.399990f, 18.999989f, 19.799988f, 20.199987f, 20.999989f, 21.599989f, 21.999989f, 21.f,
|
||||||
|
21.4f, 22.f, 22.8f, 23.2f, 24.f, 24.6f, 25.f
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with area without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeArea}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Area Resized to 7x8");
|
||||||
|
// expected.printBuffer("Area Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test10) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<float>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<float>('c', {1, 7, 8, 1}, {
|
||||||
|
1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 6,
|
||||||
|
6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 16,
|
||||||
|
17, 18, 18, 19, 20, 20, 16, 16, 17, 18, 18, 19, 20, 20, 21, 21, 22,
|
||||||
|
23, 23, 24, 25, 25
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with nearest neigbors without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeNearest}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Nearest neighbor Resized to 7x8");
|
||||||
|
// expected.printBuffer("Nearest neighbor Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests12, ImageResize_Test11) {
|
||||||
|
|
||||||
|
NDArray input = NDArrayFactory::create<int>('c', {1, 5, 5, 1}, {
|
||||||
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
|
||||||
|
});
|
||||||
|
auto size = NDArrayFactory::create<int>({7, 8});
|
||||||
|
NDArray expected = NDArrayFactory::create<int>('c', {1, 7, 8, 1}, {
|
||||||
|
1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 10, 6,
|
||||||
|
6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 16,
|
||||||
|
17, 18, 18, 19, 20, 20, 16, 16, 17, 18, 18, 19, 20, 20, 21, 21, 22,
|
||||||
|
23, 23, 24, 25, 25
|
||||||
|
});
|
||||||
|
|
||||||
|
sd::ops::image_resize op;
|
||||||
|
// resize with nearest neigbors without antialising and aspect ratio preserving
|
||||||
|
auto results = op.evaluate({&input, &size}, {}, {ops::helpers::kResizeNearest}, {false, false});
|
||||||
|
|
||||||
|
ASSERT_EQ(ND4J_STATUS_OK, results.status());
|
||||||
|
|
||||||
|
auto result = results[0];///.at(0);
|
||||||
|
// result->printBuffer("Nearest neighbor Resized to 7x8");
|
||||||
|
// expected.printBuffer("Nearest neighbor Expect for 7x8");
|
||||||
|
ASSERT_TRUE(expected.isSameShape(result));
|
||||||
|
ASSERT_TRUE(expected.equalsTo(result));
|
||||||
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
TEST_F(DeclarableOpsTests12, TriangularSolve_Test_1) {
|
TEST_F(DeclarableOpsTests12, TriangularSolve_Test_1) {
|
||||||
|
|
||||||
|
|
|
@ -27,17 +27,12 @@ package org.nd4j.enums;
|
||||||
* ResizeArea: Anti-aliased resampling with area interpolation. 'antialias' has no effect when used with area interpolation; it always anti-aliases.
|
* ResizeArea: Anti-aliased resampling with area interpolation. 'antialias' has no effect when used with area interpolation; it always anti-aliases.
