DL4J CNN2D layers NHWC support (#376)
* First steps for DL4J NHWC support Signed-off-by: Alex Black <blacka101@gmail.com> * Conv2d NHWC forward pass works Signed-off-by: Alex Black <blacka101@gmail.com> * Conv2d NHWC backprop Signed-off-by: Alex Black <blacka101@gmail.com> * Conv2d backprop + fixes; subsampling fwd/bwd; improve tests Signed-off-by: Alex Black <blacka101@gmail.com> * Zero padding layer NHWC support Signed-off-by: Alex Black <blacka101@gmail.com> * Cropping2D NHWC support Signed-off-by: Alex Black <blacka101@gmail.com> * Deconv2d NHWC + clean up NHWC test framework code duplication Signed-off-by: Alex Black <blacka101@gmail.com> * CnnLossLayer NHWC support Signed-off-by: Alex Black <blacka101@gmail.com> * Upsampling and batchnorm NHWC support Signed-off-by: Alex Black <blacka101@gmail.com> * Space to depth Signed-off-by: Alex Black <blacka101@gmail.com> * Depthwise pt1 Signed-off-by: Alex Black <blacka101@gmail.com> * Depthwise pt2 and LRN Signed-off-by: Alex Black <blacka101@gmail.com> * SpaceToBatch Signed-off-by: Alex Black <blacka101@gmail.com> * LocallyConnected2D Signed-off-by: Alex Black <blacka101@gmail.com> * Fix depthwise nhwc support Signed-off-by: Alex Black <blacka101@gmail.com> * Upsampling NHWC - workaround for #8857 Signed-off-by: Alex Black <blacka101@gmail.com> * Workaround for #8859 - SpaceToDepth Signed-off-by: Alex Black <blacka101@gmail.com> * Batch normalization workaround - #8860 Signed-off-by: Alex Black <blacka101@gmail.com> * cuDNN fixes Signed-off-by: Alex Black <blacka101@gmail.com> * Switch cudnn conv2d to permute based impl due to 'true' NHWC not working Signed-off-by: Alex Black <blacka101@gmail.com> * cuDNN subsampling helper NHWC fix Signed-off-by: Alex Black <blacka101@gmail.com> * Upsampling/batchnorm fixes Signed-off-by: Alex Black <blacka101@gmail.com> * Small fixes Signed-off-by: Alex Black <blacka101@gmail.com> * CNN2D NHWC gradient checks (make CNNGradientCheckTest parameterized) Signed-off-by: Alex Black <blacka101@gmail.com> * Gradient checks, SConv2d, bunch of fixes Signed-off-by: Alex Black <blacka101@gmail.com> * Small fixes Signed-off-by: Alex Black <blacka101@gmail.com> * Global pooling NHWC support Signed-off-by: Alex Black <blacka101@gmail.com> * Also test both float and double for cuDNN NHWC tests Signed-off-by: Alex Black <blacka101@gmail.com> * Javadoc Signed-off-by: Alex Black <blacka101@gmail.com> * Ignore failing keras import test until next PR Signed-off-by: Alex Black <blacka101@gmail.com>master
parent
2c80b18f1d
commit
2a488efb1b
|
@ -21,6 +21,7 @@ import org.deeplearning4j.BaseDL4JTest;
|
|||
import org.deeplearning4j.TestUtils;
|
||||
import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator;
|
||||
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -34,6 +35,8 @@ import org.deeplearning4j.nn.weights.WeightInit;
|
|||
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
|
||||
import org.junit.Ignore;
|
||||
import org.junit.Test;
|
||||
import org.junit.runner.RunWith;
|
||||
import org.junit.runners.Parameterized;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
|
@ -51,6 +54,7 @@ import static org.junit.Assert.*;
|
|||
/**
|
||||
* Created by nyghtowl on 9/1/15.
|
||||
*/
|
||||
@RunWith(Parameterized.class)
|
||||
public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||
private static final boolean PRINT_RESULTS = true;
|
||||
private static final boolean RETURN_ON_FIRST_FAILURE = false;
|
||||
|
@ -62,6 +66,17 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
Nd4j.setDataType(DataType.DOUBLE);
|
||||
}
|
||||
|
||||
private CNN2DFormat format;
|
||||
|
||||
public CNNGradientCheckTest(CNN2DFormat format){
|
||||
this.format = format;
|
||||
}
|
||||
|
||||
@Parameterized.Parameters(name = "{0}")
|
||||
public static Object[] params(){
|
||||
return CNN2DFormat.values();
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getTimeoutMilliseconds() {
|
||||
return 90000L;
|
||||
|
@ -69,6 +84,9 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
@Test
|
||||
public void testGradientCNNMLN() {
|
||||
if(this.format != CNN2DFormat.NCHW) //Only test NCHW due to flat input format...
|
||||
return;
|
||||
|
||||
//Parameterized test, testing combinations of:
|
||||
// (a) activation function
|
||||
// (b) Whether to test at random initialization, or after some learning (i.e., 'characteristic mode of operation')
|
||||
|
@ -144,6 +162,9 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
@Test
|
||||
public void testGradientCNNL1L2MLN() {
|
||||
if(this.format != CNN2DFormat.NCHW) //Only test NCHW due to flat input format...
|
||||
return;
|
||||
|
||||
//Parameterized test, testing combinations of:
|
||||
// (a) activation function
|
||||
// (b) Whether to test at random initialization, or after some learning (i.e., 'characteristic mode of operation')
|
||||
|
@ -311,10 +332,12 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
new SubsamplingLayer.PoolingType[]{SubsamplingLayer.PoolingType.MAX,
|
||||
SubsamplingLayer.PoolingType.AVG, SubsamplingLayer.PoolingType.PNORM};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
for (String afn : activations) {
|
||||
for (SubsamplingLayer.PoolingType poolingType : poolingTypes) {
|
||||
for (int minibatchSize : minibatchSizes) {
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = Nd4j.zeros(4 * minibatchSize, nOut);
|
||||
for (int i = 0; i < 4 * minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -330,13 +353,13 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX)
|
||||
.nOut(nOut).build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width, inputDepth))
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format))
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
||||
String msg = "PoolingType=" + poolingType + ", minibatch=" + minibatchSize + ", activationFn="
|
||||
String msg = format + " - poolingType=" + poolingType + ", minibatch=" + minibatchSize + ", activationFn="
|
||||
+ afn;
|
||||
|
||||
if (PRINT_RESULTS) {
|
||||
|
@ -377,8 +400,11 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
int[] padding = {0, 0};
|
||||
int size = 2;
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (int minibatchSize : minibatchSizes) {
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = TestUtils.randomOneHot(minibatchSize, nOut);
|
||||
|
||||
MultiLayerConfiguration conf =
|
||||
|
@ -393,8 +419,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nIn(8 * 8 * 3)
|
||||
.nOut(4).build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width,
|
||||
inputDepth))
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format))
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
|
@ -438,10 +463,13 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
new SubsamplingLayer.PoolingType[]{SubsamplingLayer.PoolingType.MAX,
|
||||
SubsamplingLayer.PoolingType.AVG, SubsamplingLayer.PoolingType.PNORM};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (Activation afn : activations) {
|
||||
for (SubsamplingLayer.PoolingType poolingType : poolingTypes) {
|
||||
for (int minibatchSize : minibatchSizes) {
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int i = 0; i < minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -461,14 +489,13 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nIn(3 * 3 * 3)
|
||||
.nOut(4).build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width,
|
||||
inputDepth))
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format))
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
||||
String msg = "PoolingType=" + poolingType + ", minibatch=" + minibatchSize + ", activationFn="
|
||||
String msg = format + " - poolingType=" + poolingType + ", minibatch=" + minibatchSize + ", activationFn="
|
||||
+ afn;
|
||||
|
||||
if (PRINT_RESULTS) {
|
||||
|
@ -508,10 +535,13 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
new SubsamplingLayer.PoolingType[]{SubsamplingLayer.PoolingType.MAX,
|
||||
SubsamplingLayer.PoolingType.AVG, SubsamplingLayer.PoolingType.PNORM};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (Activation afn : activations) {
|
||||
for (SubsamplingLayer.PoolingType poolingType : poolingTypes) {
|
||||
for (int minibatchSize : minibatchSizes) {
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int i = 0; i < minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -533,8 +563,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nIn(2 * 2 * 2)
|
||||
.nOut(4).build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width,
|
||||
inputDepth))
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format))
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
|
@ -558,8 +587,6 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
@Test
|
||||
public void testCnnLocallyConnected2D() {
|
||||
int nOut = 3;
|
||||
|
||||
int[] minibatchSizes = {2};
|
||||
int width = 5;
|
||||
int height = 5;
|
||||
|
||||
|
@ -569,11 +596,15 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
Activation[] activations = {Activation.SIGMOID, Activation.TANH, Activation.SOFTPLUS};
|
||||
int[] minibatch = {2, 1, 3};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for( int i=0; i<inputDepths.length; i++ ){
|
||||
int inputDepth = inputDepths[i];
|
||||
Activation afn = activations[i];
|
||||
int minibatchSize = minibatch[i];
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = TestUtils.randomOneHot(minibatchSize, nOut);
|
||||
|
||||
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345).updater(new NoOp())
|
||||
|
@ -590,7 +621,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nIn(2 * 2 * 2).nOut(nOut)
|
||||
.build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width, inputDepth)).build();
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format)).build();
|
||||
|
||||
assertEquals(ConvolutionMode.Truncate,
|
||||
((ConvolutionLayer) conf.getConf(0).getLayer()).getConvolutionMode());
|
||||
|
@ -626,11 +657,15 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (int inputDepth : inputDepths) {
|
||||
for (Activation afn : activations) {
|
||||
for (SubsamplingLayer.PoolingType poolingType : poolingTypes) {
|
||||
for (int minibatchSize : minibatchSizes) {
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int i = 0; i < minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -649,7 +684,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nIn(2 * 2 * 2).nOut(nOut)
|
||||
.build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width, inputDepth)).build();
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format)).build();
|
||||
|
||||
assertEquals(ConvolutionMode.Truncate,
|
||||
((ConvolutionLayer) conf.getConf(0).getLayer()).getConvolutionMode());
|
||||
|
@ -691,13 +726,17 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for( int i=0; i<minibatchSizes.length; i++ ){
|
||||
int inputDepth = inputDepths[i];
|
||||
int minibatchSize = minibatchSizes[i];
|
||||
int height = heights[i];
|
||||
int k = kernelSizes[i];
|
||||
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
|
||||
INDArray labels = TestUtils.randomOneHot(minibatchSize, nOut);
|
||||
|
||||
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345)
|
||||
|
@ -713,7 +752,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.stride(1, 1).padding(0, 0).build())
|
||||
.layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width, inputDepth)).build();
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format)).build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
@ -748,13 +787,16 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (int inputDepth : inputDepths) {
|
||||
for (int minibatchSize : minibatchSizes) {
|
||||
for (int stride : strides) {
|
||||
for (int k : kernelSizes) {
|
||||
for (boolean convFirst : new boolean[]{true, false}) {
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * inputDepth);
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int i = 0; i < minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -775,7 +817,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(1, convFirst ? poolLayer : convLayer)
|
||||
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width, inputDepth))
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format))
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
|
@ -822,11 +864,15 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
int[] inputDepths = {1, 3, 2};
|
||||
int[][] zeroPadLayer = new int[][]{{0, 0, 0, 0}, {1, 1, 0, 0}, {2, 2, 2, 2}};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for( int i=0; i<minibatchSizes.length; i++ ){
|
||||
int minibatchSize = minibatchSizes[i];
|
||||
int inputDepth = inputDepths[i];
|
||||
int[] zeroPad = zeroPadLayer[i];
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, new int[]{minibatchSize, inputDepth, height, width});
|
||||
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = TestUtils.randomOneHot(minibatchSize, nOut);
|
||||
|
||||
MultiLayerConfiguration conf =
|
||||
|
@ -840,7 +886,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
padding).nIn(3).nOut(3).build())//output: (6-2+0)/1+1 = 5
|
||||
.layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(4).build())
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth))
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format))
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
|
@ -849,8 +895,14 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
//Check zero padding activation shape
|
||||
org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer zpl =
|
||||
(org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer) net.getLayer(1);
|
||||
val expShape = new long[]{minibatchSize, inputDepth, height + zeroPad[0] + zeroPad[1],
|
||||
long[] expShape;
|
||||
if(nchw){
|
||||
expShape = new long[]{minibatchSize, inputDepth, height + zeroPad[0] + zeroPad[1],
|
||||
width + zeroPad[2] + zeroPad[3]};
|
||||
} else {
|
||||
expShape = new long[]{minibatchSize, height + zeroPad[0] + zeroPad[1],
|
||||
width + zeroPad[2] + zeroPad[3], inputDepth};
|
||||
}
|
||||
INDArray out = zpl.activate(input, false, LayerWorkspaceMgr.noWorkspaces());
|
||||
assertArrayEquals(expShape, out.shape());
|
||||
|
||||
|
@ -888,6 +940,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (int i = 0; i < minibatchSizes.length; i++) {
|
||||
int minibatchSize = minibatchSizes[i];
|
||||
int k = kernelSizes[i];
|
||||
|
@ -900,7 +954,10 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
int w = d * width;
|
||||
int h = d * height;
|
||||
|
||||
INDArray input = Nd4j.rand(minibatchSize, w * h * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, h, w} : new long[]{minibatchSize, h, w, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
|
||||
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int j = 0; j < minibatchSize; j++) {
|
||||
labels.putScalar(new int[]{j, j % nOut}, 1.0);
|
||||
|
@ -920,7 +977,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
MultiLayerConfiguration conf = b.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
.setInputType(InputType.convolutionalFlat(h, w, inputDepth)).build();
|
||||
.setInputType(InputType.convolutional(h, w, inputDepth, format)).build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
@ -945,8 +1002,6 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
@Test
|
||||
public void testSeparableConv2D() {
|
||||
int nOut = 2;
|
||||
|
||||
int[] minibatchSizes = new int[]{1, 3};
|
||||
int width = 6;
|
||||
int height = 6;
|
||||
int inputDepth = 3;
|
||||
|
@ -959,6 +1014,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
ConvolutionMode[] cms = new ConvolutionMode[]{Truncate, Truncate, Truncate, Truncate, Truncate};
|
||||
int[] mb = new int[]{1, 1, 1, 3, 3};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (int t = 0; t < ks.length; t++) {
|
||||
|
||||
int k = ks[t];
|
||||
|
@ -971,7 +1028,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
int w = d * width;
|
||||
int h = d * height;
|
||||
|
||||
INDArray input = Nd4j.rand(minibatchSize, w * h * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, h, w} : new long[]{minibatchSize, h, w, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int i = 0; i < minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -992,7 +1050,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
MultiLayerConfiguration conf = b.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
.setInputType(InputType.convolutionalFlat(h, w, inputDepth)).build();
|
||||
.setInputType(InputType.convolutional(h, w, inputDepth, format)).build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
@ -1017,7 +1075,6 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
@Test
|
||||
public void testCnnDilated() {
|
||||
int nOut = 2;
|
||||
|
||||
int minibatchSize = 2;
|
||||
int width = 8;
|
||||
int height = 8;
|
||||
|
@ -1031,9 +1088,9 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
int[] ds = new int[]{2, 2, 3, 3, 2};
|
||||
ConvolutionMode[] cms = new ConvolutionMode[]{Same, Truncate, Truncate, Same, Truncate};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (int t = 0; t < sub.length; t++) {
|
||||
|
||||
boolean subsampling = sub[t];
|
||||
int s = stride[t];
|
||||
int k = kernel[t];
|
||||
|
@ -1044,7 +1101,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
int w = d * width;
|
||||
int h = d * height;
|
||||
|
||||
INDArray input = Nd4j.rand(minibatchSize, w * h * inputDepth);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, h, w} : new long[]{minibatchSize, h, w, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int i = 0; i < minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -1076,7 +1134,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
MultiLayerConfiguration conf = b.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
.setInputType(InputType.convolutionalFlat(h, w, inputDepth)).build();
|
||||
.setInputType(InputType.convolutional(h, w, inputDepth, format)).build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
@ -1114,11 +1172,14 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
int[] inputDepths = {1, 2, 3, 2};
|
||||
int[] minibatchSizes = {2, 1, 3, 2};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for (int i = 0; i < cropTestCases.length; i++) {
|
||||
int inputDepth = inputDepths[i];
|
||||
int minibatchSize = minibatchSizes[i];
|
||||
int[] crop = cropTestCases[i];
|
||||
INDArray input = Nd4j.rand(new int[]{minibatchSize, inputDepth, height, width});
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, inputDepth, height, width} : new long[]{minibatchSize, height, width, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = TestUtils.randomOneHot(minibatchSize, nOut);
|
||||
|
||||
MultiLayerConfiguration conf =
|
||||
|
@ -1134,7 +1195,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.AVG).kernelSize(3, 3).stride(3, 3).build())
|
||||
.layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth))
|
||||
.setInputType(InputType.convolutional(height, width, inputDepth, format))
|
||||
.build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
|
@ -1143,12 +1204,18 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
//Check cropping activation shape
|
||||
org.deeplearning4j.nn.layers.convolution.Cropping2DLayer cl =
|
||||
(org.deeplearning4j.nn.layers.convolution.Cropping2DLayer) net.getLayer(1);
|
||||
val expShape = new long[]{minibatchSize, inputDepth, height - crop[0] - crop[1],
|
||||
long[] expShape;
|
||||
if(nchw){
|
||||
expShape = new long[]{minibatchSize, inputDepth, height - crop[0] - crop[1],
|
||||
width - crop[2] - crop[3]};
|
||||
} else {
|
||||
expShape = new long[]{minibatchSize, height - crop[0] - crop[1],
|
||||
width - crop[2] - crop[3], inputDepth};
|
||||
}
|
||||
INDArray out = cl.activate(input, false, LayerWorkspaceMgr.noWorkspaces());
|
||||
assertArrayEquals(expShape, out.shape());
|
||||
|
||||
String msg = "minibatch=" + minibatchSize + ", channels=" + inputDepth + ", zeroPad = "
|
||||
String msg = format + " - minibatch=" + minibatchSize + ", channels=" + inputDepth + ", zeroPad = "
|
||||
+ Arrays.toString(crop);
|
||||
|
||||
if (PRINT_RESULTS) {
|
||||
|
@ -1181,6 +1248,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
Truncate, Truncate, Truncate, Truncate, Truncate};
|
||||
int[] mb = new int[]{1,1,1,3,3};
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
for( int t=0; t<ks.length; t++ ){
|
||||
|
||||
int k = ks[t];
|
||||
|
@ -1188,8 +1257,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
ConvolutionMode cm = cms[t];
|
||||
int minibatchSize = mb[t];
|
||||
|
||||
|
||||
INDArray input = Nd4j.rand(minibatchSize, width * height * nIn);
|
||||
long[] inShape = nchw ? new long[]{minibatchSize, nIn, height, width} : new long[]{minibatchSize, height, width, nIn};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape);
|
||||
INDArray labels = Nd4j.zeros(minibatchSize, nOut);
|
||||
for (int i = 0; i < minibatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % nOut}, 1.0);
|
||||
|
@ -1211,7 +1280,7 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
|||
|
||||
MultiLayerConfiguration conf = b.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
.setInputType(InputType.convolutionalFlat(height, width, nIn)).build();
|
||||
.setInputType(InputType.convolutional(height, width, nIn, format)).build();
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.gradientcheck;
|
|||
|
||||
import org.deeplearning4j.BaseDL4JTest;
|
||||
import org.deeplearning4j.TestUtils;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -115,15 +116,17 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
|||
//Basic test of global pooling w/ CNN
|
||||
Nd4j.getRandom().setSeed(12345L);
|
||||
|
||||
for(boolean nchw : new boolean[]{true, false}) {
|
||||
|
||||
int inputDepth = 3;
|
||||
int inputH = 5;
|
||||
int inputW = 4;
|
||||
int layerDepth = 4;
|
||||
int nOut = 2;
|
||||
|
||||
int[] minibatchSizes = new int[] {1, 3};
|
||||
int[] minibatchSizes = new int[]{1, 3};
|
||||
PoolingType[] poolingTypes =
|
||||
new PoolingType[] {PoolingType.AVG, PoolingType.SUM, PoolingType.MAX, PoolingType.PNORM};
|
||||
new PoolingType[]{PoolingType.AVG, PoolingType.SUM, PoolingType.MAX, PoolingType.PNORM};
|
||||
|
||||
for (int miniBatchSize : minibatchSizes) {
|
||||
for (PoolingType pt : poolingTypes) {
|
||||
|
@ -137,14 +140,14 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
|||
.layer(1, new GlobalPoolingLayer.Builder().poolingType(pt).build())
|
||||
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(nOut).build())
|
||||
|
||||
.setInputType(InputType.convolutional(inputH, inputW, inputDepth)).build();
|
||||
.setInputType(InputType.convolutional(inputH, inputW, inputDepth, nchw ? CNN2DFormat.NCHW : CNN2DFormat.NHWC)).build();
|
||||
|
||||
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
|
||||
mln.init();
|
||||
|
||||
Random r = new Random(12345L);
|
||||
INDArray input = Nd4j.rand(new int[] {miniBatchSize, inputDepth, inputH, inputW}).subi(0.5);
|
||||
long[] inShape = nchw ? new long[]{miniBatchSize, inputDepth, inputH, inputW} : new long[]{miniBatchSize, inputH, inputW, inputDepth};
|
||||
INDArray input = Nd4j.rand(DataType.DOUBLE, inShape).subi(0.5);
|
||||
|
||||
INDArray labels = Nd4j.zeros(miniBatchSize, nOut);
|
||||
for (int i = 0; i < miniBatchSize; i++) {
|
||||
|
@ -153,8 +156,7 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
|||
}
|
||||
|
||||
if (PRINT_RESULTS) {
|
||||
System.out.println(
|
||||
"testCnnGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = " + miniBatchSize);
|
||||
System.out.println("testCnnGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = " + miniBatchSize + " - " + (nchw ? "NCHW" : "NHWC"));
|
||||
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||
}
|
||||
|
@ -167,6 +169,7 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLSTMWithMasking() {
|
||||
|
|
|
@ -0,0 +1,883 @@
|
|||
/* ******************************************************************************
|
||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
package org.deeplearning4j.nn.layers.convolution;
|
||||
|
||||
import lombok.AllArgsConstructor;
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import lombok.NoArgsConstructor;
|
||||
import org.deeplearning4j.BaseDL4JTest;
|
||||
import org.deeplearning4j.TestUtils;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
import org.deeplearning4j.nn.conf.layers.*;
|
||||
import org.deeplearning4j.nn.conf.layers.CnnLossLayer;
|
||||
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
|
||||
import org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer;
|
||||
import org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.junit.Test;
|
||||
import org.junit.runner.RunWith;
|
||||
import org.junit.runners.Parameterized;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
|
||||
@RunWith(Parameterized.class)
|
||||
public class ConvDataFormatTests extends BaseDL4JTest {
|
||||
|
||||
private final DataType dataType;
|
||||
|
||||
public ConvDataFormatTests(DataType dataType){
|
||||
this.dataType = dataType;
|
||||
}
|
||||
|
||||
@Parameterized.Parameters(name = "{0}")
|
||||
public static Object[] params(){
|
||||
return new DataType[]{DataType.FLOAT, DataType.DOUBLE};
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testConv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getConv2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getConv2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getConv2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getConv2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubsampling2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSubsampling2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getSubsampling2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getSubsampling2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getSubsampling2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDepthwiseConv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getDepthwiseConv2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getDepthwiseConv2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getDepthwiseConv2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getDepthwiseConv2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSeparableConv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSeparableConv2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getSeparableConv2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getSeparableConv2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getSeparableConv2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDeconv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getDeconv2DNet2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getDeconv2DNet2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getDeconv2DNet2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getDeconv2DNet2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLRN() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getLrnLayer(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getLrnLayer(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getLrnLayer(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getLrnLayer(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testZeroPaddingLayer(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getZeroPaddingNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getZeroPaddingNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getZeroPaddingNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getZeroPaddingNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCropping2DLayer(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getCropping2dNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getCropping2dNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getCropping2dNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getCropping2dNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testUpsampling2d(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getUpsamplingNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getUpsamplingNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getUpsamplingNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getUpsamplingNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBatchNormNet(){
|
||||
try {
|
||||
for(boolean useLogStd : new boolean[]{true, false}) {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = (helpers ? "With helpers" : "No helpers") + " - " + (useLogStd ? "logstd" : "std");
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getBatchNormNet(useLogStd, CNN2DFormat.NCHW, true))
|
||||
.net2(getBatchNormNet(useLogStd, CNN2DFormat.NCHW, false))
|
||||
.net3(getBatchNormNet(useLogStd, CNN2DFormat.NHWC, true))
|
||||
.net4(getBatchNormNet(useLogStd, CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCnnLossLayer() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labelsNHWC = TestUtils.randomOneHot(this.dataType,2*6*6, 3);
|
||||
labelsNHWC = labelsNHWC.reshape(2,6,6,3);
|
||||
INDArray labelsNCHW = labelsNHWC.permute(0,3,1,2).dup();
|
||||
|
||||
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getCnnLossNet(CNN2DFormat.NCHW, true, ConvolutionMode.Same))
|
||||
.net2(getCnnLossNet(CNN2DFormat.NCHW, false, ConvolutionMode.Same))
|
||||
.net3(getCnnLossNet(CNN2DFormat.NHWC, true, ConvolutionMode.Same))
|
||||
.net4(getCnnLossNet(CNN2DFormat.NHWC, false, ConvolutionMode.Same))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labelsNCHW)
|
||||
.labelsNHWC(labelsNHWC)
|
||||
.testLayerIdx(1)
|
||||
.nhwcOutput(true)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSpaceToDepthNet(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSpaceToDepthNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getSpaceToDepthNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getSpaceToDepthNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getSpaceToDepthNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSpaceToBatchNet(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 16, 16);
|
||||
INDArray labels = TestUtils.randomOneHot(8, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSpaceToBatchNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getSpaceToBatchNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getSpaceToBatchNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getSpaceToBatchNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLocallyConnected() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getLocallyConnectedNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getLocallyConnectedNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getLocallyConnectedNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getLocallyConnectedNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getConv2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSubsampling2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SubsamplingLayer.Builder()
|
||||
.kernelSize(2, 2)
|
||||
.stride(1, 1)
|
||||
.dataFormat(format)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new SubsamplingLayer.Builder()
|
||||
.kernelSize(2, 2)
|
||||
.stride(1, 1)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSeparableConv2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SeparableConvolution2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new SeparableConvolution2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getDepthwiseConv2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new DepthwiseConvolution2D.Builder()
|
||||
.depthMultiplier(2)
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new DepthwiseConvolution2D.Builder()
|
||||
.depthMultiplier(2)
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getLrnLayer(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new LocalResponseNormalization.Builder()
|
||||
.dataFormat(format)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new LocalResponseNormalization.Builder()
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getZeroPaddingNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new ZeroPaddingLayer.Builder(2,2)
|
||||
.dataFormat(format).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new ZeroPaddingLayer.Builder(2,2).build(),
|
||||
format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getCropping2dNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new Cropping2D.Builder(2,2)
|
||||
.dataFormat(format).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new Cropping2D.Builder(2,2)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getUpsamplingNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new Upsampling2D.Builder(2)
|
||||
.dataFormat(format).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new Upsampling2D.Builder(2)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getDeconv2DNet2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new Deconvolution2D.Builder().nOut(2)
|
||||
.activation(Activation.TANH)
|
||||
.kernelSize(2,2)
|
||||
.stride(2,2)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new Deconvolution2D.Builder().nOut(2)
|
||||
.activation(Activation.TANH)
|
||||
.kernelSize(2,2)
|
||||
.stride(2,2)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getBatchNormNet(boolean logStdev, CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new BatchNormalization.Builder()
|
||||
.useLogStd(logStdev)
|
||||
.dataFormat(format)
|
||||
.helperAllowFallback(false)
|
||||
.nOut(3).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new BatchNormalization.Builder()
|
||||
.useLogStd(logStdev)
|
||||
.helperAllowFallback(false)
|
||||
.nOut(3).build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSpaceToDepthNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SpaceToDepthLayer.Builder()
|
||||
.blocks(2)
|
||||
.dataFormat(format)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new SpaceToDepthLayer.Builder()
|
||||
.blocks(2)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSpaceToBatchNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SpaceToBatchLayer.Builder()
|
||||
.blocks(2, 2)
|
||||
.dataFormat(format)
|
||||
.build(), format, ConvolutionMode.Same, InputType.convolutional(16, 16, 3, format));
|
||||
} else {
|
||||
return getNetWithLayer(new SpaceToBatchLayer.Builder()
|
||||
.blocks(2, 2)
|
||||
.build(), format, ConvolutionMode.Same, InputType.convolutional(16, 16, 3, format));
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getLocallyConnectedNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new LocallyConnected2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new LocallyConnected2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getNetWithLayer(Layer layer, CNN2DFormat format, ConvolutionMode cm, InputType inputType) {
|
||||
NeuralNetConfiguration.ListBuilder builder = new NeuralNetConfiguration.Builder()
|
||||
.dataType(this.dataType)
|
||||
.seed(12345)
|
||||
.convolutionMode(cm)
|
||||
.list()
|
||||
.layer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build())
|
||||
.layer(layer)
|
||||
.layer(new OutputLayer.Builder().activation(Activation.SOFTMAX).nOut(10).build())
|
||||
.setInputType(inputType != null ? inputType : InputType.convolutional(12, 12, 3, format));
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(builder.build());
|
||||
net.init();
|
||||
return net;
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getCnnLossNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm){
|
||||
NeuralNetConfiguration.ListBuilder builder = new NeuralNetConfiguration.Builder()
|
||||
.seed(12345)
|
||||
.convolutionMode(cm)
|
||||
.list()
|
||||
.layer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build());
|
||||
if(setOnLayerAlso){
|
||||
builder.layer(new CnnLossLayer.Builder().format(format).activation(Activation.SOFTMAX).build());
|
||||
} else {
|
||||
builder.layer(new CnnLossLayer.Builder().activation(Activation.SOFTMAX).build());
|
||||
}
|
||||
|
||||
builder.setInputType(InputType.convolutional(12, 12, 3, format));
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(builder.build());
|
||||
net.init();
|
||||
return net;
|
||||
}
|
||||
|
||||
@AllArgsConstructor
|
||||
@Data
|
||||
@NoArgsConstructor
|
||||
@Builder
|
||||
private static class TestCase {
|
||||
private String msg;
|
||||
private MultiLayerNetwork net1;
|
||||
private MultiLayerNetwork net2;
|
||||
private MultiLayerNetwork net3;
|
||||
private MultiLayerNetwork net4;
|
||||
private INDArray inNCHW;
|
||||
private INDArray labelsNCHW;
|
||||
private INDArray labelsNHWC;
|
||||
private int testLayerIdx;
|
||||
private boolean nhwcOutput;
|
||||
}
|
||||
|
||||
public static void testHelper(TestCase tc) {
|
||||
|
||||
tc.net2.params().assign(tc.net1.params());
|
||||
tc.net3.params().assign(tc.net1.params());
|
||||
tc.net4.params().assign(tc.net1.params());
|
||||
|
||||
//Test forward pass:
|
||||
INDArray inNCHW = tc.inNCHW;
|
||||
INDArray inNHWC = tc.inNCHW.permute(0, 2, 3, 1).dup();
|
||||
|
||||
INDArray l0_1 = tc.net1.feedForward(inNCHW).get(tc.testLayerIdx + 1);
|
||||
INDArray l0_2 = tc.net2.feedForward(inNCHW).get(tc.testLayerIdx + 1);
|
||||
INDArray l0_3 = tc.net3.feedForward(inNHWC).get(tc.testLayerIdx + 1);
|
||||
INDArray l0_4 = tc.net4.feedForward(inNHWC).get(tc.testLayerIdx + 1);
|
||||
|
||||
assertEquals(tc.msg, l0_1, l0_2);
|
||||
assertEquals(tc.msg, l0_1, l0_3.permute(0, 3, 1, 2));
|
||||
assertEquals(tc.msg, l0_1, l0_4.permute(0, 3, 1, 2));
|
||||
|
||||
|
||||
INDArray out1 = tc.net1.output(inNCHW);
|
||||
INDArray out2 = tc.net2.output(inNCHW);
|
||||
INDArray out3 = tc.net3.output(inNHWC);
|
||||
INDArray out4 = tc.net4.output(inNHWC);
|
||||
|
||||
assertEquals(tc.msg, out1, out2);
|
||||
if(!tc.nhwcOutput) {
|
||||
assertEquals(tc.msg, out1, out3);
|
||||
assertEquals(tc.msg, out1, out4);
|
||||
} else {
|
||||
assertEquals(tc.msg, out1, out3.permute(0,3,1,2)); //NHWC to NCHW
|
||||
assertEquals(tc.msg, out1, out4.permute(0,3,1,2));
|
||||
}
|
||||
|
||||
//Test backprop
|
||||
Pair<Gradient, INDArray> p1 = tc.net1.calculateGradients(inNCHW, tc.labelsNCHW, null, null);
|
||||
Pair<Gradient, INDArray> p2 = tc.net2.calculateGradients(inNCHW, tc.labelsNCHW, null, null);
|
||||
Pair<Gradient, INDArray> p3 = tc.net3.calculateGradients(inNHWC, tc.labelsNHWC, null, null);
|
||||
Pair<Gradient, INDArray> p4 = tc.net4.calculateGradients(inNHWC, tc.labelsNHWC, null, null);
|
||||
|
||||
//Inpput gradients
|
||||
assertEquals(tc.msg, p1.getSecond(), p2.getSecond());
|
||||
assertEquals(tc.msg, p1.getSecond(), p3.getSecond().permute(0,3,1,2)); //Input gradients for NHWC input are also in NHWC format
|
||||
assertEquals(tc.msg, p1.getSecond(), p4.getSecond().permute(0,3,1,2));
|
||||
|
||||
List<String> diff12 = differentGrads(p1.getFirst(), p2.getFirst());
|
||||
List<String> diff13 = differentGrads(p1.getFirst(), p3.getFirst());
|
||||
List<String> diff14 = differentGrads(p1.getFirst(), p4.getFirst());
|
||||
assertEquals(tc.msg + " " + diff12, 0, diff12.size());
|
||||
assertEquals(tc.msg + " " + diff13, 0, diff13.size());
|
||||
assertEquals(tc.msg + " " + diff14, 0, diff14.size());
|
||||
|
||||
assertEquals(tc.msg, p1.getFirst().gradientForVariable(), p2.getFirst().gradientForVariable());
|
||||
assertEquals(tc.msg, p1.getFirst().gradientForVariable(), p3.getFirst().gradientForVariable());
|
||||
assertEquals(tc.msg, p1.getFirst().gradientForVariable(), p4.getFirst().gradientForVariable());
|
||||
|
||||
tc.net1.fit(inNCHW, tc.labelsNCHW);
|
||||
tc.net2.fit(inNCHW, tc.labelsNCHW);
|
||||
tc.net3.fit(inNHWC, tc.labelsNHWC);
|
||||
tc.net4.fit(inNHWC, tc.labelsNHWC);
|
||||
|
||||
assertEquals(tc.msg, tc.net1.params(), tc.net2.params());
|
||||
assertEquals(tc.msg, tc.net1.params(), tc.net3.params());
|
||||
assertEquals(tc.msg, tc.net1.params(), tc.net4.params());
|
||||
|
||||
//Test serialization
|
||||
MultiLayerNetwork net1a = TestUtils.testModelSerialization(tc.net1);
|
||||
MultiLayerNetwork net2a = TestUtils.testModelSerialization(tc.net2);
|
||||
MultiLayerNetwork net3a = TestUtils.testModelSerialization(tc.net3);
|
||||
MultiLayerNetwork net4a = TestUtils.testModelSerialization(tc.net4);
|
||||
|
||||
out1 = tc.net1.output(inNCHW);
|
||||
assertEquals(tc.msg, out1, net1a.output(inNCHW));
|
||||
assertEquals(tc.msg, out1, net2a.output(inNCHW));
|
||||
if(!tc.nhwcOutput) {
|
||||
assertEquals(tc.msg, out1, net3a.output(inNHWC));
|
||||
assertEquals(tc.msg, out1, net4a.output(inNHWC));
|
||||
} else {
|
||||
assertEquals(tc.msg, out1, net3a.output(inNHWC).permute(0,3,1,2)); //NHWC to NCHW
|
||||
assertEquals(tc.msg, out1, net4a.output(inNHWC).permute(0,3,1,2));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private static List<String> differentGrads(Gradient g1, Gradient g2){
|
||||
List<String> differs = new ArrayList<>();
|
||||
Map<String,INDArray> m1 = g1.gradientForVariable();
|
||||
Map<String,INDArray> m2 = g2.gradientForVariable();
|
||||
for(String s : m1.keySet()){
|
||||
INDArray a1 = m1.get(s);
|
||||
INDArray a2 = m2.get(s);
|
||||
if(!a1.equals(a2)){
|
||||
differs.add(s);
|
||||
}
|
||||
}
|
||||
return differs;
|
||||
}
|
||||
}
|
|
@ -178,8 +178,6 @@ public abstract class BaseCudnnHelper {
|
|||
}
|
||||
}
|
||||
|
||||
protected static final int TENSOR_FORMAT = CUDNN_TENSOR_NCHW;
|
||||
|
||||
protected final DataType nd4jDataType;
|
||||
protected final int dataType;
|
||||
protected final int dataTypeSize;
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||
* Copyright (c) 2020 Konduit K.K.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
|
@ -22,6 +23,7 @@ import lombok.extern.slf4j.Slf4j;
|
|||
import lombok.val;
|
||||
import com.jakewharton.byteunits.BinaryByteUnit;
|
||||
import org.bytedeco.javacpp.Pointer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer.AlgoMode;
|
||||
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdDataAlgo;
|
||||
|
@ -138,7 +140,21 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
public Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel,
|
||||
int[] strides, int[] pad, INDArray biasGradView, INDArray weightGradView, IActivation afn,
|
||||
AlgoMode mode, BwdFilterAlgo bwdFilterAlgo, BwdDataAlgo bwdDataAlgo,
|
||||
ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
|
||||
//AB 2020/04/21 - cuDNN does have NHWC support (with limitations) however I have been unable to get it working
|
||||
// correctly on NHWC data, even after updating all descriptors, tensor format, etc.
|
||||
//Therefore: all computation here is done in NCHW format only
|
||||
//As of a future (next?) release we'll likely switch to C++ for cuDNN support
|
||||
boolean origNHWC = false;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
input = input.permute(0,3,1,2); //NHWC to NCHW
|
||||
delta = delta.permute(0,3,1,2);
|
||||
origNHWC = true;
|
||||
}
|
||||
|
||||
int TENSOR_FORMAT = CUDNN_TENSOR_NCHW;
|
||||
|
||||
int code;
|
||||
|
||||
val miniBatch = input.size(0);
|
||||
|
@ -147,7 +163,7 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
val kH = weights.size(2);
|
||||
val kW = weights.size(3);
|
||||
|
||||
CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, null);
|
||||
CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, null, CNN2DFormat.NCHW); //Note hardcoded NCHW due to above
|
||||
input = args.getInput();
|
||||
val inH = input.size(2);
|
||||
val inW = input.size(3);
|
||||
|
@ -344,12 +360,30 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
interval(0, epsNext.size(3) - (args.isManualPadRight() ? 1 : 0)));
|
||||
}
|
||||
|
||||
if(origNHWC){
|
||||
epsNext = epsNext.permute(0,2,3,1); //NCHW to NHWC
|
||||
}
|
||||
|
||||
return new Pair<>(retGradient, epsNext);
|
||||
}
|
||||
|
||||
@Override
|
||||
public INDArray preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad,
|
||||
AlgoMode mode, FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
AlgoMode mode, FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format,
|
||||
LayerWorkspaceMgr workspaceMgr) {
|
||||
|
||||
//AB 2020/04/21 - cuDNN does have NHWC support (with limitations) however I have been unable to get it working
|
||||
// correctly on NHWC data, even after updating all descriptors, tensor format, etc.
|
||||
//Therefore: all computation here is done in NCHW format only
|
||||
//As of a future (next?) release we'll likely switch to C++ for cuDNN support
|
||||
boolean origNHWC = false;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
input = input.permute(0,3,1,2); //NHWC to NCHW
|
||||
origNHWC = true;
|
||||
}
|
||||
|
||||
int TENSOR_FORMAT = CUDNN_TENSOR_NCHW;
|
||||
|
||||
int code;
|
||||
|
||||
val miniBatch = input.size(0);
|
||||
|
@ -358,7 +392,7 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
val kH = weights.size(2);
|
||||
val kW = weights.size(3);
|
||||
|
||||
CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, null);
|
||||
CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, null, CNN2DFormat.NCHW); //Note hardcoded NCHW due to above
|
||||
input = args.getInput();
|
||||
val inH = input.size(2);
|
||||
val inW = input.size(3);
|
||||
|
@ -499,6 +533,10 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
if (CudaEnvironment.getInstance().getConfiguration().isDebug())
|
||||
context.syncOldStream();
|
||||
|
||||
if(origNHWC){
|
||||
z = z.permute(0,2,3,1); //NCHW to NHWC
|
||||
}
|
||||
|
||||
return z;
|
||||
}
|
||||
|
||||
|
@ -593,7 +631,7 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
* @return
|
||||
*/
|
||||
public static CudnnForwardArgs getCudnnForwardArgs(INDArray input, int[] kernel, int[] strides, int[] padding, int[] dilation,
|
||||
ConvolutionMode convolutionMode, PoolingType poolingType){
|
||||
ConvolutionMode convolutionMode, PoolingType poolingType, CNN2DFormat format){
|
||||
INDArray origInput = input;
|
||||
|
||||
//Check if we need to dup the input: views, non-contiguous, etc. CuDNN also seems to have has issues if strides
|
||||
|
@ -602,16 +640,19 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
input = input.dup('c');
|
||||
}
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
val inH = input.size(2);
|
||||
val inW = input.size(3);
|
||||
val inH = input.size(hIdx);
|
||||
val inW = input.size(wIdx);
|
||||
|
||||
boolean manualPadBottom = false;
|
||||
boolean manualPadRight = false;
|
||||
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation
|
||||
padding = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int) inH, (int) inW}, kernel, strides, dilation);
|
||||
int[] padBottomRight = ConvolutionUtils.getSameModeBottomRightPadding(outSize, new int[] {(int) inH, (int) inW}, kernel, strides, dilation);
|
||||
if(!Arrays.equals(padding, padBottomRight)){
|
||||
|
@ -626,9 +667,17 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
manualPadRight = (padding[1] != padBottomRight[1]);
|
||||
|
||||
//NCHW format
|
||||
val newShape = new long[]{input.size(0), input.size(1),
|
||||
long[] newShape;
|
||||
if(nchw){
|
||||
newShape = new long[]{input.size(0), input.size(1),
|
||||
input.size(2) + (manualPadBottom ? 1 : 0),
|
||||
input.size(3) + (manualPadRight ? 1 : 0)};
|
||||
} else {
|
||||
newShape = new long[]{input.size(0),
|
||||
input.size(1) + (manualPadBottom ? 1 : 0),
|
||||
input.size(2) + (manualPadRight ? 1 : 0),
|
||||
input.size(3)};
|
||||
}
|
||||
INDArray newInput;
|
||||
if(poolingType == null || poolingType != PoolingType.MAX){
|
||||
newInput = Nd4j.create(input.dataType(), newShape);
|
||||
|
@ -638,15 +687,22 @@ public class CudnnConvolutionHelper extends BaseCudnnHelper implements Convoluti
|
|||
// if the 'real' (non-padding) values are all < 0, we take the real value, not the padding value
|
||||
newInput = Nd4j.valueArrayOf(newShape, Double.NEGATIVE_INFINITY, input.dataType());
|
||||
}
|
||||
|
||||
if(nchw){
|
||||
newInput.put(new INDArrayIndex[]{all(), all(), interval(0,input.size(2)),
|
||||
interval(0, input.size(3))}, input);
|
||||
} else {
|
||||
newInput.put(new INDArrayIndex[]{all(), interval(0,input.size(1)),
|
||||
interval(0, input.size(2)), all()}, input);
|
||||
}
|
||||
|
||||
input = newInput;
|
||||
//Now: we've manually applied the "extra" bottom/right padding only - if required. Consequently, we
|
||||
// now have the same amount of padding required for top/bottom, and left/right - which we'll let
|
||||
// CuDNN handle
|
||||
}
|
||||
} else {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, padding, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, padding, convolutionMode, dilation, format); //Also performs validation
|
||||
}
|
||||
|
||||
return new CudnnForwardArgs(manualPadBottom, manualPadRight, input, origInput, padding, outSize);
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.layers.convolution.subsampling;
|
|||
import lombok.extern.slf4j.Slf4j;
|
||||
import lombok.val;
|
||||
import org.bytedeco.javacpp.Pointer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.layers.PoolingType;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
|
@ -114,23 +115,29 @@ public class CudnnSubsamplingHelper extends BaseCudnnHelper implements Subsampli
|
|||
|
||||
@Override
|
||||
public Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides,
|
||||
int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode,
|
||||
int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
if(dilation[0] != 1 || dilation[1] != 1){
|
||||
//CuDNN doesn't support dilated subsampling
|
||||
return null;
|
||||
}
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int chIdx = nchw ? 1 : 3;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
//We require the output as one of the arguments for backprop here
|
||||
//TODO we could add cache mode support here somehow...