|
||||||
* ResizeMitchelcubic: Mitchell-Netravali Cubic non-interpolating filter. For synthetic images (especially those lacking proper prefiltering), less ringing than Keys cubic kernel but less sharp. */
|
* ResizeMitchelcubic: Mitchell-Netravali Cubic non-interpolating filter. For synthetic images (especially those lacking proper prefiltering), less ringing than Keys cubic kernel but less sharp. */
|
||||||
public enum ImageResizeMethod {
|
public enum ImageResizeMethod {
|
||||||
ResizeBilinear,
|
ResizeBilinear, // as java require
|
||||||
|
|
||||||
ResizeBicubic,
|
|
||||||
|
|
||||||
ResizeNearest,
|
ResizeNearest,
|
||||||
|
ResizeBicubic,
|
||||||
|
ResizeArea,
|
||||||
ResizeGaussian,
|
ResizeGaussian,
|
||||||
|
ResizeLanczos3,
|
||||||
ResizeLanczos5,
|
ResizeLanczos5,
|
||||||
|
ResizeMitchellcubic;
|
||||||
ResizeMitchelcubic,
|
|
||||||
|
|
||||||
ResizeArea
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -4417,7 +4417,7 @@ public native @Cast("bool") boolean isOptimalRequirementsMet();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* fill target matrix with given value in one or two directions from main diagonal:
|
* fill target matrix with given value in one or two directions from main diagonal:
|
||||||
* - down from main diagonal starting at subdiagonal number "lower" if direction = 'd' (down) or 'b' (both)
|
* - down from main diagonal starting at subdiagonal number "lower" if direction = 'l' (down) or 'b' (both)
|
||||||
* - up from main diagonal starting at superdiagonal number "upper"if direction = 'u' (up) or 'b' (both)
|
* - up from main diagonal starting at superdiagonal number "upper"if direction = 'u' (up) or 'b' (both)
|
||||||
* direction - in what direction to fill matrix. There are 3 possible directions:
|
* direction - in what direction to fill matrix. There are 3 possible directions:
|
||||||
* 'u' - fill up, mathematically this corresponds to lower triangular matrix, subdiagonal "lower" unaffected
|
* 'u' - fill up, mathematically this corresponds to lower triangular matrix, subdiagonal "lower" unaffected
|
||||||
|
@ -4830,9 +4830,11 @@ public native @Cast("bool") boolean isOptimalRequirementsMet();
|
||||||
////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// #ifndef __JAVACPP_HACK__
|
// #ifndef __JAVACPP_HACK__
|
||||||
// #endif
|
// #endif
|
||||||
|
@ -7349,9 +7351,9 @@ public static final int PREALLOC_SIZE = 33554432;
|
||||||
* Returns the element wise stride for this information
|
* Returns the element wise stride for this information
|
||||||
* buffer
|
* buffer
|
||||||
*/
|
*/
|
||||||
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongPointer buffer);
|
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongPointer shapeInfo);
|
||||||
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongBuffer buffer);
|
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongBuffer shapeInfo);
|
||||||
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") long[] buffer);
|
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") long[] shapeInfo);
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -4421,7 +4421,7 @@ public native @Cast("bool") boolean isOptimalRequirementsMet();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* fill target matrix with given value in one or two directions from main diagonal:
|
* fill target matrix with given value in one or two directions from main diagonal:
|
||||||
* - down from main diagonal starting at subdiagonal number "lower" if direction = 'd' (down) or 'b' (both)
|
* - down from main diagonal starting at subdiagonal number "lower" if direction = 'l' (down) or 'b' (both)
|
||||||
* - up from main diagonal starting at superdiagonal number "upper"if direction = 'u' (up) or 'b' (both)
|
* - up from main diagonal starting at superdiagonal number "upper"if direction = 'u' (up) or 'b' (both)
|
||||||
* direction - in what direction to fill matrix. There are 3 possible directions:
|
* direction - in what direction to fill matrix. There are 3 possible directions:
|
||||||
* 'u' - fill up, mathematically this corresponds to lower triangular matrix, subdiagonal "lower" unaffected
|
* 'u' - fill up, mathematically this corresponds to lower triangular matrix, subdiagonal "lower" unaffected
|
||||||
|
@ -4834,9 +4834,11 @@ public native @Cast("bool") boolean isOptimalRequirementsMet();
|
||||||
////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// #ifndef __JAVACPP_HACK__
|
// #ifndef __JAVACPP_HACK__
|
||||||
// #endif
|
// #endif
|
||||||
|
@ -7353,9 +7355,9 @@ public static final int PREALLOC_SIZE = 33554432;
|
||||||
* Returns the element wise stride for this information
|
* Returns the element wise stride for this information
|
||||||
* buffer
|
* buffer
|
||||||
*/
|
*/
|
||||||
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongPointer buffer);
|
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongPointer shapeInfo);
|
||||||
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongBuffer buffer);
|
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") LongBuffer shapeInfo);
|
||||||
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") long[] buffer);
|
@Namespace("shape") public static native @Cast("Nd4jLong") long elementWiseStride(@Cast("const Nd4jLong*") long[] shapeInfo);
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -21173,214 +21175,6 @@ public static final int TAD_THRESHOLD = TAD_THRESHOLD();
|
||||||
}
|
}
|
||||||
// #endif
|
// #endif