|
||||
INDArray reduced = activate(input, true, kernel, strides, pad, poolingType, convolutionMode, dilation, workspaceMgr);
|
||||
INDArray reduced = activate(input, true, kernel, strides, pad, poolingType, convolutionMode, dilation, format, workspaceMgr);
|
||||
|
||||
val miniBatch = input.size(0);
|
||||
val depth = input.size(1);
|
||||
val depth = input.size(chIdx);
|
||||
|
||||
CudnnConvolutionHelper.CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, poolingType);
|
||||
CudnnConvolutionHelper.CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, poolingType, format);
|
||||
input = args.getInput();
|
||||
val inH = input.size(2);
|
||||
val inW = input.size(3);
|
||||
val inH = input.size(hIdx);
|
||||
val inW = input.size(wIdx);
|
||||
val srcStride = input.stride();
|
||||
int[] outSize = args.getOutSize();
|
||||
int outH = outSize[0];
|
||||
|
@ -160,23 +167,26 @@ public class CudnnSubsamplingHelper extends BaseCudnnHelper implements Subsampli
|
|||
epsilon = epsilon.dup('c');
|
||||
}
|
||||
|
||||
input = input.dup();
|
||||
|
||||
val deltaStride = epsilon.stride();
|
||||
|
||||
if (Nd4j.getExecutioner() instanceof GridExecutioner)
|
||||
((GridExecutioner) Nd4j.getExecutioner()).flushQueue();
|
||||
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.srcTensorDesc, dataType, (int) miniBatch, (int) depth, (int) inH, (int) inW,
|
||||
(int) srcStride[0], (int) srcStride[1], (int) srcStride[2], (int) srcStride[3]));
|
||||
(int) srcStride[0], (int) srcStride[chIdx], (int) srcStride[hIdx], (int) srcStride[wIdx]));
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.deltaTensorDesc, dataType, (int) miniBatch, (int) depth, (int) outH, (int) outW,
|
||||
(int) deltaStride[0], (int) deltaStride[1], (int) deltaStride[2], (int) deltaStride[3]));
|
||||
(int) deltaStride[0], (int) deltaStride[chIdx], (int) deltaStride[hIdx], (int) deltaStride[wIdx]));
|
||||
checkCudnn(cudnnSetPooling2dDescriptor(cudnnContext.poolingDesc, poolingMode, CUDNN_PROPAGATE_NAN, kernel[0],
|
||||
kernel[1], pad[0], pad[1], strides[0], strides[1]));
|
||||
|
||||
INDArray outEpsilon = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), new long[] {(int) miniBatch, (int) depth, (int) inH, (int) inW}, 'c');
|
||||
long[] outEpsShape = nchw ? new long[] {miniBatch, depth, inH, inW} : new long[] {miniBatch, inH, inW, depth};
|
||||
INDArray outEpsilon = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), outEpsShape, 'c');
|
||||
|
||||
val dstStride = outEpsilon.stride();
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.dstTensorDesc, dataType, (int) miniBatch, (int) depth, (int) inH, (int) inW,
|
||||
(int) dstStride[0], (int) dstStride[1], (int) dstStride[2], (int) dstStride[3]));
|
||||
(int) dstStride[0], (int) dstStride[chIdx], (int) dstStride[hIdx], (int) dstStride[wIdx]));
|
||||
|
||||
Allocator allocator = AtomicAllocator.getInstance();
|
||||
CudaContext context = allocator.getFlowController().prepareAction(input, epsilon, reduced, outEpsilon);
|
||||
|
@ -198,9 +208,16 @@ public class CudnnSubsamplingHelper extends BaseCudnnHelper implements Subsampli
|
|||
//Note that: if we had to manually pad for SAME mode, we have to 'undo' this manual padding for the epsilon
|
||||
// we return. The returned epsilon (i.e., dL/dIn array) has to be the same shape as the *original* input.
|
||||
if(args.isManualPadBottom() || args.isManualPadRight()) {
|
||||
if(nchw){
|
||||
outEpsilon = outEpsilon.get(all(), all(),
|
||||
interval(0, outEpsilon.size(2) - (args.isManualPadBottom() ? 1 : 0)),
|
||||
interval(0, outEpsilon.size(3) - (args.isManualPadRight() ? 1 : 0)));
|
||||
} else {
|
||||
outEpsilon = outEpsilon.get(all(),
|
||||
interval(0, outEpsilon.size(1) - (args.isManualPadBottom() ? 1 : 0)),
|
||||
interval(0, outEpsilon.size(2) - (args.isManualPadRight() ? 1 : 0)),
|
||||
all());
|
||||
}
|
||||
}
|
||||
|
||||
return new Pair<>(retGradient, outEpsilon);
|
||||
|
@ -209,19 +226,24 @@ public class CudnnSubsamplingHelper extends BaseCudnnHelper implements Subsampli
|
|||
|
||||
@Override
|
||||
public INDArray activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad,
|
||||
PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
if(dilation[0] != 1 || dilation[1] != 1){
|
||||
//CuDNN doesn't support dilated subsampling
|
||||
return null;
|
||||
}
|
||||
|
||||
val miniBatch = input.size(0);
|
||||
val inDepth = input.size(1);
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int chIdx = nchw ? 1 : 3;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
CudnnConvolutionHelper.CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, poolingType);
|
||||
val miniBatch = input.size(0);
|
||||
val inDepth = input.size(nchw ? 1 : 3);
|
||||
|
||||
CudnnConvolutionHelper.CudnnForwardArgs args = getCudnnForwardArgs(input, kernel, strides, pad, dilation, convolutionMode, poolingType, format);
|
||||
input = args.getInput();
|
||||
val inH = input.size(2);
|
||||
val inW = input.size(3);
|
||||
val inH = input.size(nchw ? 2 : 1);
|
||||
val inW = input.size(nchw ? 3 : 2);
|
||||
val srcStride = input.stride();
|
||||
val outSize = args.getOutSize();
|
||||
int outH = outSize[0];
|
||||
|
@ -246,13 +268,14 @@ public class CudnnSubsamplingHelper extends BaseCudnnHelper implements Subsampli
|
|||
checkCudnn(cudnnSetPooling2dDescriptor(cudnnContext.poolingDesc, poolingMode, CUDNN_PROPAGATE_NAN, kernel[0],
|
||||
kernel[1], pad[0], pad[1], strides[0], strides[1]));
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.srcTensorDesc, dataType, (int) miniBatch, (int) inDepth, (int) inH, (int) inW,
|
||||
(int) srcStride[0], (int) srcStride[1], (int) srcStride[2], (int) srcStride[3]));
|
||||
(int) srcStride[0], (int) srcStride[chIdx], (int) srcStride[hIdx], (int) srcStride[wIdx]));
|
||||
|
||||
INDArray reduced = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), new long[] {(int) miniBatch, (int) inDepth, outH, outW}, 'c');
|
||||
long[] outShape = nchw ? new long[] {miniBatch, inDepth, outH, outW} : new long[] {miniBatch, outH, outW, inDepth};
|
||||
INDArray reduced = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
|
||||
|
||||
val dstStride = reduced.stride();
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.dstTensorDesc, dataType, (int) miniBatch, (int) inDepth, (int) outH, (int) outW,
|
||||
(int) dstStride[0], (int) dstStride[1], (int) dstStride[2], (int) dstStride[3]));
|
||||
(int) dstStride[0], (int) dstStride[chIdx], (int) dstStride[hIdx], (int) dstStride[wIdx]));
|
||||
|
||||
Allocator allocator = AtomicAllocator.getInstance();
|
||||
CudaContext context = allocator.getFlowController().prepareAction(input, reduced);
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.layers.normalization;
|
|||
import lombok.extern.slf4j.Slf4j;
|
||||
import lombok.val;
|
||||
import org.bytedeco.javacpp.Pointer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
import org.deeplearning4j.nn.layers.BaseCudnnHelper;
|
||||
|
@ -124,12 +125,21 @@ public class CudnnBatchNormalizationHelper extends BaseCudnnHelper implements Ba
|
|||
|
||||
@Override
|
||||
public Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta,
|
||||
INDArray dGammaView, INDArray dBetaView, double eps, LayerWorkspaceMgr layerWorkspaceMgr) {
|
||||
INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format, LayerWorkspaceMgr layerWorkspaceMgr) {
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
this.eps = eps;
|
||||
|
||||
int cudnnTensorFormat = nchw ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
||||
int chIdx = nchw ? 1 : 3;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
val miniBatch = (int) input.size(0);
|
||||
val depth = (int) input.size(1);
|
||||
val inH = (int) input.size(2);
|
||||
val inW = (int) input.size(3);
|
||||
val depth = (int) input.size(chIdx);
|
||||
val inH = (int) input.size(hIdx);
|
||||
val inW = (int) input.size(wIdx);
|
||||
|
||||
final boolean isHalf = (input.dataType() == DataType.HALF);
|
||||
INDArray gammaOrig = null;
|
||||
|
@ -164,16 +174,17 @@ public class CudnnBatchNormalizationHelper extends BaseCudnnHelper implements Ba
|
|||
((GridExecutioner) Nd4j.getExecutioner()).flushQueue();
|
||||
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.srcTensorDesc, dataType, (int) miniBatch, (int) depth, (int) inH, (int) inW,
|
||||
(int) srcStride[0], (int) srcStride[1], (int) srcStride[2], (int) srcStride[3]));
|
||||
(int) srcStride[0], (int) srcStride[chIdx], (int) srcStride[hIdx], (int) srcStride[wIdx]));
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.deltaTensorDesc, dataType, (int) miniBatch, (int) depth, (int) inH, (int) inW,
|
||||
(int) deltaStride[0], (int) deltaStride[1], (int) deltaStride[2], (int) deltaStride[3]));
|
||||
(int) deltaStride[0], (int) deltaStride[chIdx], (int) deltaStride[hIdx], (int) deltaStride[wIdx]));
|
||||
|
||||
INDArray nextEpsilon = layerWorkspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), new long[] {miniBatch, depth, inH, inW}, 'c');
|
||||
long[] nextEpsShape = nchw ? new long[] {miniBatch, depth, inH, inW} : new long[] {miniBatch, inH, inW, depth};
|
||||
INDArray nextEpsilon = layerWorkspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), nextEpsShape, 'c');
|
||||
val dstStride = ArrayUtil.toInts(nextEpsilon.stride());
|
||||
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.dstTensorDesc, dataType, miniBatch, depth, inH, inW,
|
||||
dstStride[0], dstStride[1], dstStride[2], dstStride[3]));
|
||||
checkCudnn(cudnnSetTensor4dDescriptor(cudnnContext.gammaBetaTensorDesc, TENSOR_FORMAT, toCudnnDataType(gamma.data().dataType()), (int)shape[0],
|
||||
dstStride[0], dstStride[chIdx], dstStride[hIdx], dstStride[wIdx]));
|
||||
checkCudnn(cudnnSetTensor4dDescriptor(cudnnContext.gammaBetaTensorDesc, cudnnTensorFormat, toCudnnDataType(gamma.data().dataType()), (int)shape[0],
|
||||
(int)shape[1], shape.length > 2 ? (int)shape[2] : 1, shape.length > 3 ? (int)shape[3] : 1));
|
||||
|
||||
Allocator allocator = AtomicAllocator.getInstance();
|
||||
|
@ -215,9 +226,15 @@ public class CudnnBatchNormalizationHelper extends BaseCudnnHelper implements Ba
|
|||
|
||||
@Override
|
||||
public INDArray preOutput(INDArray x, boolean training, long[] shape, INDArray gamma, INDArray beta, INDArray mean,
|
||||
INDArray var, double decay, double eps, LayerWorkspaceMgr workspaceMgr) {
|
||||
INDArray var, double decay, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int cudnnTensorFormat = nchw ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
||||
int chIdx = nchw ? 1 : 3;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
this.eps = eps;
|
||||
final boolean isHalf = (x.dataType() == DataType.HALF);
|
||||
final boolean isHalf = (x.dataType() == DataType.FLOAT16);
|
||||
INDArray origGamma = gamma;
|
||||
INDArray origBeta = beta;
|
||||
INDArray origMean = mean;
|
||||
|
@ -238,21 +255,22 @@ public class CudnnBatchNormalizationHelper extends BaseCudnnHelper implements Ba
|
|||
decay = 0.0; //From cudnn docs: runningMean = newMean*factor + runningMean*(1-factor). -> 0 = "in-place modification of running mean disabled"
|
||||
|
||||
val miniBatch = (int) x.size(0);
|
||||
val inDepth = (int) x.size(1);
|
||||
val inH = (int) x.size(2);
|
||||
val inW = (int) x.size(3);
|
||||
val inDepth = (int) x.size(chIdx);
|
||||
val inH = (int) x.size(hIdx);
|
||||
val inW = (int) x.size(wIdx);
|
||||
|
||||
val srcStride = ArrayUtil.toInts(x.stride());
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.srcTensorDesc, dataType, miniBatch, inDepth, inH, inW,
|
||||
srcStride[0], srcStride[1], srcStride[2], srcStride[3]));
|
||||
srcStride[0], srcStride[chIdx], srcStride[hIdx], srcStride[wIdx]));
|
||||
|
||||
INDArray activations = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, x.dataType(), new long[] {miniBatch, inDepth, inH, inW}, 'c');
|
||||
long[] actShape = nchw ? new long[] {miniBatch, inDepth, inH, inW} : new long[] {miniBatch, inH, inW, inDepth};
|
||||
INDArray activations = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, x.dataType(), actShape, 'c');
|
||||
|
||||
val dstStride = ArrayUtil.toInts(activations.stride());
|
||||
checkCudnn(cudnnSetTensor4dDescriptorEx(cudnnContext.dstTensorDesc, dataType, miniBatch, inDepth, inH, inW,
|
||||
dstStride[0], dstStride[1], dstStride[2], dstStride[3]));
|
||||
dstStride[0], dstStride[chIdx], dstStride[hIdx], dstStride[wIdx]));
|
||||
|
||||
checkCudnn(cudnnSetTensor4dDescriptor(cudnnContext.gammaBetaTensorDesc, TENSOR_FORMAT, toCudnnDataType(mean.data().dataType()), (int)shape[0],
|
||||
checkCudnn(cudnnSetTensor4dDescriptor(cudnnContext.gammaBetaTensorDesc, cudnnTensorFormat, toCudnnDataType(mean.data().dataType()), (int)shape[0],
|
||||
(int)shape[1], shape.length > 2 ? (int)shape[2] : 1, shape.length > 3 ? (int)shape[3] : 1));
|
||||
|
||||
Allocator allocator = AtomicAllocator.getInstance();
|
||||
|
|
|
@ -16,74 +16,131 @@
|
|||
|
||||
package org.deeplearning4j;
|
||||
|
||||
import org.apache.commons.compress.utils.IOUtils;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
|
||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||
import org.deeplearning4j.nn.conf.layers.BaseLayer;
|
||||
import org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer;
|
||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||
import org.deeplearning4j.nn.layers.convolution.ConvolutionLayer;
|
||||
import org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer;
|
||||
import org.deeplearning4j.nn.layers.normalization.BatchNormalization;
|
||||
import org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization;
|
||||
import org.deeplearning4j.nn.layers.recurrent.LSTM;
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.util.ModelSerializer;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.api.ops.random.impl.BernoulliDistribution;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.learning.regularization.L1Regularization;
|
||||
import org.nd4j.linalg.learning.regularization.L2Regularization;
|
||||
import org.nd4j.linalg.learning.regularization.Regularization;
|
||||
import org.nd4j.linalg.learning.regularization.WeightDecay;
|
||||
|
||||
import java.io.ByteArrayInputStream;
|
||||
import java.io.ByteArrayOutputStream;
|
||||
import java.io.IOException;
|
||||
import java.io.*;
|
||||
import java.lang.reflect.Field;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertNotNull;
|
||||
|
||||
public class TestUtils {
|
||||
|
||||
public static MultiLayerNetwork testModelSerialization(MultiLayerNetwork net){
|
||||
|
||||
MultiLayerNetwork restored;
|
||||
try {
|
||||
ByteArrayOutputStream baos = new ByteArrayOutputStream();
|
||||
ModelSerializer.writeModel(net, baos, true);
|
||||
byte[] bytes = baos.toByteArray();
|
||||
|
||||
ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
|
||||
MultiLayerNetwork restored = ModelSerializer.restoreMultiLayerNetwork(bais, true);
|
||||
restored = ModelSerializer.restoreMultiLayerNetwork(bais, true);
|
||||
|
||||
assertEquals(net.getLayerWiseConfigurations(), restored.getLayerWiseConfigurations());
|
||||
assertEquals(net.params(), restored.params());
|
||||
|
||||
return restored;
|
||||
} catch (IOException e){
|
||||
//Should never happen
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
|
||||
//Also check the MultiLayerConfiguration is serializable (required by Spark etc)
|
||||
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
|
||||
serializeDeserializeJava(conf);
|
||||
|
||||
return restored;
|
||||
}
|
||||
|
||||
public static ComputationGraph testModelSerialization(ComputationGraph net){
|
||||
|
||||
ComputationGraph restored;
|
||||
try {
|
||||
ByteArrayOutputStream baos = new ByteArrayOutputStream();
|
||||
ModelSerializer.writeModel(net, baos, true);
|
||||
byte[] bytes = baos.toByteArray();
|
||||
|
||||
ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
|
||||
ComputationGraph restored = ModelSerializer.restoreComputationGraph(bais, true);
|
||||
restored = ModelSerializer.restoreComputationGraph(bais, true);
|
||||
|
||||
assertEquals(net.getConfiguration(), restored.getConfiguration());
|
||||
assertEquals(net.params(), restored.params());
|
||||
|
||||
return restored;
|
||||
} catch (IOException e){
|
||||
//Should never happen
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
|
||||
//Also check the ComputationGraphConfiguration is serializable (required by Spark etc)
|
||||
ComputationGraphConfiguration conf = net.getConfiguration();
|
||||
serializeDeserializeJava(conf);
|
||||
|
||||
return restored;
|
||||
}
|
||||
|
||||
public static INDArray randomOneHot(int examples, int nOut){
|
||||
private static <T> T serializeDeserializeJava(T object){
|
||||
byte[] bytes;
|
||||
try(ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutputStream oos = new ObjectOutputStream(baos)){
|
||||
oos.writeObject(object);
|
||||
oos.close();
|
||||
bytes = baos.toByteArray();
|
||||
} catch (IOException e){
|
||||
//Should never happen
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
|
||||
T out;
|
||||
try(ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bytes))){
|
||||
out = (T)ois.readObject();
|
||||
} catch (IOException | ClassNotFoundException e){
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
|
||||
assertEquals(object, out);
|
||||
return out;
|
||||
}
|
||||
|
||||
public static INDArray randomOneHot(long examples, long nOut){
|
||||
return randomOneHot(examples, nOut, new Random(12345));
|
||||
}
|
||||
|
||||
public static INDArray randomOneHot(int examples, int nOut, long rngSeed){
|
||||
public static INDArray randomOneHot(DataType dataType, long examples, long nOut){
|
||||
return randomOneHot(dataType, examples, nOut, new Random(12345));
|
||||
}
|
||||
|
||||
public static INDArray randomOneHot(long examples, long nOut, long rngSeed){
|
||||
return randomOneHot(examples, nOut, new Random(rngSeed));
|
||||
}
|
||||
|
||||
public static INDArray randomOneHot(int examples, int nOut, Random rng){
|
||||
INDArray arr = Nd4j.create(examples, nOut);
|
||||
public static INDArray randomOneHot(long examples, long nOut, Random rng) {
|
||||
return randomOneHot(Nd4j.defaultFloatingPointType(), examples,nOut, rng);
|
||||
}
|
||||
|
||||
public static INDArray randomOneHot(DataType dataType, long examples, long nOut, Random rng){
|
||||
INDArray arr = Nd4j.create(dataType, examples, nOut);
|
||||
for( int i=0; i<examples; i++ ){
|
||||
arr.putScalar(i, rng.nextInt(nOut), 1.0);
|
||||
arr.putScalar(i, rng.nextInt((int) nOut), 1.0);
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
|
@ -115,4 +172,143 @@ public class TestUtils {
|
|||
Nd4j.getExecutioner().exec(new BernoulliDistribution(ret, p));
|
||||
return ret;
|
||||
}
|
||||
|
||||
public static void writeStreamToFile(File out, InputStream is) throws IOException {
|
||||
byte[] b = IOUtils.toByteArray(is);
|
||||
try (OutputStream os = new BufferedOutputStream(new FileOutputStream(out))) {
|
||||
os.write(b);
|
||||
}
|
||||
}
|
||||
|
||||
public static L1Regularization getL1Reg(List<Regularization> l){
|
||||
for(Regularization r : l){
|
||||
if(r instanceof L1Regularization){
|
||||
return (L1Regularization) r;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
public static L2Regularization getL2Reg(BaseLayer baseLayer){
|
||||
return getL2Reg(baseLayer.getRegularization());
|
||||
}
|
||||
|
||||
public static L2Regularization getL2Reg(List<Regularization> l){
|
||||
for(Regularization r : l){
|
||||
if(r instanceof L2Regularization){
|
||||
return (L2Regularization) r;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
public static WeightDecay getWeightDecayReg(BaseLayer bl){
|
||||
return getWeightDecayReg(bl.getRegularization());
|
||||
}
|
||||
|
||||
public static WeightDecay getWeightDecayReg(List<Regularization> l){
|
||||
for(Regularization r : l){
|
||||
if(r instanceof WeightDecay){
|
||||
return (WeightDecay) r;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
public static double getL1(BaseLayer layer) {
|
||||
List<Regularization> l = layer.getRegularization();
|
||||
return getL1(l);
|
||||
}
|
||||
|
||||
public static double getL1(List<Regularization> l){
|
||||
L1Regularization l1Reg = null;
|
||||
for(Regularization reg : l){
|
||||
if(reg instanceof L1Regularization)
|
||||
l1Reg = (L1Regularization) reg;
|
||||
}
|
||||
assertNotNull(l1Reg);
|
||||
return l1Reg.getL1().valueAt(0,0);
|
||||
}
|
||||
|
||||
public static double getL2(BaseLayer layer) {
|
||||
List<Regularization> l = layer.getRegularization();
|
||||
return getL2(l);
|
||||
}
|
||||
|
||||
public static double getL2(List<Regularization> l){
|
||||
L2Regularization l2Reg = null;
|
||||
for(Regularization reg : l){
|
||||
if(reg instanceof L2Regularization)
|
||||
l2Reg = (L2Regularization) reg;
|
||||
}
|
||||
assertNotNull(l2Reg);
|
||||
return l2Reg.getL2().valueAt(0,0);
|
||||
}
|
||||
|
||||
public static double getL1(AbstractSameDiffLayer layer){
|
||||
return getL1(layer.getRegularization());
|
||||
}
|
||||
|
||||
public static double getL2(AbstractSameDiffLayer layer){
|
||||
return getL2(layer.getRegularization());
|
||||
}
|
||||
|
||||
public static double getWeightDecay(BaseLayer layer) {
|
||||
return getWeightDecayReg(layer.getRegularization()).getCoeff().valueAt(0,0);
|
||||
}
|
||||
|
||||
public static void removeHelper(Layer layer) throws Exception {
|
||||
removeHelpers(new Layer[]{layer});
|
||||
}
|
||||
|
||||
public static void removeHelpers(Layer[] layers) throws Exception {
|
||||
for(Layer l : layers){
|
||||
|
||||
if(l instanceof ConvolutionLayer){
|
||||
Field f1 = ConvolutionLayer.class.getDeclaredField("helper");