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make bilinear or nearest neighbor interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels) numeric type
|
|
||||||
* 1 - 2D-Tensor with shape (num_boxes, 4) float type
|
|
||||||
* 2 - 1D-Tensor with shape (num_boxes) int type
|
|
||||||
* 3 - 1D-Tensor with 2 values (newWidth, newHeight) (optional) int type
|
|
||||||
*
|
|
||||||
* float arguments (optional)
|
|
||||||
* 0 - exprapolation_value (optional) default 0.f
|
|
||||||
*
|
|
||||||
* int arguments: (optional)
|
|
||||||
* 0 - mode (default 0 - bilinear interpolation)
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized to crop_size images given - float type
|
|
||||||
*/
|
|
||||||
// #if NOT_EXCLUDED(OP_crop_and_resize)
|
|
||||||
@Namespace("sd::ops") public static class crop_and_resize extends DeclarableCustomOp {
|
|
||||||
static { Loader.load(); }
|
|
||||||
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
|
||||||
public crop_and_resize(Pointer p) { super(p); }
|
|
||||||
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
|
||||||
public crop_and_resize(long size) { super((Pointer)null); allocateArray(size); }
|
|
||||||
private native void allocateArray(long size);
|
|
||||||
@Override public crop_and_resize position(long position) {
|
|
||||||
return (crop_and_resize)super.position(position);
|
|
||||||
}
|
|
||||||
|
|
||||||
public crop_and_resize() { super((Pointer)null); allocate(); }
|
|
||||||
private native void allocate();
|
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
|
||||||
}
|
|
||||||
// #endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make bilinear interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
|
||||||
*
|
|
||||||
* int arguments: (optional)
|
|
||||||
* 0 - new width
|
|
||||||
* 1 - new height
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with calculated backproped dots
|
|
||||||
*
|
|
||||||
* CAUTION: either size tensor or a pair of int params should be provided.
|
|
||||||
*/
|
|
||||||
|
|
||||||
// #if NOT_EXCLUDED(OP_resize_bilinear)
|
|
||||||
@Namespace("sd::ops") public static class resize_bilinear extends DeclarableCustomOp {
|
|
||||||
static { Loader.load(); }
|
|
||||||
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
|
||||||
public resize_bilinear(Pointer p) { super(p); }
|
|
||||||
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
|
||||||
public resize_bilinear(long size) { super((Pointer)null); allocateArray(size); }
|
|
||||||
private native void allocateArray(long size);
|
|
||||||
@Override public resize_bilinear position(long position) {
|
|
||||||
return (resize_bilinear)super.position(position);
|
|
||||||
}
|
|
||||||
|
|
||||||
public resize_bilinear() { super((Pointer)null); allocate(); }
|
|
||||||
private native void allocate();
|
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
|
||||||
}
|
|
||||||
// #endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make nearest neighbor interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight) (optional)
|
|
||||||
*
|
|
||||||
* int arguments: (optional)
|
|
||||||
* 0 - new width
|
|
||||||
* 1 - new height
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
* CAUTION: either size tensor or a pair of int params should be provided.
|
|
||||||
*/
|
|
||||||
|
|
||||||
// #if NOT_EXCLUDED(OP_resize_nearest_neighbor)
|
|
||||||
@Namespace("sd::ops") public static class resize_nearest_neighbor extends DeclarableCustomOp {
|
|
||||||
static { Loader.load(); }
|
|
||||||
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
|
||||||
public resize_nearest_neighbor(Pointer p) { super(p); }
|
|
||||||
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
|
||||||
public resize_nearest_neighbor(long size) { super((Pointer)null); allocateArray(size); }
|
|
||||||
private native void allocateArray(long size);
|
|
||||||
@Override public resize_nearest_neighbor position(long position) {
|
|
||||||
return (resize_nearest_neighbor)super.position(position);
|
|
||||||
}
|
|
||||||
|
|
||||||
public resize_nearest_neighbor() { super((Pointer)null); allocate(); }
|
|
||||||
private native void allocate();
|
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
|
||||||
}
|
|
||||||
// #endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make bicubic interpolated resize for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
// #if NOT_EXCLUDED(OP_resize_bicubic)
|
|
||||||
@Namespace("sd::ops") public static class resize_bicubic extends DeclarableCustomOp {
|
|
||||||
static { Loader.load(); }
|
|
||||||
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
|
||||||
public resize_bicubic(Pointer p) { super(p); }
|
|
||||||
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
|
||||||
public resize_bicubic(long size) { super((Pointer)null); allocateArray(size); }
|
|
||||||
private native void allocateArray(long size);
|
|
||||||
@Override public resize_bicubic position(long position) {
|
|
||||||
return (resize_bicubic)super.position(position);
|
|
||||||
}
|
|
||||||
|
|
||||||
public resize_bicubic() { super((Pointer)null); allocate(); }
|
|
||||||
private native void allocate();
|
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
|
||||||
}
|
|
||||||
// #endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make area interpolated resize (as OpenCV INTER_AREA algorithm) for given tensor
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - images - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - size - 1D-Tensor with 2 values (newWidth, newHeight) (if missing a pair of integer args should be provided).
|
|
||||||
*
|
|
||||||
* int args: - proveded only when size tensor is missing
|
|
||||||
* 0 - new height
|
|
||||||
* 1 - new width
|
|
||||||
* boolean args:
|
|
||||||
* 0 - align_corners - optional (default is false)
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
// #if NOT_EXCLUDED(OP_resize_area)
|
|
||||||
@Namespace("sd::ops") public static class resize_area extends DeclarableCustomOp {
|
|
||||||
static { Loader.load(); }
|
|
||||||
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
|
||||||
public resize_area(Pointer p) { super(p); }
|
|
||||||
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
|
||||||
public resize_area(long size) { super((Pointer)null); allocateArray(size); }
|
|
||||||
private native void allocateArray(long size);
|
|
||||||
@Override public resize_area position(long position) {
|
|
||||||
return (resize_area)super.position(position);
|
|
||||||
}
|
|
||||||
|
|
||||||
public resize_area() { super((Pointer)null); allocate(); }
|
|
||||||
private native void allocate();
|
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
|
||||||
}
|
|
||||||
// #endif
|
|
||||||
|
|
||||||
/**
|
|
||||||
* This op make interpolated resize for given tensor with given algorithm.
|
|
||||||
* Supported algorithms are bilinear, bicubic, nearest_neighbor.
|
|
||||||
* Need to implement to full compatibility with TF: lanczos5, gaussian, area and mitchellcubic
|
|
||||||
*
|
|
||||||
* input array:
|
|
||||||
* 0 - 4D-Tensor with shape (batch, sizeX, sizeY, channels)
|
|
||||||
* 1 - 1D-Tensor with 2 values (newWidth, newHeight)
|
|
||||||
*
|
|
||||||
* optional int args:
|
|
||||||
* 0 - algorithm - bilinear by default
|
|
||||||
* optional bool args:
|
|
||||||
* 0 - preserve_aspect_ratio - default False
|
|
||||||
* 1 - antialias - default False
|
|
||||||
*
|
|
||||||
* output array:
|
|
||||||
* the 4D-Tensor with resized by given algorithm image (shape is {batch, newWidth, newHeight, channels})
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
// #if NOT_EXCLUDED(OP_image_resize)
|
|
||||||
@Namespace("sd::ops") public static class image_resize extends DeclarableCustomOp {
|
|
||||||
static { Loader.load(); }
|
|
||||||
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
|
||||||
public image_resize(Pointer p) { super(p); }
|
|
||||||
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
|
||||||
public image_resize(long size) { super((Pointer)null); allocateArray(size); }
|
|
||||||
private native void allocateArray(long size);
|
|
||||||
@Override public image_resize position(long position) {
|
|
||||||
return (image_resize)super.position(position);
|
|
||||||
}
|
|
||||||
|
|
||||||
public image_resize() { super((Pointer)null); allocate(); }
|
|
||||||
private native void allocate();
|
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
|
||||||
}
|
|
||||||
// #endif
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Copy a tensor setting everything outside a central band in each innermost matrix
|
* Copy a tensor setting everything outside a central band in each innermost matrix
|
||||||
*
|
*
|
||||||
|
@ -22783,7 +22577,7 @@ public static final int TAD_THRESHOLD = TAD_THRESHOLD();
|
||||||
// #define LIBND4J_HEADERS_BLAS_H
|
// #define LIBND4J_HEADERS_BLAS_H
|
||||||
|
|
||||||
// #include <ops/declarable/headers/common.h>
|
// #include <ops/declarable/headers/common.h>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This op is general matmum implementation. Depending on inputs dimensionality output result might be different.