|
||||
f1.setAccessible(true);
|
||||
f1.set(l, null);
|
||||
} else if(l instanceof SubsamplingLayer){
|
||||
Field f2 = SubsamplingLayer.class.getDeclaredField("helper");
|
||||
f2.setAccessible(true);
|
||||
f2.set(l, null);
|
||||
} else if(l instanceof BatchNormalization) {
|
||||
Field f3 = BatchNormalization.class.getDeclaredField("helper");
|
||||
f3.setAccessible(true);
|
||||
f3.set(l, null);
|
||||
} else if(l instanceof LSTM){
|
||||
Field f4 = LSTM.class.getDeclaredField("helper");
|
||||
f4.setAccessible(true);
|
||||
f4.set(l, null);
|
||||
} else if(l instanceof LocalResponseNormalization){
|
||||
Field f5 = LocalResponseNormalization.class.getDeclaredField("helper");
|
||||
f5.setAccessible(true);
|
||||
f5.set(l, null);
|
||||
}
|
||||
|
||||
|
||||
if(l.getHelper() != null){
|
||||
throw new IllegalStateException("Did not remove helper for layer: " + l.getClass().getSimpleName());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static void assertHelperPresent(Layer layer){
|
||||
|
||||
}
|
||||
|
||||
public static void assertHelpersPresent(Layer[] layers) throws Exception {
|
||||
for(Layer l : layers){
|
||||
//Don't use instanceof here - there are sub conv subclasses
|
||||
if(l.getClass() == ConvolutionLayer.class || l instanceof SubsamplingLayer || l instanceof BatchNormalization || l instanceof LSTM){
|
||||
Preconditions.checkNotNull(l.getHelper(), l.conf().getLayer().getLayerName());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static void assertHelpersAbsent(Layer[] layers) throws Exception {
|
||||
for(Layer l : layers){
|
||||
Preconditions.checkState(l.getHelper() == null, l.conf().getLayer().getLayerName());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,967 @@
|
|||
/* ******************************************************************************
|
||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
package org.deeplearning4j.convolution;
|
||||
|
||||
import lombok.AllArgsConstructor;
|
||||
import lombok.Builder;
|
||||
import lombok.Data;
|
||||
import lombok.NoArgsConstructor;
|
||||
import org.deeplearning4j.BaseDL4JTest;
|
||||
import org.deeplearning4j.CuDNNTestUtils;
|
||||
import org.deeplearning4j.TestUtils;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
import org.deeplearning4j.nn.conf.layers.*;
|
||||
import org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.junit.Test;
|
||||
import org.junit.runner.RunWith;
|
||||
import org.junit.runners.Parameterized;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
|
||||
@RunWith(Parameterized.class)
|
||||
public class ConvDataFormatTests extends BaseDL4JTest {
|
||||
|
||||
private final DataType dataType;
|
||||
|
||||
public ConvDataFormatTests(DataType dataType){
|
||||
this.dataType = dataType;
|
||||
}
|
||||
|
||||
@Parameterized.Parameters(name = "{0}")
|
||||
public static Object[] params(){
|
||||
return new DataType[]{DataType.FLOAT, DataType.DOUBLE};
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testConv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getConv2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getConv2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getConv2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getConv2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubsampling2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSubsampling2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getSubsampling2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getSubsampling2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getSubsampling2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDepthwiseConv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getDepthwiseConv2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getDepthwiseConv2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getDepthwiseConv2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getDepthwiseConv2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSeparableConv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSeparableConv2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getSeparableConv2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getSeparableConv2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getSeparableConv2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDeconv2d() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getDeconv2DNet2dNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getDeconv2DNet2dNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getDeconv2DNet2dNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getDeconv2DNet2dNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLRN() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getLrnLayer(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getLrnLayer(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getLrnLayer(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getLrnLayer(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testZeroPaddingLayer(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getZeroPaddingNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getZeroPaddingNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getZeroPaddingNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getZeroPaddingNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCropping2DLayer(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getCropping2dNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getCropping2dNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getCropping2dNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getCropping2dNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testUpsampling2d(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getUpsamplingNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getUpsamplingNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getUpsamplingNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getUpsamplingNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testBatchNormNet(){
|
||||
try {
|
||||
for(boolean useLogStd : new boolean[]{true, false}) {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = (helpers ? "With helpers" : "No helpers") + " - " + (useLogStd ? "logstd" : "std");
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getBatchNormNet(useLogStd, CNN2DFormat.NCHW, true))
|
||||
.net2(getBatchNormNet(useLogStd, CNN2DFormat.NCHW, false))
|
||||
.net3(getBatchNormNet(useLogStd, CNN2DFormat.NHWC, true))
|
||||
.net4(getBatchNormNet(useLogStd, CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCnnLossLayer() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labelsNHWC = TestUtils.randomOneHot(this.dataType,2*6*6, 3);
|
||||
labelsNHWC = labelsNHWC.reshape(2,6,6,3);
|
||||
INDArray labelsNCHW = labelsNHWC.permute(0,3,1,2).dup();
|
||||
|
||||
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getCnnLossNet(CNN2DFormat.NCHW, true, ConvolutionMode.Same))
|
||||
.net2(getCnnLossNet(CNN2DFormat.NCHW, false, ConvolutionMode.Same))
|
||||
.net3(getCnnLossNet(CNN2DFormat.NHWC, true, ConvolutionMode.Same))
|
||||
.net4(getCnnLossNet(CNN2DFormat.NHWC, false, ConvolutionMode.Same))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labelsNCHW)
|
||||
.labelsNHWC(labelsNHWC)
|
||||
.testLayerIdx(1)
|
||||
.nhwcOutput(true)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSpaceToDepthNet(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSpaceToDepthNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getSpaceToDepthNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getSpaceToDepthNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getSpaceToDepthNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSpaceToBatchNet(){
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers" : "No helpers";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 16, 16);
|
||||
INDArray labels = TestUtils.randomOneHot(8, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getSpaceToBatchNet(CNN2DFormat.NCHW, true))
|
||||
.net2(getSpaceToBatchNet(CNN2DFormat.NCHW, false))
|
||||
.net3(getSpaceToBatchNet(CNN2DFormat.NHWC, true))
|
||||
.net4(getSpaceToBatchNet(CNN2DFormat.NHWC, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testLocallyConnected() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (ConvolutionMode cm : new ConvolutionMode[]{ConvolutionMode.Truncate, ConvolutionMode.Same}) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + cm + ")" : "No helpers (" + cm + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getLocallyConnectedNet(CNN2DFormat.NCHW, true, cm))
|
||||
.net2(getLocallyConnectedNet(CNN2DFormat.NCHW, false, cm))
|
||||
.net3(getLocallyConnectedNet(CNN2DFormat.NHWC, true, cm))
|
||||
.net4(getLocallyConnectedNet(CNN2DFormat.NHWC, false, cm))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.helpers(helpers)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGlobalPooling() {
|
||||
try {
|
||||
for (boolean helpers : new boolean[]{false, true}) {
|
||||
for (PoolingType pt : PoolingType.values()) {
|
||||
Nd4j.getRandom().setSeed(12345);
|
||||
Nd4j.getEnvironment().allowHelpers(helpers);
|
||||
String msg = helpers ? "With helpers (" + pt + ")" : "No helpers (" + pt + ")";
|
||||
System.out.println(" --- " + msg + " ---");
|
||||
|
||||
INDArray inNCHW = Nd4j.rand(this.dataType, 2, 3, 12, 12);
|
||||
INDArray labels = TestUtils.randomOneHot(2, 10);
|
||||
|
||||
TestCase tc = TestCase.builder()
|
||||
.msg(msg)
|
||||
.net1(getGlobalPoolingNet(CNN2DFormat.NCHW, pt, true))
|
||||
.net2(getGlobalPoolingNet(CNN2DFormat.NCHW, pt, false))
|
||||
.net3(getGlobalPoolingNet(CNN2DFormat.NHWC, pt, true))
|
||||
.net4(getGlobalPoolingNet(CNN2DFormat.NHWC, pt, false))
|
||||
.inNCHW(inNCHW)
|
||||
.labelsNCHW(labels)
|
||||
.labelsNHWC(labels)
|
||||
.testLayerIdx(1)
|
||||
.build();
|
||||
|
||||
testHelper(tc);
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
Nd4j.getEnvironment().allowHelpers(true);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getConv2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSubsampling2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SubsamplingLayer.Builder()
|
||||
.kernelSize(2, 2)
|
||||
.stride(1, 1)
|
||||
.dataFormat(format)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new SubsamplingLayer.Builder()
|
||||
.kernelSize(2, 2)
|
||||
.stride(1, 1)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSeparableConv2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SeparableConvolution2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new SeparableConvolution2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getDepthwiseConv2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new DepthwiseConvolution2D.Builder()
|
||||
.depthMultiplier(2)
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new DepthwiseConvolution2D.Builder()
|
||||
.depthMultiplier(2)
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getLrnLayer(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new LocalResponseNormalization.Builder()
|
||||
.dataFormat(format)
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new LocalResponseNormalization.Builder()
|
||||
.helperAllowFallback(false)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getZeroPaddingNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new ZeroPaddingLayer.Builder(2,2)
|
||||
.dataFormat(format).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new ZeroPaddingLayer.Builder(2,2).build(),
|
||||
format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getCropping2dNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new Cropping2D.Builder(2,2)
|
||||
.dataFormat(format).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new Cropping2D.Builder(2,2)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getUpsamplingNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new Upsampling2D.Builder(2)
|
||||
.dataFormat(format).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new Upsampling2D.Builder(2)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getDeconv2DNet2dNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new Deconvolution2D.Builder().nOut(2)
|
||||
.activation(Activation.TANH)
|
||||
.kernelSize(2,2)
|
||||
.stride(2,2)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new Deconvolution2D.Builder().nOut(2)
|
||||
.activation(Activation.TANH)
|
||||
.kernelSize(2,2)
|
||||
.stride(2,2)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getBatchNormNet(boolean logStdev, CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new BatchNormalization.Builder()
|
||||
.useLogStd(logStdev)
|
||||
.dataFormat(format)
|
||||
.helperAllowFallback(false)
|
||||
.nOut(3).build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new BatchNormalization.Builder()
|
||||
.useLogStd(logStdev)
|
||||
.helperAllowFallback(false)
|
||||
.nOut(3).build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSpaceToDepthNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SpaceToDepthLayer.Builder()
|
||||
.blocks(2)
|
||||
.dataFormat(format)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new SpaceToDepthLayer.Builder()
|
||||
.blocks(2)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getSpaceToBatchNet(CNN2DFormat format, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new SpaceToBatchLayer.Builder()
|
||||
.blocks(2, 2)
|
||||
.dataFormat(format)
|
||||
.build(), format, ConvolutionMode.Same, InputType.convolutional(16, 16, 3, format));
|
||||
} else {
|
||||
return getNetWithLayer(new SpaceToBatchLayer.Builder()
|
||||
.blocks(2, 2)
|
||||
.build(), format, ConvolutionMode.Same, InputType.convolutional(16, 16, 3, format));
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getLocallyConnectedNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new LocallyConnected2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.build(), format, cm, null);
|
||||
} else {
|
||||
return getNetWithLayer(new LocallyConnected2D.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.nOut(3)
|
||||
.build(), format, cm, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getGlobalPoolingNet(CNN2DFormat format, PoolingType pt, boolean setOnLayerAlso) {
|
||||
if (setOnLayerAlso) {
|
||||
return getNetWithLayer(new GlobalPoolingLayer.Builder(pt)
|
||||
.poolingDimensions(format == CNN2DFormat.NCHW ? new int[]{2,3} : new int[]{1,2})
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
} else {
|
||||
return getNetWithLayer(new GlobalPoolingLayer.Builder(pt)
|
||||
.build(), format, ConvolutionMode.Same, null);
|
||||
}
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getCnnLossNet(CNN2DFormat format, boolean setOnLayerAlso, ConvolutionMode cm){
|
||||
NeuralNetConfiguration.ListBuilder builder = new NeuralNetConfiguration.Builder()
|
||||
.seed(12345)
|
||||
.convolutionMode(cm)
|
||||
.list()
|
||||
.layer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build());
|
||||
if(setOnLayerAlso){
|
||||
builder.layer(new CnnLossLayer.Builder().format(format).activation(Activation.SOFTMAX).build());
|
||||
} else {
|
||||
builder.layer(new CnnLossLayer.Builder().activation(Activation.SOFTMAX).build());
|
||||
}
|
||||
|
||||
builder.setInputType(InputType.convolutional(12, 12, 3, format));
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(builder.build());
|
||||
net.init();
|
||||
return net;
|
||||
}
|
||||
|
||||
private MultiLayerNetwork getNetWithLayer(Layer layer, CNN2DFormat format, ConvolutionMode cm, InputType inputType) {
|
||||
NeuralNetConfiguration.ListBuilder builder = new NeuralNetConfiguration.Builder()
|
||||
.dataType(this.dataType)
|
||||
.seed(12345)
|
||||
.convolutionMode(cm)
|
||||
.list()
|
||||
.layer(new ConvolutionLayer.Builder()
|
||||
.kernelSize(3, 3)
|
||||
.stride(2, 2)
|
||||
.activation(Activation.TANH)
|
||||
.dataFormat(format)
|
||||
.nOut(3)
|
||||
.helperAllowFallback(false)
|
||||
.build())
|
||||
.layer(layer)
|
||||
.layer(new OutputLayer.Builder().activation(Activation.SOFTMAX).nOut(10).build())
|
||||
.setInputType(inputType != null ? inputType : InputType.convolutional(12, 12, 3, format));
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(builder.build());
|
||||
net.init();
|
||||
return net;
|
||||
}
|
||||
|
||||
@AllArgsConstructor
|
||||
@Data
|
||||
@NoArgsConstructor
|
||||
@Builder
|
||||
private static class TestCase {
|
||||
private String msg;
|
||||
private MultiLayerNetwork net1;
|
||||
private MultiLayerNetwork net2;
|
||||
private MultiLayerNetwork net3;
|
||||
private MultiLayerNetwork net4;
|
||||
private INDArray inNCHW;
|
||||
private INDArray labelsNCHW;
|
||||
private INDArray labelsNHWC;
|
||||
private int testLayerIdx;
|
||||
private boolean nhwcOutput;
|
||||
private boolean helpers;
|
||||
}
|
||||
|
||||
public static void testHelper(TestCase tc) {
|
||||
|
||||
if(!tc.helpers){
|
||||
try {
|
||||
CuDNNTestUtils.removeHelpers(tc.net1.getLayers());
|
||||
CuDNNTestUtils.removeHelpers(tc.net2.getLayers());
|
||||
CuDNNTestUtils.removeHelpers(tc.net3.getLayers());
|
||||
CuDNNTestUtils.removeHelpers(tc.net4.getLayers());
|
||||
} catch (Throwable t){
|
||||
throw new RuntimeException(t);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
tc.net2.params().assign(tc.net1.params());
|
||||
tc.net3.params().assign(tc.net1.params());
|
||||
tc.net4.params().assign(tc.net1.params());
|
||||
|
||||
//Test forward pass:
|
||||
INDArray inNCHW = tc.inNCHW;
|
||||
INDArray inNHWC = tc.inNCHW.permute(0, 2, 3, 1).dup();
|
||||
|
||||
INDArray l0_1 = tc.net1.feedForward(inNCHW).get(tc.testLayerIdx + 1);
|
||||
INDArray l0_2 = tc.net2.feedForward(inNCHW).get(tc.testLayerIdx + 1);
|
||||
INDArray l0_3 = tc.net3.feedForward(inNHWC).get(tc.testLayerIdx + 1);
|
||||
INDArray l0_4 = tc.net4.feedForward(inNHWC).get(tc.testLayerIdx + 1);
|
||||
|
||||
assertEquals(tc.msg, l0_1, l0_2);
|
||||
if(l0_1.rank() == 4) {
|
||||
assertEquals(tc.msg, l0_1, l0_3.permute(0, 3, 1, 2));
|
||||
assertEquals(tc.msg, l0_1, l0_4.permute(0, 3, 1, 2));
|
||||
} else {
|
||||
assertEquals(tc.msg, l0_1, l0_3);
|
||||
assertEquals(tc.msg, l0_1, l0_4);
|
||||
}
|
||||
|
||||
|
||||
INDArray out1 = tc.net1.output(inNCHW);
|
||||
INDArray out2 = tc.net2.output(inNCHW);
|
||||
INDArray out3 = tc.net3.output(inNHWC);
|
||||
INDArray out4 = tc.net4.output(inNHWC);
|
||||
|
||||
assertEquals(tc.msg, out1, out2);
|
||||
if(!tc.nhwcOutput) {
|
||||
assertEquals(tc.msg, out1, out3);
|
||||
assertEquals(tc.msg, out1, out4);
|
||||
} else {
|
||||
assertEquals(tc.msg, out1, out3.permute(0,3,1,2)); //NHWC to NCHW
|
||||
assertEquals(tc.msg, out1, out4.permute(0,3,1,2));
|
||||
}
|
||||
|
||||
//Test backprop
|
||||
Pair<Gradient, INDArray> p1 = tc.net1.calculateGradients(inNCHW, tc.labelsNCHW, null, null);
|
||||
Pair<Gradient, INDArray> p2 = tc.net2.calculateGradients(inNCHW, tc.labelsNCHW, null, null);
|
||||
Pair<Gradient, INDArray> p3 = tc.net3.calculateGradients(inNHWC, tc.labelsNHWC, null, null);
|
||||
Pair<Gradient, INDArray> p4 = tc.net4.calculateGradients(inNHWC, tc.labelsNHWC, null, null);
|
||||
|
||||
//Inpput gradients
|
||||
assertEquals(tc.msg, p1.getSecond(), p2.getSecond());
|
||||
assertEquals(tc.msg, p1.getSecond(), p3.getSecond().permute(0,3,1,2)); //Input gradients for NHWC input are also in NHWC format
|
||||
assertEquals(tc.msg, p1.getSecond(), p4.getSecond().permute(0,3,1,2));
|
||||
|
||||
List<String> diff12 = differentGrads(p1.getFirst(), p2.getFirst());
|
||||
List<String> diff13 = differentGrads(p1.getFirst(), p3.getFirst());
|
||||
List<String> diff14 = differentGrads(p1.getFirst(), p4.getFirst());
|
||||
assertEquals(tc.msg + " " + diff12, 0, diff12.size());
|
||||
assertEquals(tc.msg + " " + diff13, 0, diff13.size());
|
||||
assertEquals(tc.msg + " " + diff14, 0, diff14.size());
|
||||
|
||||
assertEquals(tc.msg, p1.getFirst().gradientForVariable(), p2.getFirst().gradientForVariable());
|
||||
assertEquals(tc.msg, p1.getFirst().gradientForVariable(), p3.getFirst().gradientForVariable());
|
||||
assertEquals(tc.msg, p1.getFirst().gradientForVariable(), p4.getFirst().gradientForVariable());
|
||||
|
||||
tc.net1.fit(inNCHW, tc.labelsNCHW);
|
||||
tc.net2.fit(inNCHW, tc.labelsNCHW);
|
||||
tc.net3.fit(inNHWC, tc.labelsNHWC);
|
||||
tc.net4.fit(inNHWC, tc.labelsNHWC);
|
||||
|
||||
assertEquals(tc.msg, tc.net1.params(), tc.net2.params());
|
||||
assertEquals(tc.msg, tc.net1.params(), tc.net3.params());
|
||||
assertEquals(tc.msg, tc.net1.params(), tc.net4.params());
|
||||
|
||||
//Test serialization
|
||||
MultiLayerNetwork net1a = TestUtils.testModelSerialization(tc.net1);
|
||||
MultiLayerNetwork net2a = TestUtils.testModelSerialization(tc.net2);
|
||||
MultiLayerNetwork net3a = TestUtils.testModelSerialization(tc.net3);
|
||||
MultiLayerNetwork net4a = TestUtils.testModelSerialization(tc.net4);
|
||||
|
||||
if(!tc.helpers){
|
||||
try {
|
||||
CuDNNTestUtils.removeHelpers(net1a.getLayers());
|
||||
CuDNNTestUtils.removeHelpers(net2a.getLayers());
|
||||
CuDNNTestUtils.removeHelpers(net3a.getLayers());
|
||||
CuDNNTestUtils.removeHelpers(net4a.getLayers());
|
||||
} catch (Throwable t){
|
||||
throw new RuntimeException(t);
|
||||
}
|
||||
}
|
||||
|
||||
out1 = tc.net1.output(inNCHW);
|
||||
assertEquals(tc.msg, out1, net1a.output(inNCHW));
|
||||
assertEquals(tc.msg, out1, net2a.output(inNCHW));
|
||||
if(!tc.nhwcOutput) {
|
||||
assertEquals(tc.msg, out1, net3a.output(inNHWC));
|
||||
assertEquals(tc.msg, out1, net4a.output(inNHWC));
|
||||
} else {
|
||||
assertEquals(tc.msg, out1, net3a.output(inNHWC).permute(0,3,1,2)); //NHWC to NCHW
|
||||