|
* This op is general matmum implementation. Depending on inputs dimensionality output result might be different.
|
||||||
* matrix x matrix = BLAS gemm
|
* matrix x matrix = BLAS gemm
|
||||||
|
@ -22904,11 +22698,11 @@ public static final int TAD_THRESHOLD = TAD_THRESHOLD();
|
||||||
* alpha: vector of T
|
* alpha: vector of T
|
||||||
* beta: vector of T
|
* beta: vector of T
|
||||||
* ...: A, B matrices sequentially. i.e: AAAAABBBBB
|
* ...: A, B matrices sequentially. i.e: AAAAABBBBB
|
||||||
*
|
*
|
||||||
* Integer arguments:
|
* Integer arguments:
|
||||||
* transA, transB, M, N, K, ldA, ldB, ldC - usual BLAS gemm arguments
|
* transA, transB, M, N, K, ldA, ldB, ldC - usual BLAS gemm arguments
|
||||||
* batchCount - number of operations in this batch
|
* batchCount - number of operations in this batch
|
||||||
*
|
*
|
||||||
* PLEASE NOTE: M, N, K, ldA, ldB, ldC should be equal for all matrices within batch.
|
* PLEASE NOTE: M, N, K, ldA, ldB, ldC should be equal for all matrices within batch.
|
||||||
*/
|
*/
|
||||||
// #if NOT_EXCLUDED(OP_batched_gemm)
|
// #if NOT_EXCLUDED(OP_batched_gemm)
|
||||||
|
@ -22931,22 +22725,22 @@ public static final int TAD_THRESHOLD = TAD_THRESHOLD();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* performs singular value decomposition (SVD) of one or more matrices, evaluates the SVD of each inner-most 2D matrix in input array:
|
* performs singular value decomposition (SVD) of one or more matrices, evaluates the SVD of each inner-most 2D matrix in input array:
|
||||||
* x[..., :, :] = u[..., :, :] * s[...,:] * transpose(v[..., :, :])
|
* x[..., :, :] = u[..., :, :] * s[...,:] * transpose(v[..., :, :])
|
||||||
*
|
*
|
||||||
* Input array:
|
* Input array:
|
||||||
* x[..., Rows, Cols], the necessary condition is: rank of x >= 2
|
* x[..., Rows, Cols], the necessary condition is: rank of x >= 2
|
||||||
*
|
*
|
||||||
* Outputs arrays:
|
* Outputs arrays:
|
||||||
* s[..., diagSize] - array with singular values which are stored in decreasing order, diagSize is smaller among Rows and Cols
|
* s[..., diagSize] - array with singular values which are stored in decreasing order, diagSize is smaller among Rows and Cols
|
||||||
* u[..., Rows, Rows] if IArgs[1] is true, else u[..., Rows, diagSize] - array with right singular vectors
|
* u[..., Rows, Rows] if IArgs[1] is true, else u[..., Rows, diagSize] - array with right singular vectors
|
||||||
* v[..., Cols, Cols] if IArgs[1] is true, else v[..., Cols, diagSize] - array with left singular vectors
|
* v[..., Cols, Cols] if IArgs[1] is true, else v[..., Cols, diagSize] - array with left singular vectors
|
||||||
*
|
*
|
||||||
* Integer arguments:
|
* Integer arguments:
|
||||||
* IArgs[0] - bool, whether to calculate u and v, s is calculated in any case
|
* IArgs[0] - bool, whether to calculate u and v, s is calculated in any case
|
||||||
* IArgs[1] - bool, whether to calculate full-sized u and v
|
* IArgs[1] - bool, whether to calculate full-sized u and v
|
||||||
* IArgs[2] - the number of cols or rows which determines what algorithm to use. More precisely:
|
* IArgs[2] - the number of cols or rows which determines what algorithm to use. More precisely:
|
||||||
* if diagSize < IArgs[2] then Jacobi algorithm is used, in opposite case the Divide-And-Conquer is applied
|
* if diagSize < IArgs[2] then Jacobi algorithm is used, in opposite case the Divide-And-Conquer is applied
|
||||||
* Recommended value is 16.