assertEquals(tc.msg, out1, net4a.output(inNHWC).permute(0,3,1,2));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private static List<String> differentGrads(Gradient g1, Gradient g2){
|
||||
List<String> differs = new ArrayList<>();
|
||||
Map<String,INDArray> m1 = g1.gradientForVariable();
|
||||
Map<String,INDArray> m2 = g2.gradientForVariable();
|
||||
for(String s : m1.keySet()){
|
||||
INDArray a1 = m1.get(s);
|
||||
INDArray a2 = m2.get(s);
|
||||
if(!a1.equals(a2)){
|
||||
differs.add(s);
|
||||
}
|
||||
}
|
||||
return differs;
|
||||
}
|
||||
}
|
|
@ -320,7 +320,7 @@ public class KerasModelEndToEndTest extends BaseDL4JTest {
|
|||
INDArray[] output = model.output(input);
|
||||
}
|
||||
|
||||
@Test
|
||||
@Test @Ignore //AB 2020/04/22 Ignored until Keras model import updated to use NHWC support
|
||||
public void importAcganGenerator() throws Exception {
|
||||
ComputationGraph model = importFunctionalModelH5Test("modelimport/keras/examples/acgan/acgan_generator_1_epochs.h5");
|
||||
//System.out.println(model.summary()) ;
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
package org.deeplearning4j.nn.conf;
|
||||
|
||||
/**
|
||||
* CNN2DFormat defines the format of the activations (including input images) in to and out of all 2D convolution layers in
|
||||
* Deeplearning4j. Default value is NCHW.<br>
|
||||
* <br>
|
||||
* NCHW = "channels first" - arrays of shape [minibatch, channels, height, width]<br>
|
||||
* NHWC = "channels last" - arrays of shape [minibatch, height, width, channels]<br>
|
||||
*
|
||||
* @author Alex Black
|
||||
*/
|
||||
public enum CNN2DFormat {
|
||||
NCHW,
|
||||
NHWC;
|
||||
|
||||
/**
|
||||
* Returns a string that explains the dimensions:<br>
|
||||
* NCHW -> returns "[minibatch, channels, height, width]"<br>
|
||||
* NHWC -> returns "[minibatch, height, width, channels]"
|
||||
*/
|
||||
public String dimensionNames(){
|
||||
switch (this){
|
||||
case NCHW:
|
||||
return "[minibatch, channels, height, width]";
|
||||
case NHWC:
|
||||
return "[minibatch, height, width, channels]";
|
||||
default:
|
||||
throw new IllegalStateException("Unknown enum: " + this); //Should never happen
|
||||
}
|
||||
}
|
||||
}
|
|
@ -20,6 +20,7 @@ import lombok.Data;
|
|||
import lombok.EqualsAndHashCode;
|
||||
import lombok.Getter;
|
||||
import lombok.NoArgsConstructor;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.layers.Convolution3D;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.shade.jackson.annotation.JsonIgnore;
|
||||
|
@ -123,7 +124,12 @@ public abstract class InputType implements Serializable {
|
|||
* @return InputTypeConvolutional
|
||||
*/
|
||||
public static InputType convolutional(long height, long width, long depth) {
|
||||
return new InputTypeConvolutional(height, width, depth);
|
||||
// return new InputTypeConvolutional(height, width, depth);
|
||||
return convolutional(height, width, depth, CNN2DFormat.NCHW);
|
||||
}
|
||||
|
||||
public static InputType convolutional(long height, long width, long depth, CNN2DFormat format){
|
||||
return new InputTypeConvolutional(height, width, depth, format);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -257,11 +263,18 @@ public abstract class InputType implements Serializable {
|
|||
private long height;
|
||||
private long width;
|
||||
private long channels;
|
||||
private CNN2DFormat format = CNN2DFormat.NCHW; //Default for JSON deserialization of older configurations
|
||||
|
||||
public InputTypeConvolutional(@JsonProperty("height") long height, @JsonProperty("width") long width, @JsonProperty("channels") long channels) {
|
||||
public InputTypeConvolutional(@JsonProperty("height") long height, @JsonProperty("width") long width,
|
||||
@JsonProperty("channels") long channels, @JsonProperty("format") CNN2DFormat format) {
|
||||
this.height = height;
|
||||
this.width = width;
|
||||
this.channels = channels;
|
||||
this.format = format;
|
||||
}
|
||||
|
||||
public InputTypeConvolutional(long height, long width, long channels) {
|
||||
this(height, width, channels, CNN2DFormat.NCHW);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -292,7 +305,7 @@ public abstract class InputType implements Serializable {
|
|||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "InputTypeConvolutional(h=" + height + ",w=" + width + ",c=" + channels + ")";
|
||||
return "InputTypeConvolutional(h=" + height + ",w=" + width + ",c=" + channels + "," + format + ")";
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -302,8 +315,13 @@ public abstract class InputType implements Serializable {
|
|||
|
||||
@Override
|
||||
public long[] getShape(boolean includeBatchDim) {
|
||||
if(format == CNN2DFormat.NCHW){
|
||||
if(includeBatchDim) return new long[]{-1, channels, height, width};
|
||||
else return new long[]{channels, height, width};
|
||||
} else {
|
||||
if(includeBatchDim) return new long[]{-1, height, width, channels};
|
||||
else return new long[]{height, width, channels};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -20,6 +20,7 @@ import lombok.*;
|
|||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.api.layers.LayerConstraint;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -60,6 +61,7 @@ public class BatchNormalization extends FeedForwardLayer {
|
|||
protected boolean lockGammaBeta = false;
|
||||
protected boolean cudnnAllowFallback = true;
|
||||
protected boolean useLogStd = false; //Default for deserialized models (1.0.0-beta3) and earlier: store variance as variance. Post 1.0.0-beta3: use log stdev instead
|
||||
protected CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW; //Default for deserialized models, 1.0.0-beta6 and earlier
|
||||
|
||||
private BatchNormalization(Builder builder) {
|
||||
super(builder);
|
||||
|
@ -71,6 +73,7 @@ public class BatchNormalization extends FeedForwardLayer {
|
|||
this.lockGammaBeta = builder.lockGammaBeta;
|
||||
this.cudnnAllowFallback = builder.cudnnAllowFallback;
|
||||
this.useLogStd = builder.useLogStd;
|
||||
this.cnn2DFormat = builder.cnn2DFormat;
|
||||
initializeConstraints(builder);
|
||||
}
|
||||
|
||||
|
@ -138,6 +141,7 @@ public class BatchNormalization extends FeedForwardLayer {
|
|||
break;
|
||||
case CNN:
|
||||
nIn = ((InputType.InputTypeConvolutional) inputType).getChannels();
|
||||
cnn2DFormat = ((InputType.InputTypeConvolutional) inputType).getFormat();
|
||||
break;
|
||||
case CNN3D:
|
||||
nIn = ((InputType.InputTypeConvolutional3D) inputType).getChannels();
|
||||
|
@ -307,6 +311,8 @@ public class BatchNormalization extends FeedForwardLayer {
|
|||
*/
|
||||
protected boolean useLogStd = true;
|
||||
|
||||
protected CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW; //Default for deserialized models, 1.0.0-beta6 and earlier
|
||||
|
||||
public Builder(double decay, boolean isMinibatch) {
|
||||
this.setDecay(decay);
|
||||
this.setMinibatch(isMinibatch);
|
||||
|
@ -329,6 +335,16 @@ public class BatchNormalization extends FeedForwardLayer {
|
|||
|
||||
public Builder() {}
|
||||
|
||||
/**
|
||||
* Set the input and output array data format. Defaults to NCHW format - i.e., channels first.
|
||||
* See {@link CNN2DFormat} for more details
|
||||
* @param format Format to use
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.cnn2DFormat = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* If doing minibatch training or not. Default: true. Under most circumstances, this should be set to true. If
|
||||
* doing full batch training (i.e., all examples in a single DataSet object - very small data sets) then this
|
||||
|
|
|
@ -22,6 +22,7 @@ import lombok.NoArgsConstructor;
|
|||
import lombok.ToString;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -62,10 +63,12 @@ import java.util.Map;
|
|||
public class CnnLossLayer extends FeedForwardLayer {
|
||||
|
||||
protected ILossFunction lossFn;
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
private CnnLossLayer(Builder builder) {
|
||||
super(builder);
|
||||
this.lossFn = builder.lossFn;
|
||||
this.format = builder.format;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -114,12 +117,16 @@ public class CnnLossLayer extends FeedForwardLayer {
|
|||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
//No op
|
||||
if(inputType instanceof InputType.InputTypeConvolutional){
|
||||
this.format = ((InputType.InputTypeConvolutional) inputType).getFormat();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public static class Builder extends BaseOutputLayer.Builder<Builder> {
|
||||
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
public Builder() {
|
||||
this.activationFn = Activation.IDENTITY.getActivationFunction();
|
||||
}
|
||||
|
@ -132,6 +139,11 @@ public class CnnLossLayer extends FeedForwardLayer {
|
|||
this.lossFn = lossFunction;
|
||||
}
|
||||
|
||||
public Builder format(CNN2DFormat format){
|
||||
this.format = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
@SuppressWarnings("unchecked")
|
||||
public Builder nIn(int nIn) {
|
||||
|
|
|
@ -19,10 +19,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
import lombok.*;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CacheMode;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.*;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
|
||||
import org.deeplearning4j.nn.conf.memory.MemoryReport;
|
||||
|
@ -58,6 +55,7 @@ public class ConvolutionLayer extends FeedForwardLayer {
|
|||
protected int[] stride; // Default is 2. Down-sample by a factor of 2
|
||||
protected int[] padding;
|
||||
protected boolean cudnnAllowFallback = true;
|
||||
protected CNN2DFormat cnn2dDataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
/**
|
||||
* The "PREFER_FASTEST" mode will pick the fastest algorithm for the specified parameters from the {@link FwdAlgo},
|
||||
|
@ -139,6 +137,9 @@ public class ConvolutionLayer extends FeedForwardLayer {
|
|||
this.cudnnBwdFilterAlgo = builder.cudnnBwdFilterAlgo;
|
||||
this.cudnnBwdDataAlgo = builder.cudnnBwdDataAlgo;
|
||||
this.cudnnAllowFallback = builder.cudnnAllowFallback;
|
||||
if(builder instanceof Builder) {
|
||||
this.cnn2dDataFormat = ((Builder)builder).dataFormat;
|
||||
}
|
||||
|
||||
initializeConstraints(builder);
|
||||
}
|
||||
|
@ -191,7 +192,7 @@ public class ConvolutionLayer extends FeedForwardLayer {
|
|||
}
|
||||
|
||||
return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode,
|
||||
nOut, layerIndex, getLayerName(), ConvolutionLayer.class);
|
||||
nOut, layerIndex, getLayerName(), cnn2dDataFormat, ConvolutionLayer.class);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -205,6 +206,7 @@ public class ConvolutionLayer extends FeedForwardLayer {
|
|||
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional) inputType;
|
||||
this.nIn = c.getChannels();
|
||||
}
|
||||
this.cnn2dDataFormat = ((InputType.InputTypeConvolutional) inputType).getFormat();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -285,6 +287,8 @@ public class ConvolutionLayer extends FeedForwardLayer {
|
|||
super();
|
||||
}
|
||||
|
||||
protected CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
@Override
|
||||
protected boolean allowCausal() {
|
||||
//Causal convolution - allowed for 1D only
|
||||
|
@ -311,6 +315,17 @@ public class ConvolutionLayer extends FeedForwardLayer {
|
|||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.dataFormat = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
@SuppressWarnings("unchecked")
|
||||
public ConvolutionLayer build() {
|
||||
|
@ -359,6 +374,10 @@ public class ConvolutionLayer extends FeedForwardLayer {
|
|||
public void setDilation(int... dilation) {
|
||||
this.dilation = ValidationUtils.validate2NonNegative(dilation, false, "dilation");
|
||||
}
|
||||
|
||||
public void setDataFormat(CNN2DFormat dataFormat){
|
||||
this.dataFormat = dataFormat;
|
||||
}
|
||||
}
|
||||
|
||||
@Getter
|
||||
|
|
|
@ -22,6 +22,7 @@ import lombok.NoArgsConstructor;
|
|||
import lombok.ToString;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -133,6 +134,13 @@ public class Deconvolution2D extends ConvolutionLayer {
|
|||
super();
|
||||
}
|
||||
|
||||
private CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
public Builder format(CNN2DFormat format){
|
||||
this.format = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean allowCausal() {
|
||||
//Causal convolution - allowed for 1D only
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
import lombok.*;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
import org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer;
|
||||
|
@ -47,13 +48,14 @@ import java.util.*;
|
|||
@EqualsAndHashCode(callSuper = true)
|
||||
public class DepthwiseConvolution2D extends ConvolutionLayer {
|
||||
|
||||
int depthMultiplier;
|
||||
protected int depthMultiplier;
|
||||
|
||||
protected DepthwiseConvolution2D(Builder builder) {
|
||||
super(builder);
|
||||
Preconditions.checkState(builder.depthMultiplier > 0, "Depth multiplier must be > 0, got %s", builder.depthMultiplier);
|
||||
this.depthMultiplier = builder.depthMultiplier;
|
||||
this.nOut = this.nIn * this.depthMultiplier;
|
||||
this.cnn2dDataFormat = builder.cnn2DFormat;
|
||||
|
||||
initializeConstraints(builder);
|
||||
}
|
||||
|
@ -95,7 +97,7 @@ public class DepthwiseConvolution2D extends ConvolutionLayer {
|
|||
}
|
||||
|
||||
return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode,
|
||||
nOut, layerIndex, getLayerName(), DepthwiseConvolution2DLayer.class);
|
||||
nOut, layerIndex, getLayerName(), cnn2dDataFormat, DepthwiseConvolution2DLayer.class);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -105,6 +107,7 @@ public class DepthwiseConvolution2D extends ConvolutionLayer {
|
|||
if(nOut == 0 || override){
|
||||
nOut = this.nIn * this.depthMultiplier;
|
||||
}
|
||||
this.cnn2dDataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@Getter
|
||||
|
@ -115,7 +118,9 @@ public class DepthwiseConvolution2D extends ConvolutionLayer {
|
|||
* Set channels multiplier for depth-wise convolution
|
||||
*
|
||||
*/
|
||||
public int depthMultiplier = 1;
|
||||
protected int depthMultiplier = 1;
|
||||
protected CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW;
|
||||
|
||||
|
||||
public Builder(int[] kernelSize, int[] stride, int[] padding) {
|
||||
super(kernelSize, stride, padding);
|
||||
|
@ -139,6 +144,17 @@ public class DepthwiseConvolution2D extends ConvolutionLayer {
|
|||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.cnn2DFormat = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set channels multiplier for depth-wise convolution
|
||||
*
|
||||
|
|
|
@ -91,7 +91,7 @@ public abstract class FeedForwardLayer extends BaseLayer {
|
|||
case CNN:
|
||||
//CNN -> FF
|
||||
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional) inputType;
|
||||
return new CnnToFeedForwardPreProcessor(c.getHeight(), c.getWidth(), c.getChannels());
|
||||
return new CnnToFeedForwardPreProcessor(c.getHeight(), c.getWidth(), c.getChannels(), c.getFormat());
|
||||
case CNN3D:
|
||||
//CNN3D -> FF
|
||||
InputType.InputTypeConvolutional3D c3d = (InputType.InputTypeConvolutional3D) inputType;
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -127,7 +128,7 @@ public class GlobalPoolingLayer extends NoParamLayer {
|
|||
if (collapseDimensions) {
|
||||
return InputType.feedForward(conv.getChannels());
|
||||
} else {
|
||||
return InputType.convolutional(1, 1, conv.getChannels());
|
||||
return InputType.convolutional(1, 1, conv.getChannels(), conv.getFormat());
|
||||
}
|
||||
case CNN3D:
|
||||
InputType.InputTypeConvolutional3D conv3d = (InputType.InputTypeConvolutional3D) inputType;
|
||||
|
@ -150,7 +151,14 @@ public class GlobalPoolingLayer extends NoParamLayer {
|
|||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
//Not applicable
|
||||
if(inputType.getType() == InputType.Type.CNN){
|
||||
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional) inputType;
|
||||
if(c.getFormat() == CNN2DFormat.NCHW){
|
||||
poolingDimensions = new int[]{2,3};
|
||||
} else {
|
||||
poolingDimensions = new int[]{1,2};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
import lombok.extern.slf4j.Slf4j;
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.exception.DL4JInvalidConfigException;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -70,13 +71,13 @@ public class InputTypeUtil {
|
|||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
long hOut = stride[0] * hIn;
|
||||
long wOut = stride[1] * wIn;
|
||||
return InputType.convolutional(hOut, wOut, outputDepth);
|
||||
return InputType.convolutional(hOut, wOut, outputDepth, i.getFormat());
|
||||
}
|
||||
|
||||
long hOut = sH * (hIn - 1) + kH - 2 * padH;
|
||||
long wOut = sW * (wIn - 1) + kW - 2 * padW;
|
||||
|
||||
return InputType.convolutional(hOut, wOut, outputDepth);
|
||||
return InputType.convolutional(hOut, wOut, outputDepth, i.getFormat());
|
||||
}
|
||||
|
||||
public static InputType getOutputTypeDeconv3dLayer(InputType inputType, int[] kernelSize, int[] stride, int[] padding,
|
||||
|
@ -332,10 +333,20 @@ public class InputTypeUtil {
|
|||
return InputType.recurrent(outputDepth, outH);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @deprecated Use {@link #getOutputTypeCnnLayers(InputType, int[], int[], int[], int[], ConvolutionMode, long, long, String, CNN2DFormat, Class)}
|
||||
*/
|
||||
@Deprecated
|
||||
public static InputType getOutputTypeCnnLayers(InputType inputType, int[] kernelSize, int[] stride, int[] padding,
|
||||
int[] dilation, ConvolutionMode convolutionMode, long outputDepth, long layerIdx, String layerName,
|
||||
Class<?> layerClass) {
|
||||
return getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode, outputDepth,
|
||||
layerIdx, layerName, CNN2DFormat.NCHW, layerClass);
|
||||
}
|
||||
|
||||
public static InputType getOutputTypeCnnLayers(InputType inputType, int[] kernelSize, int[] stride, int[] padding,
|
||||
int[] dilation, ConvolutionMode convolutionMode, long outputDepth, long layerIdx, String layerName,
|
||||
CNN2DFormat format, Class<?> layerClass) {
|
||||
|
||||
if (convolutionMode == null) {
|
||||
String name = layerName == null ? "(not named)" : layerName;
|
||||
|
@ -424,12 +435,12 @@ public class InputTypeUtil {
|
|||
int outH = (int) Math.ceil(inHeight / ((double) stride[0]));
|
||||
int outW = (int) Math.ceil(inWidth / ((double) stride[1]));
|
||||
|
||||
return InputType.convolutional(outH, outW, outputDepth);
|
||||
return InputType.convolutional(outH, outW, outputDepth, format);
|
||||
}
|
||||
|
||||
long hOut = (inHeight - kH + 2 * padH) / sH + 1;
|
||||
long wOut = (inWidth - kW + 2 * padW) / sW + 1;
|
||||
return InputType.convolutional(hOut, wOut, outputDepth);
|
||||
return InputType.convolutional(hOut, wOut, outputDepth, format);
|
||||
}
|
||||
|
||||
private static String getConfigErrorCommonLine(long layerIdx, String layerName, Class<?> layerClass,
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.GradientNormalization;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -26,6 +27,7 @@ import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
|
|||
import org.deeplearning4j.nn.conf.memory.MemoryReport;
|
||||
import org.deeplearning4j.nn.params.EmptyParamInitializer;
|
||||
import org.deeplearning4j.optimize.api.TrainingListener;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.learning.regularization.Regularization;
|
||||
|
@ -50,6 +52,7 @@ public class LocalResponseNormalization extends Layer {
|
|||
protected double beta = 0.75; // decay rate
|
||||
protected double alpha = 1e-4; // decay rate
|
||||
protected boolean cudnnAllowFallback = true;
|
||||
protected CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
private LocalResponseNormalization(Builder builder) {
|
||||
super(builder);
|
||||
|
@ -58,6 +61,7 @@ public class LocalResponseNormalization extends Layer {
|
|||
this.alpha = builder.alpha;
|
||||
this.beta = builder.beta;
|
||||
this.cudnnAllowFallback = builder.cudnnAllowFallback;
|
||||
this.dataFormat = builder.dataFormat;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -99,7 +103,8 @@ public class LocalResponseNormalization extends Layer {
|
|||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
//No op
|
||||
Preconditions.checkState(inputType.getType() == InputType.Type.CNN, "Only CNN input types can be used with LocalResponseNormalisation, got %s", inputType);
|
||||
this.dataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -184,8 +189,10 @@ public class LocalResponseNormalization extends Layer {
|
|||
*/
|
||||
protected boolean cudnnAllowFallback = true;
|
||||
|
||||
protected CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
public Builder(double k, double n, double alpha, double beta) {
|
||||
this(k, n, alpha, beta, true);
|
||||
this(k, n, alpha, beta, true, CNN2DFormat.NCHW);
|
||||
}
|
||||
|
||||
public Builder(double k, double alpha, double beta) {
|
||||
|
@ -263,6 +270,17 @@ public class LocalResponseNormalization extends Layer {
|
|||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat dataFormat){
|
||||
this.dataFormat = dataFormat;
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public LocalResponseNormalization build() {
|
||||
return new LocalResponseNormalization(this);
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
package org.deeplearning4j.nn.conf.layers;
|
||||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -70,6 +71,7 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
private int[] inputSize;
|
||||
private int[] outputSize;
|
||||
private int featureDim;
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
protected LocallyConnected2D(Builder builder) {
|
||||
super(builder);
|
||||
|
@ -84,6 +86,7 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
this.hasBias = builder.hasBias;
|
||||
this.inputSize = builder.inputSize;
|
||||
this.featureDim = kernel[0] * kernel[1] * (int) nIn;
|
||||
this.format = builder.format;
|
||||
}
|
||||
|
||||
private LocallyConnected2D() {
|
||||
|
@ -97,17 +100,19 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
throw new IllegalArgumentException("Input size has to be specified for locally connected layers.");
|
||||
}
|
||||
|
||||
int[] inputShape = new int[] {1, nIn, inputSize[0], inputSize[1]};
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
int[] inputShape = nchw ? new int[] {1, nIn, inputSize[0], inputSize[1]} : new int[] {1, inputSize[0], inputSize[1], nIn};
|
||||
INDArray dummyInputForShapeInference = Nd4j.ones(inputShape);
|
||||
|
||||
if (cm == ConvolutionMode.Same) {
|
||||
this.outputSize = ConvolutionUtils.getOutputSize(dummyInputForShapeInference, kernel, stride, null, cm,
|
||||
dilation);
|
||||
dilation, format);
|
||||
this.padding = ConvolutionUtils.getSameModeTopLeftPadding(outputSize, inputSize, kernel, stride, dilation);
|
||||
this.paddingBr = ConvolutionUtils.getSameModeBottomRightPadding(outputSize, inputSize, kernel, stride, dilation);
|
||||
} else {
|
||||
this.outputSize = ConvolutionUtils.getOutputSize(dummyInputForShapeInference, kernel, stride, padding, cm,
|
||||
dilation);
|
||||
dilation, format);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -123,7 +128,7 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
computeOutputSize();
|
||||
|
||||
return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernel, stride, padding, new int[] {1, 1}, cm, nOut,
|
||||
layerIndex, getLayerName(), LocallyConnected2D.class);
|
||||
layerIndex, getLayerName(), format, LocallyConnected2D.class);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -133,6 +138,7 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
this.nIn = c.getChannels();
|
||||
this.featureDim = kernel[0] * kernel[1] * (int) nIn;
|
||||
}
|
||||
this.format = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -181,6 +187,10 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
int kH = kernel[0];
|
||||
int kW = kernel[1];
|
||||
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
if(!nchw)
|
||||
layerInput = layerInput.permute(0,3,1,2); //NHWC to NCHW
|
||||
|
||||
if(padding[0] > 0 || padding[1] > 0 || (cm == ConvolutionMode.Same && (paddingBr[0] > 0 || paddingBr[1] > 0))){
|
||||
//Note: for same mode, bottom/right padding can be 1 more than top/left padding
|
||||
//NCHW format
|
||||
|
@ -210,16 +220,15 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
|
||||
SDVariable reshapeResult = sameDiff.reshape(mmulResult, outH, outW, miniBatch, nOut);
|
||||
|
||||
SDVariable permutedResult = sameDiff.permute(reshapeResult, 2, 3, 0, 1); // (mb, nOut, outH, outW)
|
||||
SDVariable permutedResult = nchw ? reshapeResult.permute(2, 3, 0, 1) : reshapeResult.permute(2, 0, 1, 3); // (mb, nOut, outH, outW) or (mb, outH, outW, nOut)
|
||||
|
||||
if (hasBias) {
|
||||
SDVariable b = paramTable.get(ConvolutionParamInitializer.BIAS_KEY);
|
||||
SDVariable biasAddedResult = sameDiff.nn().biasAdd(permutedResult, b, true);
|
||||
SDVariable biasAddedResult = sameDiff.nn().biasAdd(permutedResult, b, nchw);
|
||||
return activation.asSameDiff("out", sameDiff, biasAddedResult);
|
||||
} else {
|
||||
return activation.asSameDiff("out", sameDiff, permutedResult);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -292,6 +301,7 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
*/
|
||||
private boolean hasBias = true;
|
||||
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
|
||||
/**
|
||||
|
@ -386,6 +396,17 @@ public class LocallyConnected2D extends SameDiffLayer {
|
|||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.format = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param hasBias If true (default is false) the layer will have a bias
|
||||
*/
|
||||
|
|
|
@ -20,6 +20,7 @@ import lombok.*;
|
|||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.api.layers.LayerConstraint;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
import org.deeplearning4j.nn.layers.convolution.SeparableConvolution2DLayer;
|
||||
|
@ -85,6 +86,8 @@ public class SeparableConvolution2D extends ConvolutionLayer {
|
|||
this.cudnnFwdAlgo = builder.cudnnFwdAlgo;
|
||||
this.cudnnBwdFilterAlgo = builder.cudnnBwdFilterAlgo;
|
||||
this.cudnnBwdDataAlgo = builder.cudnnBwdDataAlgo;
|
||||
this.cnn2dDataFormat = builder.dataFormat;
|
||||
|
||||
|
||||
initializeConstraints(builder);
|
||||
}
|
||||
|
@ -153,8 +156,10 @@ public class SeparableConvolution2D extends ConvolutionLayer {
|
|||
+ "\"): Expected CNN input, got " + inputType);
|
||||
}
|
||||
|
||||
CNN2DFormat format = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
|
||||
return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode,
|
||||
nOut, layerIndex, getLayerName(), SeparableConvolution2DLayer.class);
|
||||
nOut, layerIndex, getLayerName(), format, SeparableConvolution2DLayer.class);
|
||||
}
|
||||
|
||||
|
||||
|
@ -166,7 +171,8 @@ public class SeparableConvolution2D extends ConvolutionLayer {
|
|||
* Set channels multiplier of channels-wise step in separable convolution
|
||||
*
|
||||
*/
|
||||
public int depthMultiplier = 1;
|
||||
protected int depthMultiplier = 1;
|
||||
protected CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
public Builder(int[] kernelSize, int[] stride, int[] padding) {
|
||||
super(kernelSize, stride, padding);
|
||||
|
@ -190,6 +196,17 @@ public class SeparableConvolution2D extends ConvolutionLayer {
|
|||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.dataFormat = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set channels multiplier of channels-wise step in separable convolution
|
||||
*
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -26,6 +27,7 @@ import org.deeplearning4j.nn.conf.memory.MemoryReport;
|
|||
import org.deeplearning4j.nn.params.EmptyParamInitializer;
|
||||
import org.deeplearning4j.optimize.api.TrainingListener;
|
||||
import org.deeplearning4j.util.ValidationUtils;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
|
||||
|
@ -65,12 +67,14 @@ public class SpaceToBatchLayer extends NoParamLayer {
|
|||
|
||||
protected int[] blocks;
|
||||
protected int[][] padding;
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
|
||||
protected SpaceToBatchLayer(Builder builder) {
|
||||
super(builder);
|
||||
this.blocks = builder.blocks;
|
||||
this.padding = builder.padding;
|
||||
this.format = builder.format;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -112,7 +116,7 @@ public class SpaceToBatchLayer extends NoParamLayer {
|
|||
}
|
||||
InputType.InputTypeConvolutional i = (InputType.InputTypeConvolutional) inputType;
|
||||
return InputType.convolutional((i.getHeight() + padding[0][0] + padding[0][1]) / blocks[0],
|
||||
(i.getWidth() + padding[1][0] + padding[1][1]) / blocks[1], i.getChannels());
|
||||
(i.getWidth() + padding[1][0] + padding[1][1]) / blocks[1], i.getChannels(), i.getFormat());
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -123,7 +127,8 @@ public class SpaceToBatchLayer extends NoParamLayer {
|
|||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
//No op: space to batch layer doesn't have nIn value
|
||||
Preconditions.checkState(inputType.getType() == InputType.Type.CNN, "Only CNN input types can be used with SpaceToBatchLayer, got %s", inputType);
|
||||
this.format = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -158,6 +163,8 @@ public class SpaceToBatchLayer extends NoParamLayer {
|
|||
*/
|
||||
protected int[][] padding;
|
||||
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
/**
|
||||
* @param blocks Block size for SpaceToBatch layer. Should be a length 2 array for the height and width
|
||||
* dimensions
|
||||
|
@ -193,6 +200,17 @@ public class SpaceToBatchLayer extends NoParamLayer {
|
|||
this.setPadding(padding);
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public T dataFormat(CNN2DFormat format){
|
||||
this.format = format;
|
||||
return (T)this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param blocks Block size for SpaceToBatch layer. Should be a length 2 array for the height and width
|
||||
* dimensions
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -56,12 +57,20 @@ import java.util.Map;
|
|||
@EqualsAndHashCode(callSuper = true)
|
||||
public class SpaceToDepthLayer extends NoParamLayer {
|
||||
|
||||
/**
|
||||
* @deprecated Use {@link CNN2DFormat} instead
|
||||
*/
|
||||
@Deprecated
|
||||
public enum DataFormat {
|
||||
NCHW, NHWC
|
||||
NCHW, NHWC;
|
||||
|
||||
public CNN2DFormat toFormat(){
|
||||
return this == NCHW ? CNN2DFormat.NCHW : CNN2DFormat.NHWC;
|
||||
}
|
||||
}
|
||||
|
||||
protected int blockSize;
|
||||
protected DataFormat dataFormat;
|
||||
protected CNN2DFormat dataFormat;
|
||||
|
||||
|
||||
protected SpaceToDepthLayer(Builder builder) {
|
||||
|
@ -108,7 +117,7 @@ public class SpaceToDepthLayer extends NoParamLayer {
|
|||
}
|
||||
InputType.InputTypeConvolutional i = (InputType.InputTypeConvolutional) inputType;
|
||||
return InputType.convolutional(i.getHeight() / blockSize, i.getWidth() / blockSize,
|
||||
i.getChannels() * blockSize * blockSize);
|
||||
i.getChannels() * blockSize * blockSize, i.getFormat());
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -119,7 +128,7 @@ public class SpaceToDepthLayer extends NoParamLayer {
|
|||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
//No op: space to batch layer doesn't have nIn value
|
||||
this.dataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -147,7 +156,7 @@ public class SpaceToDepthLayer extends NoParamLayer {
|
|||
/**
|
||||
* Data format for input activations. Note DL4J uses NCHW in most cases
|
||||
*/
|
||||
protected DataFormat dataFormat = DataFormat.NCHW;
|
||||
protected CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
/**
|
||||
* @param blockSize Block size
|
||||
|
@ -160,7 +169,12 @@ public class SpaceToDepthLayer extends NoParamLayer {
|
|||
* @param blockSize Block size
|
||||
* @param dataFormat Data format for input activations. Note DL4J uses NCHW in most cases
|
||||
*/
|
||||
@Deprecated
|
||||
public Builder(int blockSize, DataFormat dataFormat) {
|
||||
this(blockSize, dataFormat.toFormat());
|
||||
}
|
||||
|
||||
public Builder(int blockSize, CNN2DFormat dataFormat) {
|
||||
this.setBlockSize(blockSize);
|
||||
this.setDataFormat(dataFormat);
|
||||
}
|
||||
|
@ -175,8 +189,20 @@ public class SpaceToDepthLayer extends NoParamLayer {
|
|||
|
||||
/**
|
||||
* @param dataFormat Data format for input activations. Note DL4J uses NCHW in most cases
|
||||
* @deprecated Use {@link #dataFormat(CNN2DFormat)}
|
||||
*/
|
||||
@Deprecated
|
||||
public T dataFormat(DataFormat dataFormat) {
|
||||
return dataFormat(dataFormat.toFormat());
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param dataFormat Format for activations (in and out)
|
||||
*/
|
||||
public T dataFormat(CNN2DFormat dataFormat) {
|
||||
this.setDataFormat(dataFormat);
|
||||
return (T) this;
|
||||
}
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.conf.layers;
|
|||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.api.ParamInitializer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -58,6 +59,7 @@ public class SubsamplingLayer extends NoParamLayer {
|
|||
protected int pnorm;
|
||||
protected double eps;
|
||||
protected boolean cudnnAllowFallback = true;
|
||||
protected CNN2DFormat cnn2dDataFormat = CNN2DFormat.NCHW;
|
||||
/*
|
||||
Default here for JSON deserialization of 1.0.0-beta4 and earlier models. New models default to false via builder.
|
||||
This impacts average pooling only - whether the divisor should include or exclude padding along image edges.
|
||||
|
@ -121,6 +123,7 @@ public class SubsamplingLayer extends NoParamLayer {
|
|||
if (clone.dilation != null) {
|
||||
clone.dilation = clone.dilation.clone();
|
||||
}
|
||||
|
||||
return clone;
|
||||
}
|
||||
|
||||
|
@ -153,12 +156,13 @@ public class SubsamplingLayer extends NoParamLayer {
|
|||
|
||||
return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode,
|
||||
((InputType.InputTypeConvolutional) inputType).getChannels(), layerIndex, getLayerName(),
|
||||
SubsamplingLayer.class);
|
||||
cnn2dDataFormat, SubsamplingLayer.class);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
//No op: subsampling layer doesn't have nIn value
|
||||
this.cnn2dDataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -229,6 +233,7 @@ public class SubsamplingLayer extends NoParamLayer {
|
|||
* Dilation for kernel
|
||||
*/
|
||||
private int[] dilation = new int[] {1, 1};
|
||||
protected CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
public Builder(PoolingType poolingType, int[] kernelSize, int[] stride) {
|
||||
super(poolingType, kernelSize, stride);
|
||||
|
@ -307,6 +312,17 @@ public class SubsamplingLayer extends NoParamLayer {
|
|||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.dataFormat = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Kernel dilation. Default: {1, 1}, which is standard convolutions. Used for implementing dilated convolutions,
|
||||
* which are also known as atrous convolutions.<br> NOTE: Kernel dilation is less common in practice for
|
||||
|
@ -358,6 +374,10 @@ public class SubsamplingLayer extends NoParamLayer {
|
|||
public void setDilation(int[] dilation) {
|
||||
this.dilation = ValidationUtils.validate2NonNegative(dilation, false, "dilation");
|
||||
}
|
||||
|
||||
public void setDataFormat(CNN2DFormat format){
|
||||
this.dataFormat = format;
|
||||
}
|
||||
}
|
||||
|
||||
@NoArgsConstructor
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
package org.deeplearning4j.nn.conf.layers;
|
||||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -59,10 +60,12 @@ public class Upsampling2D extends BaseUpsamplingLayer {
|
|||
|
||||
@JsonDeserialize(using = LegacyIntArrayDeserializer.class)
|
||||
protected int[] size;
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
protected Upsampling2D(UpsamplingBuilder builder) {
|
||||
super(builder);
|
||||
this.size = builder.size;
|
||||
this.format = ((Builder)builder).format;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -97,7 +100,7 @@ public class Upsampling2D extends BaseUpsamplingLayer {
|
|||
val inWidth = i.getWidth();
|
||||
val inDepth = i.getChannels();
|
||||
|
||||
return InputType.convolutional(size[0] * inHeight, size[1] * inWidth, inDepth);
|
||||
return InputType.convolutional(size[0] * inHeight, size[1] * inWidth, inDepth, i.getFormat());
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -131,14 +134,35 @@ public class Upsampling2D extends BaseUpsamplingLayer {
|
|||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
if (inputType == null || inputType.getType() != InputType.Type.CNN) {
|
||||
throw new IllegalStateException("Invalid input for Upsampling 2D layer (layer name=\"" + getLayerName()
|
||||
+ "\"): Expected CNN input, got " + inputType);
|
||||
}
|
||||
this.format = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@NoArgsConstructor
|
||||
public static class Builder extends UpsamplingBuilder<Builder> {
|
||||
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW;
|
||||
|
||||
public Builder(int size) {
|
||||
super(new int[] {size, size});
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.format = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Upsampling size int, used for both height and width
|
||||
*
|
||||
|
@ -146,7 +170,7 @@ public class Upsampling2D extends BaseUpsamplingLayer {
|
|||
*/
|
||||
public Builder size(int size) {
|
||||
|
||||
this.setSize(new int[] {size, size});
|
||||
this.setSize(size, size);
|
||||
return this;
|
||||
}
|
||||
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
package org.deeplearning4j.nn.conf.layers;
|
||||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -45,6 +46,7 @@ import java.util.Map;
|
|||
public class ZeroPaddingLayer extends NoParamLayer {
|
||||
|
||||
private int[] padding;
|
||||
private CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
public ZeroPaddingLayer(int padTopBottom, int padLeftRight) {
|
||||
this(new Builder(padTopBottom, padLeftRight));
|
||||
|
@ -63,6 +65,7 @@ public class ZeroPaddingLayer extends NoParamLayer {
|
|||
}
|
||||
|
||||
this.padding = builder.padding;
|
||||
this.dataFormat = builder.cnn2DFormat;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -85,7 +88,9 @@ public class ZeroPaddingLayer extends NoParamLayer {
|
|||
int outH = hwd[0] + padding[0] + padding[1];
|
||||
int outW = hwd[1] + padding[2] + padding[3];
|
||||
|
||||
return InputType.convolutional(outH, outW, hwd[2]);
|
||||
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional)inputType;
|
||||
|
||||
return InputType.convolutional(outH, outW, hwd[2], c.getFormat());
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -107,6 +112,12 @@ public class ZeroPaddingLayer extends NoParamLayer {
|
|||
.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional)inputType;
|
||||
this.dataFormat = c.getFormat();
|
||||
}
|
||||
|
||||
@Getter
|
||||
@Setter
|
||||
public static class Builder extends Layer.Builder<Builder> {
|
||||
|
@ -117,6 +128,19 @@ public class ZeroPaddingLayer extends NoParamLayer {
|
|||
@Setter(AccessLevel.NONE)
|
||||
private int[] padding = new int[] {0, 0, 0, 0}; //Padding: top, bottom, left, right
|
||||
|
||||
private CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW;
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.cnn2DFormat = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param padding Padding value for top, bottom, left, and right. Must be length 4 array
|
||||
*/
|
||||
|
|
|
@ -17,12 +17,14 @@
|
|||
package org.deeplearning4j.nn.conf.layers.convolutional;
|
||||
|
||||
import lombok.*;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
import org.deeplearning4j.nn.conf.layers.InputTypeUtil;
|
||||
import org.deeplearning4j.nn.conf.layers.Layer;
|
||||
import org.deeplearning4j.nn.conf.layers.NoParamLayer;
|
||||
import org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer;
|
||||
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
|
||||
import org.deeplearning4j.nn.layers.convolution.Cropping2DLayer;
|
||||
import org.deeplearning4j.optimize.api.TrainingListener;
|
||||
|
@ -47,6 +49,7 @@ import java.util.Map;
|
|||
public class Cropping2D extends NoParamLayer {
|
||||
|
||||
private int[] cropping;
|
||||
private CNN2DFormat dataFormat = CNN2DFormat.NCHW;
|
||||
|
||||
/**
|
||||
* @param cropTopBottom Amount of cropping to apply to both the top and the bottom of the input activations
|
||||
|
@ -56,6 +59,10 @@ public class Cropping2D extends NoParamLayer {
|
|||
this(cropTopBottom, cropTopBottom, cropLeftRight, cropLeftRight);
|
||||
}
|
||||
|
||||
public Cropping2D(CNN2DFormat dataFormat, int cropTopBottom, int cropLeftRight) {
|
||||
this(dataFormat, cropTopBottom, cropTopBottom, cropLeftRight, cropLeftRight);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param cropTop Amount of cropping to apply to the top of the input activations
|
||||
* @param cropBottom Amount of cropping to apply to the bottom of the input activations
|
||||
|
@ -63,7 +70,11 @@ public class Cropping2D extends NoParamLayer {
|
|||
* @param cropRight Amount of cropping to apply to the right of the input activations
|
||||
*/
|
||||
public Cropping2D(int cropTop, int cropBottom, int cropLeft, int cropRight) {
|
||||
this(new Builder(cropTop, cropBottom, cropLeft, cropRight));
|
||||
this(CNN2DFormat.NCHW, cropTop, cropBottom, cropLeft, cropRight);
|
||||
}
|
||||
|
||||
public Cropping2D(CNN2DFormat format, int cropTop, int cropBottom, int cropLeft, int cropRight) {
|
||||
this(new Builder(cropTop, cropBottom, cropLeft, cropRight).dataFormat(format));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -77,6 +88,7 @@ public class Cropping2D extends NoParamLayer {
|
|||
protected Cropping2D(Builder builder) {
|
||||
super(builder);
|
||||
this.cropping = builder.cropping;
|
||||
this.dataFormat = builder.cnn2DFormat;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -98,7 +110,9 @@ public class Cropping2D extends NoParamLayer {
|
|||
int outH = hwd[0] - cropping[0] - cropping[1];
|
||||
int outW = hwd[1] - cropping[2] - cropping[3];
|
||||
|
||||
return InputType.convolutional(outH, outW, hwd[2]);
|
||||
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional)inputType;
|
||||
|
||||
return InputType.convolutional(outH, outW, hwd[2], c.getFormat());
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -113,6 +127,10 @@ public class Cropping2D extends NoParamLayer {
|
|||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setNIn(InputType inputType, boolean override) {
|
||||
this.dataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
|
||||
}
|
||||
|
||||
@Getter
|
||||
@Setter
|
||||
|
@ -124,6 +142,19 @@ public class Cropping2D extends NoParamLayer {
|
|||
@Setter(AccessLevel.NONE)
|
||||
private int[] cropping = new int[] {0, 0, 0, 0};
|
||||
|
||||
private CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW;
|
||||
|
||||
/**
|
||||
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
|
||||
* See {@link CNN2DFormat} for more details.<br>
|
||||
* Default: NCHW
|
||||
* @param format Format for activations (in and out)
|
||||
*/
|
||||
public Builder dataFormat(CNN2DFormat format){
|
||||
this.cnn2DFormat = format;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param cropping Cropping amount for top/bottom/left/right (in that order). Must be length 1, 2, or 4 array.