|
* Recommended value is 16.
|
||||||
*/
|
*/
|
||||||
// #if NOT_EXCLUDED(OP_svd)
|
// #if NOT_EXCLUDED(OP_svd)
|
||||||
@Namespace("sd::ops") public static class svd extends DeclarableCustomOp {
|
@Namespace("sd::ops") public static class svd extends DeclarableCustomOp {
|
||||||
|
@ -22963,7 +22757,35 @@ public static final int TAD_THRESHOLD = TAD_THRESHOLD();
|
||||||
public svd() { super((Pointer)null); allocate(); }
|
public svd() { super((Pointer)null); allocate(); }
|
||||||
private native void allocate();
|
private native void allocate();
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
||||||
}
|
}
|
||||||
|
// #endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* calculates square root of matrix such that
|
||||||
|
* x[..., M, M] = z[..., M, M] x z[..., M, M]
|
||||||
|
*
|
||||||
|
* Input array:
|
||||||
|
* x[..., M, M], the necessary condition is: rank of x >= 2 and equality of last two dimensions
|
||||||
|
*
|
||||||
|
* Outputs arrays:
|
||||||
|
* z - same shape as x
|
||||||
|
*/
|
||||||
|
// #if NOT_EXCLUDED(OP_sqrtm)
|
||||||
|
@Namespace("sd::ops") public static class sqrtm extends DeclarableOp {
|
||||||
|
static { Loader.load(); }
|
||||||
|
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
||||||
|
public sqrtm(Pointer p) { super(p); }
|
||||||
|
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
||||||
|
public sqrtm(long size) { super((Pointer)null); allocateArray(size); }
|
||||||
|
private native void allocateArray(long size);
|
||||||
|
@Override public sqrtm position(long position) {
|
||||||
|
return (sqrtm)super.position(position);
|
||||||
|
}
|
||||||
|
|
||||||
|
public sqrtm() { super((Pointer)null); allocate(); }
|
||||||
|
private native void allocate();
|
||||||
|
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
||||||
|
}
|
||||||
// #endif
|
// #endif
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -2107,14 +2107,16 @@ public class TransformOpValidation extends BaseOpValidation {
|
||||||
//TODO: Methods failed ResizeLanczos5, ResizeMitchelcubic, ResizeArea
|
//TODO: Methods failed ResizeLanczos5, ResizeMitchelcubic, ResizeArea
|
||||||
|
|
||||||
for (ImageResizeMethod method : ImageResizeMethod.values()) {
|
for (ImageResizeMethod method : ImageResizeMethod.values()) {
|
||||||
if (method==ImageResizeMethod.ResizeLanczos5 || method==ImageResizeMethod.ResizeArea || method==ImageResizeMethod.ResizeMitchelcubic)
|
if (method==ImageResizeMethod.ResizeLanczos5 || method==ImageResizeMethod.ResizeArea || method==ImageResizeMethod.ResizeMitchellcubic)
|
||||||
{continue;}
|
{continue;}
|
||||||
|
|
||||||
|
log.info("Trying {}", method);
|
||||||
|
|
||||||
Nd4j.getRandom().setSeed(12345);
|
Nd4j.getRandom().setSeed(12345);
|
||||||
SameDiff sd = SameDiff.create();
|
SameDiff sd = SameDiff.create();
|
||||||
boolean preserveAspectRatio = true;
|
boolean preserveAspectRatio = true;
|
||||||
boolean antialias = true;
|
boolean antialias = true;
|
||||||
SDVariable inputImage = sd.var(Nd4j.rand(1, 5, 5, 3));
|
SDVariable inputImage = sd.var(Nd4j.rand(DataType.FLOAT, 1, 5, 5, 3));
|
||||||
// NHWC format
|
// NHWC format
|
||||||
long[] expectedShape = new long[]{1, 3, 3, 3};
|
long[] expectedShape = new long[]{1, 3, 3, 3};
|
||||||
SDVariable requestedSize = sd.constant(Nd4j.createFromArray( new long[]{3, 3}));
|
SDVariable requestedSize = sd.constant(Nd4j.createFromArray( new long[]{3, 3}));
|
||||||
|
|
Loading…
Reference in New Issue