|
||||
*/
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.conf.preprocessor;
|
|||
import lombok.Data;
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.nn.api.MaskState;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
|
@ -52,6 +53,7 @@ public class CnnToFeedForwardPreProcessor implements InputPreProcessor {
|
|||
protected long inputHeight;
|
||||
protected long inputWidth;
|
||||
protected long numChannels;
|
||||
protected CNN2DFormat format = CNN2DFormat.NCHW; //Default for legacy JSON deserialization
|
||||
|
||||
/**
|
||||
* @param inputHeight the columns
|
||||
|
@ -61,16 +63,20 @@ public class CnnToFeedForwardPreProcessor implements InputPreProcessor {
|
|||
|
||||
@JsonCreator
|
||||
public CnnToFeedForwardPreProcessor(@JsonProperty("inputHeight") long inputHeight,
|
||||
@JsonProperty("inputWidth") long inputWidth, @JsonProperty("numChannels") long numChannels) {
|
||||
@JsonProperty("inputWidth") long inputWidth, @JsonProperty("numChannels") long numChannels,
|
||||
@JsonProperty("format") CNN2DFormat format) {
|
||||
this.inputHeight = inputHeight;
|
||||
this.inputWidth = inputWidth;
|
||||
this.numChannels = numChannels;
|
||||
this.format = format;
|
||||
}
|
||||
|
||||
public CnnToFeedForwardPreProcessor(long inputHeight, long inputWidth) {
|
||||
this.inputHeight = inputHeight;
|
||||
this.inputWidth = inputWidth;
|
||||
this.numChannels = 1;
|
||||
this(inputHeight, inputWidth, 1, CNN2DFormat.NCHW);
|
||||
}
|
||||
|
||||
public CnnToFeedForwardPreProcessor(long inputHeight, long inputWidth, long numChannels) {
|
||||
this(inputHeight, inputWidth, numChannels, CNN2DFormat.NCHW);
|
||||
}
|
||||
|
||||
public CnnToFeedForwardPreProcessor() {}
|
||||
|
@ -80,20 +86,34 @@ public class CnnToFeedForwardPreProcessor implements InputPreProcessor {
|
|||
public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) {
|
||||
if (input.rank() == 2)
|
||||
return input; //Should usually never happen
|
||||
if(input.size(1) != numChannels || input.size(2) != inputHeight || input.size(3) != inputWidth){
|
||||
|
||||
int chDim = 1;
|
||||
int hDim = 2;
|
||||
int wDim = 3;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
chDim = 3;
|
||||
hDim = 1;
|
||||
wDim = 2;
|
||||
}
|
||||
|
||||
if(input.size(chDim) != numChannels || input.size(hDim) != inputHeight || input.size(wDim) != inputWidth){
|
||||
throw new IllegalStateException("Invalid input, does not match configuration: expected [minibatch, numChannels="
|
||||
+ numChannels + ", inputHeight=" + inputHeight + ", inputWidth=" + inputWidth + "] but got input array of" +
|
||||
"shape " + Arrays.toString(input.shape()));
|
||||
}
|
||||
|
||||
//Check input: nchw format
|
||||
if(input.size(1) != numChannels || input.size(2) != inputHeight ||
|
||||
input.size(3) != inputWidth){
|
||||
if(input.size(chDim) != numChannels || input.size(hDim) != inputHeight ||
|
||||
input.size(wDim) != inputWidth){
|
||||
throw new IllegalStateException("Invalid input array: expected shape [minibatch, channels, height, width] = "
|
||||
+ "[minibatch, " + numChannels + ", " + inputHeight + ", " + inputWidth + "] - got "
|
||||
+ Arrays.toString(input.shape()));
|
||||
}
|
||||
|
||||
if(format == CNN2DFormat.NHWC) {
|
||||
input = input.permute(0, 3, 1, 2); //NHWC to NCHW
|
||||
}
|
||||
|
||||
//Assume input is standard rank 4 activations out of CNN layer
|
||||
//First: we require input to be in c order. But c order (as declared in array order) isn't enough; also need strides to be correct
|
||||
if (input.ordering() != 'c' || !Shape.hasDefaultStridesForShape(input))
|
||||
|
@ -120,6 +140,10 @@ public class CnnToFeedForwardPreProcessor implements InputPreProcessor {
|
|||
+ Arrays.toString(epsilons.shape()));
|
||||
|
||||
INDArray ret = epsilons.reshape('c', epsilons.size(0), numChannels, inputHeight, inputWidth);
|
||||
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
ret = ret.permute(0,2,3,1); //NCHW to NHWC
|
||||
}
|
||||
return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, ret); //Move if required to specified workspace
|
||||
}
|
||||
|
||||
|
|
|
@ -22,6 +22,7 @@ import lombok.val;
|
|||
import org.deeplearning4j.eval.Evaluation;
|
||||
import org.deeplearning4j.nn.api.MaskState;
|
||||
import org.deeplearning4j.nn.api.layers.IOutputLayer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
|
@ -73,22 +74,23 @@ public class CnnLossLayer extends BaseLayer<org.deeplearning4j.nn.conf.layers.Cn
|
|||
if (input.rank() != 4)
|
||||
throw new UnsupportedOperationException(
|
||||
"Input is not rank 4. Got input with rank " + input.rank() + " " + layerId() + " with shape "
|
||||
+ Arrays.toString(input.shape()) + " - expected shape [minibatch,channels,height,width]");
|
||||
+ Arrays.toString(input.shape()) + " - expected shape " + layerConf().getFormat().dimensionNames());
|
||||
if (labels == null)
|
||||
throw new IllegalStateException("Labels are not set (null)");
|
||||
|
||||
Preconditions.checkState(input.equalShapes(labels), "Input and label arrays do not have same shape: %ndShape vs. %ndShape",input, labels);
|
||||
|
||||
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
CNN2DFormat format = layerConf().getFormat();
|
||||
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
|
||||
// delta calculation
|
||||
ILossFunction lossFunction = layerConf().getLossFn();
|
||||
INDArray delta2d = lossFunction.computeGradient(labels2d, input2d.dup(input2d.ordering()), layerConf().getActivationFn(), maskReshaped);
|
||||
delta2d = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, delta2d);
|
||||
|
||||
INDArray delta4d = ConvolutionUtils.reshape2dTo4d(delta2d, input.shape(), workspaceMgr, ArrayType.ACTIVATION_GRAD);
|
||||
INDArray delta4d = ConvolutionUtils.reshape2dTo4d(delta2d, input.shape(), format, workspaceMgr, ArrayType.ACTIVATION_GRAD);
|
||||
|
||||
// grab the empty gradient
|
||||
Gradient gradient = new DefaultGradient();
|
||||
|
@ -161,13 +163,16 @@ public class CnnLossLayer extends BaseLayer<org.deeplearning4j.nn.conf.layers.Cn
|
|||
assertInputSet(false);
|
||||
if (input.rank() != 4)
|
||||
throw new UnsupportedOperationException(
|
||||
"Input must be rank 4. Got input with rank " + input.rank() + " " + layerId());
|
||||
"Input must be rank 4 with shape " + layerConf().getFormat().dimensionNames() +
|
||||
". Got input with rank " + input.rank() + " " + layerId());
|
||||
|
||||
CNN2DFormat format = layerConf().getFormat();
|
||||
|
||||
INDArray in = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, input.ordering());
|
||||
INDArray input2d = ConvolutionUtils.reshape4dTo2d(in, workspaceMgr, ArrayType.ACTIVATIONS);
|
||||
INDArray input2d = ConvolutionUtils.reshape4dTo2d(in, format, workspaceMgr, ArrayType.ACTIVATIONS);
|
||||
INDArray out2d = layerConf().getActivationFn().getActivation(input2d, training);
|
||||
|
||||
return ConvolutionUtils.reshape2dTo4d(out2d, input.shape(), workspaceMgr, ArrayType.ACTIVATIONS);
|
||||
return ConvolutionUtils.reshape2dTo4d(out2d, input.shape(), format, workspaceMgr, ArrayType.ACTIVATIONS);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -196,7 +201,7 @@ public class CnnLossLayer extends BaseLayer<org.deeplearning4j.nn.conf.layers.Cn
|
|||
public double computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr) {
|
||||
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, layerConf().getFormat(), workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
|
||||
ILossFunction lossFunction = layerConf().getLossFn();
|
||||
|
||||
|
@ -220,9 +225,11 @@ public class CnnLossLayer extends BaseLayer<org.deeplearning4j.nn.conf.layers.Cn
|
|||
if (input == null || labels == null)
|
||||
throw new IllegalStateException("Cannot calculate score without input and labels " + layerId());
|
||||
|
||||
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
CNN2DFormat format = layerConf().getFormat();
|
||||
|
||||
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
|
||||
ILossFunction lossFunction = layerConf().getLossFn();
|
||||
INDArray scoreArray =
|
||||
|
@ -233,7 +240,7 @@ public class CnnLossLayer extends BaseLayer<org.deeplearning4j.nn.conf.layers.Cn
|
|||
val newShape = input.shape().clone();
|
||||
newShape[1] = 1;
|
||||
|
||||
INDArray scoreArrayTs = ConvolutionUtils.reshape2dTo4d(scoreArray, newShape, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray scoreArrayTs = ConvolutionUtils.reshape2dTo4d(scoreArray, newShape, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
|
||||
INDArray summedScores = scoreArrayTs.sum(1,2,3).reshape(scoreArrayTs.size(0), 1);
|
||||
|
||||
if (fullNetRegTerm != 0.0) {
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.deeplearning4j.nn.layers.convolution;
|
||||
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer.AlgoMode;
|
||||
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdDataAlgo;
|
||||
|
@ -39,10 +40,10 @@ public interface ConvolutionHelper extends LayerHelper {
|
|||
Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel,
|
||||
int[] strides, int[] pad, INDArray biasGradView, INDArray weightGradView, IActivation afn,
|
||||
AlgoMode mode, BwdFilterAlgo bwdFilterAlgo, BwdDataAlgo bwdDataAlgo,
|
||||
ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr);
|
||||
ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr);
|
||||
|
||||
INDArray preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad,
|
||||
AlgoMode mode, FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr);
|
||||
AlgoMode mode, FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr);
|
||||
|
||||
INDArray activate(INDArray z, IActivation afn, boolean training);
|
||||
}
|
||||
|
|
|
@ -20,6 +20,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.api.MaskState;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.CacheMode;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -43,8 +44,6 @@ import org.nd4j.linalg.primitives.Pair;
|
|||
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
|
||||
import org.deeplearning4j.nn.workspace.ArrayType;
|
||||
import org.nd4j.util.OneTimeLogger;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
|
@ -115,6 +114,14 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
if(epsilon.dataType() != dataType)
|
||||
epsilon = epsilon.castTo(dataType);
|
||||
|
||||
INDArray origInput = input;
|
||||
INDArray origEps = epsilon;
|
||||
if(layerConf().getCnn2dDataFormat() != CNN2DFormat.NCHW){
|
||||
input = input.permute(0,3,1,2); //NHWC to NCHW
|
||||
epsilon = epsilon.permute(0,3,1,2); //NHWC to NCHW
|
||||
}
|
||||
|
||||
|
||||
long miniBatch = input.size(0);
|
||||
int inH = (int) input.size(2);
|
||||
int inW = (int) input.size(3);
|
||||
|
@ -130,11 +137,11 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
int[] pad;
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, CNN2DFormat.NCHW); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {inH, inW}, kernel, strides, dilation);
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, CNN2DFormat.NCHW); //Also performs validation
|
||||
}
|
||||
|
||||
int outH = outSize[0];
|
||||
|
@ -152,9 +159,16 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
IActivation afn = layerConf().getActivationFn();
|
||||
|
||||
Pair<INDArray, INDArray> p = preOutput4d(true, true, workspaceMgr);
|
||||
delta = afn.backprop(p.getFirst(), epsilon).getFirst(); //TODO handle activation function params
|
||||
INDArray z = p.getFirst();
|
||||
if(layerConf().getCnn2dDataFormat() != CNN2DFormat.NCHW){
|
||||
z = z.permute(0,3,1,2); //NHWC to NCHW
|
||||
}
|
||||
delta = afn.backprop(z, epsilon).getFirst(); //TODO handle activation function params
|
||||
|
||||
if (helper != null && (helperCountFail == 0 || !layerConf().isCudnnAllowFallback())) {
|
||||
INDArray helperDelta = delta;
|
||||
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC)
|
||||
helperDelta = delta.permute(0,2,3,1); //NCHW to NHWC
|
||||
|
||||
if(!hasBias() && !(helper instanceof MKLDNNConvHelper)){
|
||||
//MKL-DNN supports no bias, CuDNN doesn't
|
||||
|
@ -168,10 +182,10 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
|
||||
Pair<Gradient, INDArray> ret = null;
|
||||
try {
|
||||
ret = helper.backpropGradient(input, weights, bias, delta, kernel, strides,
|
||||
ret = helper.backpropGradient(origInput, weights, bias, helperDelta, kernel, strides,
|
||||
pad, biasGradView, weightGradView, afn,
|
||||
layerConf().getCudnnAlgoMode(), layerConf().getCudnnBwdFilterAlgo(), layerConf().getCudnnBwdDataAlgo(),
|
||||
convolutionMode, dilation, workspaceMgr);
|
||||
convolutionMode, dilation, layerConf().getCnn2dDataFormat(), workspaceMgr);
|
||||
} catch (ND4JOpProfilerException e){
|
||||
throw e; //NaN panic etc for debugging
|
||||
} catch (Exception e){
|
||||
|
@ -254,6 +268,11 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
weightNoiseParams.clear();
|
||||
|
||||
epsNext = backpropDropOutIfPresent(epsNext);
|
||||
|
||||
if(layerConf().getCnn2dDataFormat() != CNN2DFormat.NCHW){
|
||||
epsNext = epsNext.permute(0,2,3,1); //NCHW to NHWC
|
||||
}
|
||||
|
||||
return new Pair<>(retGradient, epsNext);
|
||||
}
|
||||
|
||||
|
@ -284,14 +303,16 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
}
|
||||
|
||||
protected void validateInputDepth(long inDepth) {
|
||||
if (input.size(1) != inDepth) {
|
||||
CNN2DFormat format = layerConf().getCnn2dDataFormat();
|
||||
int dim = format == CNN2DFormat.NHWC ? 3 : 1;
|
||||
if (input.size(dim) != inDepth) {
|
||||
String layerName = conf.getLayer().getLayerName();
|
||||
if (layerName == null)
|
||||
layerName = "(not named)";
|
||||
throw new DL4JInvalidInputException("Cannot do forward pass in Convolution layer (layer name = " + layerName
|
||||
+ ", layer index = " + index + "): input array channels does not match CNN layer configuration"
|
||||
+ " (data input channels = " + input.size(1) + ", [minibatch,inputDepth,height,width]="
|
||||
+ Arrays.toString(input.shape()) + "; expected" + " input channels = " + inDepth + ") "
|
||||
+ " (data input channels = " + input.size(dim) + ", " + layerConf().getCnn2dDataFormat().dimensionNames()
|
||||
+ "=" + Arrays.toString(input.shape()) + "; expected" + " input channels = " + inDepth + ") "
|
||||
+ layerId());
|
||||
}
|
||||
}
|
||||
|
@ -313,6 +334,11 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
validateInputRank();
|
||||
|
||||
INDArray input = this.input.castTo(dataType);
|
||||
INDArray inputOrig = input;
|
||||
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC){
|
||||
input = input.permute(0,3,1,2).dup(); //NHWC to NCHW
|
||||
}
|
||||
|
||||
|
||||
long miniBatch = input.size(0);
|
||||
long outDepth = weights.size(0);
|
||||
|
@ -329,7 +355,7 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
int[] pad;
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, CNN2DFormat.NCHW); //Note: hardcoded to NCHW due to permute earlier in this method
|
||||
|
||||
if (input.size(2) > Integer.MAX_VALUE || input.size(3) > Integer.MAX_VALUE)
|
||||
throw new ND4JArraySizeException();
|
||||
|
@ -337,7 +363,7 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
strides, dilation );
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, CNN2DFormat.NCHW); //Note: hardcoded to NCHW due to permute earlier in this method
|
||||
}
|
||||
|
||||
int outH = outSize[0];
|
||||
|
@ -361,8 +387,8 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
|
||||
INDArray ret = null;
|
||||
try {
|
||||
ret = helper.preOutput(input, weights, bias, kernel, strides, pad, layerConf().getCudnnAlgoMode(),
|
||||
layerConf().getCudnnFwdAlgo(), convolutionMode, dilation, workspaceMgr);
|
||||
ret = helper.preOutput(inputOrig, weights, bias, kernel, strides, pad, layerConf().getCudnnAlgoMode(),
|
||||
layerConf().getCudnnFwdAlgo(), convolutionMode, dilation, layerConf().getCnn2dDataFormat(), workspaceMgr);
|
||||
} catch (ND4JOpProfilerException e){
|
||||
throw e; //NaN panic etc for debugging
|
||||
} catch (Exception e){
|
||||
|
@ -430,6 +456,11 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
|
|||
}
|
||||
}
|
||||
|
||||
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC){
|
||||
z = z.permute(0,2,3,1); //NCHW to NHWC
|
||||
z = workspaceMgr.dup(ArrayType.ACTIVATIONS, z);
|
||||
}
|
||||
|
||||
return new Pair<>(z, forBackprop ? im2col2d : null);
|
||||
}
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
|
@ -91,9 +92,19 @@ public class Cropping2DLayer extends AbstractLayer<org.deeplearning4j.nn.conf.la
|
|||
}
|
||||
|
||||
private INDArray inputSubset(INDArray from){
|
||||
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
|
||||
|
||||
if(nchw) {
|
||||
//NCHW format
|
||||
return from.get(all(), all(),
|
||||
interval(cropping[0], from.size(2)-cropping[1]),
|
||||
interval(cropping[2], from.size(3)-cropping[3]));
|
||||
interval(cropping[0], from.size(2) - cropping[1]),
|
||||
interval(cropping[2], from.size(3) - cropping[3]));
|
||||
} else {
|
||||
//NHWC
|
||||
return from.get(all(),
|
||||
interval(cropping[0], from.size(1) - cropping[1]),
|
||||
interval(cropping[2], from.size(2) - cropping[3]),
|
||||
all());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.CacheMode;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -71,15 +72,20 @@ public class Deconvolution2DLayer extends ConvolutionLayer {
|
|||
if (input.rank() != 4) {
|
||||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to Deconvolution2DLayer with shape " + Arrays.toString(input.shape())
|
||||
+ ". Expected rank 4 array with shape [minibatchSize, channels, inputHeight, inputWidth]. "
|
||||
+ ". Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + ". "
|
||||
+ layerId());
|
||||
}
|
||||
|
||||
INDArray weights = getParamWithNoise(DeconvolutionParamInitializer.WEIGHT_KEY, true, workspaceMgr);
|
||||
|
||||
CNN2DFormat format = layerConf().getCnn2dDataFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int hDim = nchw ? 2 : 1;
|
||||
int wDim = nchw ? 3 : 2;
|
||||
|
||||
long miniBatch = input.size(0);
|
||||
long inH = input.size(2);
|
||||
long inW = input.size(3);
|
||||
long inH = input.size(hDim);
|
||||
long inW = input.size(wDim);
|
||||
|
||||
long inDepth = weights.size(0);
|
||||
|
||||
|
@ -90,25 +96,25 @@ public class Deconvolution2DLayer extends ConvolutionLayer {
|
|||
int[] kernel = layerConf().getKernelSize();
|
||||
int[] strides = layerConf().getStride();
|
||||
int[] pad;
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getDeconvolutionOutputSize(input, kernel, strides, null, convolutionMode, dilation);
|
||||
int[] outSize = new int[]{(int)epsilon.size(hDim), (int)epsilon.size(wDim)};
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int)inH, (int)inW}, kernel, strides, dilation);
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
outSize = ConvolutionUtils.getDeconvolutionOutputSize(input, kernel, strides, pad, convolutionMode, dilation);
|
||||
}
|
||||
|
||||
INDArray biasGradView = gradientViews.get(DeconvolutionParamInitializer.BIAS_KEY);
|
||||
INDArray weightGradView = gradientViews.get(DeconvolutionParamInitializer.WEIGHT_KEY);
|
||||
|
||||
INDArray outEps = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, weights.dataType(), new long[]{miniBatch, inDepth, inH, inW}, 'c');
|
||||
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
|
||||
INDArray outEps = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, weights.dataType(), epsShape, 'c');
|
||||
|
||||
Integer sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
|
||||
int[] args = new int[] {
|
||||
(int)kH, (int)kW, strides[0], strides[1],
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode,
|
||||
nchw ? 0 : 1 //0 = NCHW; 1 = NHWC
|
||||
};
|
||||
|
||||
INDArray delta;
|
||||
|
@ -171,20 +177,23 @@ public class Deconvolution2DLayer extends ConvolutionLayer {
|
|||
+ " " + layerId());
|
||||
}
|
||||
|
||||
CNN2DFormat format = layerConf().getCnn2dDataFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int cDim = nchw ? 1 : 3;
|
||||
int hDim = nchw ? 2 : 1;
|
||||
int wDim = nchw ? 3 : 2;
|
||||
|
||||
long inDepth = weights.size(0);
|
||||
long outDepth = weights.size(1);
|
||||
|
||||
if (input.size(1) != inDepth && input.size(3) == inDepth) {
|
||||
//TODO AB 2019/10/25 this is an ugly "pseudo-NHWC support" hack that needs to be removed ASAD
|
||||
//https://github.com/eclipse/deeplearning4j/issues/8315
|
||||
input = input.permute(0, 3, 1, 2);
|
||||
} else if (input.size(1) != inDepth ) {
|
||||
if (input.size(cDim) != inDepth ) {
|
||||
String layerName = conf.getLayer().getLayerName();
|
||||
if (layerName == null)
|
||||
layerName = "(not named)";
|
||||
throw new DL4JInvalidInputException("Cannot do forward pass in Deconvolution2D layer (layer name = " + layerName
|
||||
+ ", layer index = " + index + "): input array channels does not match CNN layer configuration"
|
||||
+ " (data input channels = " + input.size(1) + ", [minibatch,inputDepth,height,width]="
|
||||
+ " (data input channels = " + input.size(cDim) + ", "
|
||||
+ (nchw ? "[minibatch,inputDepth,height,width]" : "[minibatch,height,width,inputDepth]") + "="
|
||||
+ Arrays.toString(input.shape()) + "; expected" + " input channels = " + inDepth + ") "
|
||||
+ layerId());
|
||||
}
|
||||
|
@ -198,12 +207,12 @@ public class Deconvolution2DLayer extends ConvolutionLayer {
|
|||
int[] pad;
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getDeconvolutionOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int) input.size(2), (int) input.size(3)}, kernel,
|
||||
outSize = ConvolutionUtils.getDeconvolutionOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int) input.size(hDim), (int) input.size(wDim)}, kernel,
|
||||
strides, dilation );
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
outSize = ConvolutionUtils.getDeconvolutionOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getDeconvolutionOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format); //Also performs validation
|
||||
}
|
||||
|
||||
long outH = outSize[0];
|
||||
|
@ -211,13 +220,15 @@ public class Deconvolution2DLayer extends ConvolutionLayer {
|
|||
|
||||
|
||||
val miniBatch = input.size(0);
|
||||
INDArray output = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), new long[]{miniBatch, outDepth, outH, outW}, 'c');
|
||||
long[] outShape = nchw ? new long[]{miniBatch, outDepth, outH, outW} : new long[]{miniBatch, outH, outW, outDepth};
|
||||
INDArray output = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
|
||||
|
||||
int sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
|
||||
int[] args = new int[] {
|
||||
kH, kW, strides[0], strides[1],
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode, 0 //Last arg: 0 for nchw
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode,
|
||||
nchw ? 0 : 1 //0 = NCHW; 1 = NHWC
|
||||
};
|
||||
|
||||
//DL4J Deconv weights: [inputDepth, outputDepth, kH, kW]
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.CacheMode;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -64,10 +65,12 @@ public class DepthwiseConvolution2DLayer extends ConvolutionLayer {
|
|||
@Override
|
||||
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
|
||||
assertInputSet(true);
|
||||
CNN2DFormat format = layerConf().getCnn2dDataFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
if (input.rank() != 4) {
|
||||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to Convolution layer with shape " + Arrays.toString(input.shape())
|
||||
+ ". Expected rank 4 array with shape [miniBatchSize, channels, inputHeight, inputWidth]. "
|
||||
+ ". Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + ". "
|
||||
+ layerId());
|
||||
}
|
||||
INDArray bias;
|
||||
|
@ -77,8 +80,8 @@ public class DepthwiseConvolution2DLayer extends ConvolutionLayer {
|
|||
INDArray input = this.input.castTo(dataType); //No-op if correct type
|
||||
|
||||
long miniBatch = input.size(0);
|
||||
int inH = (int)input.size(2);
|
||||
int inW = (int)input.size(3);
|
||||
int inH = (int)input.size(nchw ? 2 : 1);
|
||||
int inW = (int)input.size(nchw ? 3 : 2);
|
||||
|
||||
long inDepth = depthWiseWeights.size(2);
|
||||
int kH = (int) depthWiseWeights.size(0);
|
||||
|
@ -90,25 +93,25 @@ public class DepthwiseConvolution2DLayer extends ConvolutionLayer {
|
|||
int[] pad;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
int[] outSize = ConvolutionUtils.getOutputSize(
|
||||
input, kernel, strides, null, convolutionMode, dilation);
|
||||
input, kernel, strides, null, convolutionMode, dilation, format);
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[]{inH, inW}, kernel, strides, dilation);
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation);
|
||||
ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format);
|
||||
}
|
||||
|
||||
INDArray biasGradView = gradientViews.get(DepthwiseConvolutionParamInitializer.BIAS_KEY);
|
||||
INDArray weightGradView = gradientViews.get(DepthwiseConvolutionParamInitializer.WEIGHT_KEY);
|
||||
|
||||
INDArray outEpsilon = workspaceMgr.create(
|
||||
ArrayType.ACTIVATION_GRAD, depthWiseWeights.dataType(), new long[]{miniBatch, inDepth, inH, inW}, 'c');
|
||||
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
|
||||
INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, depthWiseWeights.dataType(), epsShape, 'c');
|
||||
|
||||
Integer sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
int sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
|
||||
int[] args = new int[]{
|
||||
kH, kW, strides[0], strides[1],
|
||||
pad[0], pad[1], dilation[0], dilation[1],
|
||||
sameMode
|
||||
sameMode, (nchw ? 0 : 1)
|
||||
};
|
||||
|
||||
INDArray delta;
|
||||
|
@ -161,7 +164,7 @@ public class DepthwiseConvolution2DLayer extends ConvolutionLayer {
|
|||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to DepthwiseConvolution2D (layer name = " + layerName + ", layer index = "
|
||||
+ index + ") with shape " + Arrays.toString(input.shape()) + ". "
|
||||
+ "Expected rank 4 array with shape [miniBatchSize, layerInputDepth, inputHeight, inputWidth]."
|
||||
+ "Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + "."
|
||||
+ (input.rank() == 2
|
||||
? " (Wrong input type (see InputType.convolutionalFlat()) or wrong data type?)"
|
||||
: "") + " " + layerId());
|
||||
|
@ -169,18 +172,22 @@ public class DepthwiseConvolution2DLayer extends ConvolutionLayer {
|
|||
|
||||
INDArray input = this.input.castTo(dataType); //no-op if correct dtype
|
||||
|
||||
CNN2DFormat format = layerConf().getCnn2dDataFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
long inDepth = depthWiseWeights.size(2);
|
||||
long depthMultiplier = depthWiseWeights.size(3);
|
||||
long outDepth = depthMultiplier * inDepth;
|
||||
|
||||
if (input.size(1) != inDepth) {
|
||||
if (input.size(nchw ? 1 : 3) != inDepth) {
|
||||
String layerName = conf.getLayer().getLayerName();
|
||||
if (layerName == null)
|
||||
layerName = "(not named)";
|
||||
throw new DL4JInvalidInputException("Cannot do forward pass in DepthwiseConvolution2D layer " +
|
||||
"(layer name = " + layerName
|
||||
+ ", layer index = " + index + "): input array channels does not match CNN layer configuration"
|
||||
+ " (data input channels = " + input.size(1) + ", [minibatch,inputDepth,height,width]="
|
||||
+ " (data input channels = " + input.size(1) + ", "
|
||||
+ (nchw ? "[minibatch,inputDepth,height,width]=" : "[minibatch,height,width,inputDepth]=")
|
||||
+ Arrays.toString(input.shape()) + "; expected" + " input channels = " + inDepth + ") "
|
||||
+ layerId());
|
||||
}
|
||||
|
@ -194,30 +201,30 @@ public class DepthwiseConvolution2DLayer extends ConvolutionLayer {
|
|||
int[] pad;
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation);
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format);
|
||||
|
||||
if (input.size(2) > Integer.MAX_VALUE || input.size(3) > Integer.MAX_VALUE) {
|
||||
throw new ND4JArraySizeException();
|
||||
}
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(
|
||||
outSize, new int[]{(int) input.size(2), (int) input.size(3)}, kernel, strides, dilation);
|
||||
outSize, new int[]{(int) input.size(nchw ? 2 : 1), (int) input.size(nchw ? 3 : 2)}, kernel, strides, dilation);
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation);
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format);
|
||||
}
|
||||
|
||||
long outH = outSize[0];
|
||||
long outW = outSize[1];
|
||||
|
||||
val miniBatch = input.size(0);
|
||||
INDArray output = workspaceMgr.create(
|
||||
ArrayType.ACTIVATIONS, depthWiseWeights.dataType(), new long[]{miniBatch, outDepth, outH, outW}, 'c');
|
||||
long[] outShape = nchw ? new long[]{miniBatch, outDepth, outH, outW} : new long[]{miniBatch, outH, outW, outDepth};
|
||||
INDArray output = workspaceMgr.create(ArrayType.ACTIVATIONS, depthWiseWeights.dataType(), outShape, 'c');
|
||||
|
||||
Integer sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
int sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
|
||||
int[] args = new int[]{
|
||||
kH, kW, strides[0], strides[1],
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode, (nchw ? 0 : 1)
|
||||
};
|
||||
|
||||
INDArray[] inputs;
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.CacheMode;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -80,7 +81,7 @@ public class SeparableConvolution2DLayer extends ConvolutionLayer {
|
|||
if (input.rank() != 4) {
|
||||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to SubsamplingLayer with shape " + Arrays.toString(input.shape())
|
||||
+ ". Expected rank 4 array with shape [minibatchSize, channels, inputHeight, inputWidth]. "
|
||||
+ ". Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + ". "
|
||||
+ layerId());
|
||||
}
|
||||
INDArray bias;
|
||||
|
@ -91,9 +92,12 @@ public class SeparableConvolution2DLayer extends ConvolutionLayer {
|
|||
|
||||
INDArray input = this.input.castTo(dataType);
|
||||
|
||||
CNN2DFormat format = layerConf().getCnn2dDataFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
long miniBatch = input.size(0);
|
||||
int inH = (int)input.size(2);
|
||||
int inW = (int)input.size(3);
|
||||
int inH = (int)input.size(nchw ? 2 : 1);
|
||||
int inW = (int)input.size(nchw ? 3 : 2);
|
||||
|
||||
int inDepth = (int) depthWiseWeights.size(1);
|
||||
int kH = (int) depthWiseWeights.size(2);
|
||||
|
@ -104,24 +108,26 @@ public class SeparableConvolution2DLayer extends ConvolutionLayer {
|
|||
int[] strides = layerConf().getStride();
|
||||
int[] pad;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
int[] outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
int[] outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {inH, inW}, kernel, strides, dilation);
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format); //Also performs validation
|
||||
}
|
||||
|
||||
INDArray biasGradView = gradientViews.get(SeparableConvolutionParamInitializer.BIAS_KEY);
|
||||
INDArray depthWiseWeightGradView = gradientViews.get(SeparableConvolutionParamInitializer.DEPTH_WISE_WEIGHT_KEY);
|
||||
INDArray pointWiseWeightGradView = gradientViews.get(SeparableConvolutionParamInitializer.POINT_WISE_WEIGHT_KEY);
|
||||
|
||||
INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, depthWiseWeights.dataType(), new long[]{miniBatch, inDepth, inH, inW}, 'c');
|
||||
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
|
||||
INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, depthWiseWeights.dataType(), epsShape, 'c');
|
||||
|
||||
Integer sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
int sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
|
||||
int[] args = new int[] {
|
||||
kH, kW, strides[0], strides[1],
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode,
|
||||
nchw ? 0 : 1
|
||||
};
|
||||
|
||||
INDArray delta;
|
||||
|
@ -180,6 +186,12 @@ public class SeparableConvolution2DLayer extends ConvolutionLayer {
|
|||
|
||||
INDArray input = this.input.castTo(dataType);
|
||||
|
||||
CNN2DFormat format = layerConf().getCnn2dDataFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int chIdx = nchw ? 1 : 3;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
if (input.rank() != 4) {
|
||||
String layerName = conf.getLayer().getLayerName();
|
||||
if (layerName == null)
|
||||
|
@ -187,7 +199,7 @@ public class SeparableConvolution2DLayer extends ConvolutionLayer {
|
|||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to SeparableConvolution2D (layer name = " + layerName + ", layer index = "
|
||||
+ index + ") with shape " + Arrays.toString(input.shape()) + ". "
|
||||
+ "Expected rank 4 array with shape [minibatchSize, layerInputDepth, inputHeight, inputWidth]."
|
||||
+ "Expected rank 4 array with shape " + format.dimensionNames() + "."
|
||||
+ (input.rank() == 2
|
||||
? " (Wrong input type (see InputType.convolutionalFlat()) or wrong data type?)"
|
||||
: "")
|
||||
|
@ -197,7 +209,7 @@ public class SeparableConvolution2DLayer extends ConvolutionLayer {
|
|||
long inDepth = depthWiseWeights.size(1);
|
||||
long outDepth = pointWiseWeights.size(0);
|
||||
|
||||
if (input.size(1) != inDepth) {
|
||||
if (input.size(nchw ? 1 : 3) != inDepth) {
|
||||
String layerName = conf.getLayer().getLayerName();
|
||||
if (layerName == null)
|
||||
layerName = "(not named)";
|
||||
|
@ -217,29 +229,31 @@ public class SeparableConvolution2DLayer extends ConvolutionLayer {
|
|||
int[] pad;
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation
|
||||
|
||||
if (input.size(2) > Integer.MAX_VALUE || input.size(3) > Integer.MAX_VALUE) {
|
||||
throw new ND4JArraySizeException();
|
||||
}
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int) input.size(2), (int) input.size(3)}, kernel,
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int) input.size(hIdx), (int) input.size(wIdx)}, kernel,
|
||||
strides, dilation );
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format); //Also performs validation
|
||||
}
|
||||
|
||||
int outH = outSize[0];
|
||||
int outW = outSize[1];
|
||||
|
||||
val miniBatch = input.size(0);
|
||||
INDArray output = workspaceMgr.create(ArrayType.ACTIVATIONS, depthWiseWeights.dataType(), new long[]{miniBatch, outDepth, outH, outW}, 'c');
|
||||
long[] outShape = nchw ? new long[]{miniBatch, outDepth, outH, outW} : new long[]{miniBatch, outH, outW, outDepth};
|
||||
INDArray output = workspaceMgr.create(ArrayType.ACTIVATIONS, depthWiseWeights.dataType(), outShape, 'c');
|
||||
|
||||
Integer sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
|
||||
|
||||
int[] args = new int[] {
|
||||
kH, kW, strides[0], strides[1],
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode
|
||||
pad[0], pad[1], dilation[0], dilation[1], sameMode,
|
||||
nchw ? 0 : 1
|
||||
};
|
||||
|
||||
//dl4j weights: depth [depthMultiplier, nIn, kH, kW], point [nOut, nIn * depthMultiplier, 1, 1]
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
|
@ -91,17 +92,14 @@ public class SpaceToBatch extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
|
||||
INDArray input = this.input.castTo(dataType); //Cast to network dtype if required (no-op if already correct type)
|
||||
|
||||
long miniBatch = input.size(0);
|
||||
long inDepth = input.size(1);
|
||||
long inH = input.size(2);
|
||||
long inW = input.size(3);
|
||||
boolean nchw = layerConf().getFormat() == CNN2DFormat.NCHW;
|
||||
|
||||
INDArray outEpsilon = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), new long[]{miniBatch, inDepth, inH, inW}, 'c');
|
||||
INDArray outEpsilon = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), input.shape(), 'c');
|
||||
|
||||
Gradient gradient = new DefaultGradient();
|
||||
|
||||
INDArray epsilonNHWC = epsilon.permute(0, 2, 3, 1);
|
||||
INDArray outEpsilonNHWC = outEpsilon.permute(0, 2, 3, 1);
|
||||
INDArray epsilonNHWC = nchw ? epsilon.permute(0, 2, 3, 1) : epsilon;
|
||||
INDArray outEpsilonNHWC = nchw ? outEpsilon.permute(0, 2, 3, 1) : outEpsilon;
|
||||
|
||||
CustomOp op = DynamicCustomOp.builder("batch_to_space_nd")
|
||||
.addInputs(epsilonNHWC, getBlocksArray(), getPaddingArray())
|
||||
|
@ -121,7 +119,7 @@ public class SpaceToBatch extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
if (input.rank() != 4) {
|
||||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to space to batch with shape " + Arrays.toString(input.shape())
|
||||
+ ". Expected rank 4 array with shape [minibatchSize, channels, inputHeight, inputWidth]. "
|
||||
+ ". Expected rank 4 array with shape " + layerConf().getFormat().dimensionNames() + ". "
|
||||
+ layerId());
|
||||
}
|
||||
|
||||
|
@ -129,10 +127,12 @@ public class SpaceToBatch extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
return preOutput;
|
||||
}
|
||||
|
||||
boolean nchw = layerConf().getFormat() == CNN2DFormat.NCHW;
|
||||
|
||||
long inMiniBatch = input.size(0);
|
||||
long depth = input.size(1);
|
||||
long inH = input.size(2);
|
||||
long inW = input.size(3);
|
||||
long depth = input.size(nchw ? 1 : 3);
|
||||
long inH = input.size(nchw ? 2 : 1);
|
||||
long inW = input.size(nchw ? 3 : 2);
|
||||
|
||||
int[] blocks = getBlocks();
|
||||
int[][] padding = getPadding();
|
||||
|
@ -144,10 +144,12 @@ public class SpaceToBatch extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
long outW = paddedW / blocks[1];
|
||||
long outMiniBatch = inMiniBatch * blocks[0] * blocks[1];
|
||||
|
||||
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), new long[]{outMiniBatch, depth, outH, outW}, 'c');
|
||||
long[] outShape = nchw ? new long[]{outMiniBatch, depth, outH, outW} : new long[]{outMiniBatch, outH, outW, depth};
|
||||
|
||||
INDArray inNHWC = input.permute(0, 2, 3, 1);
|
||||
INDArray outNHWC = out.permute(0, 2, 3, 1);
|
||||
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
|
||||
|
||||
INDArray inNHWC = nchw ? input.permute(0, 2, 3, 1) : input;
|
||||
INDArray outNHWC = nchw ? out.permute(0, 2, 3, 1) : out;
|
||||
|
||||
CustomOp op = DynamicCustomOp.builder("space_to_batch_nd")
|
||||
.addInputs(inNHWC, getBlocksArray(), getPaddingArray())
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
|
@ -28,6 +29,7 @@ import org.nd4j.linalg.api.buffer.DataType;
|
|||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.api.ops.CustomOp;
|
||||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.shape.Shape;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
|
||||
|
@ -63,8 +65,6 @@ public class SpaceToDepth extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
return layerConf().getBlockSize();
|
||||
}
|
||||
|
||||
private int isNHWC() {return layerConf().getDataFormat().equals(SpaceToDepthLayer.DataFormat.NHWC)? 1: 0;}
|
||||
|
||||
@Override
|
||||
public Type type() {
|
||||
return Type.CONVOLUTIONAL;
|
||||
|
@ -75,35 +75,33 @@ public class SpaceToDepth extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
|
||||
assertInputSet(true);
|
||||
|
||||
INDArray input = this.input.castTo(epsilon.dataType());
|
||||
|
||||
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
|
||||
long miniBatch = input.size(0);
|
||||
long inDepth = input.size(1);
|
||||
long inH = input.size(2);
|
||||
long inW = input.size(3);
|
||||
long inDepth = input.size(nchw ? 1 : 3);
|
||||
long inH = input.size(nchw ? 2 : 1);
|
||||
long inW = input.size(nchw ? 3 : 2);
|
||||
|
||||
INDArray input = this.input.castTo(dataType); //No-op if already correct type
|
||||
|
||||
INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, input.dataType(), new long[]{1, miniBatch * inDepth * inH * inW}, 'c');
|
||||
INDArray reshapedEpsilon;
|
||||
|
||||
if (isNHWC() == 1) {
|
||||
reshapedEpsilon = outEpsilon.reshape('c', miniBatch, inH, inW, inDepth);
|
||||
} else {
|
||||
reshapedEpsilon = outEpsilon.reshape('c', miniBatch, inDepth, inH, inW);
|
||||
}
|
||||
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
|
||||
INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, input.dataType(), epsShape, 'c');
|
||||
|
||||
Gradient gradient = new DefaultGradient();
|
||||
|
||||
int blockSize = getBlockSize();
|
||||
|
||||
//Workaround for issue: https://github.com/eclipse/deeplearning4j/issues/8859
|
||||
if(!Shape.hasDefaultStridesForShape(epsilon))
|
||||
epsilon = epsilon.dup('c');
|
||||
|
||||
CustomOp op = DynamicCustomOp.builder("depth_to_space")
|
||||
.addInputs(epsilon)
|
||||
.addIntegerArguments(blockSize, isNHWC())
|
||||
.addOutputs(reshapedEpsilon)
|
||||
.addIntegerArguments(blockSize, nchw ? 0 : 1) //nchw = 0, nhwc = 1
|
||||
.addOutputs(outEpsilon)
|
||||
.build();
|
||||
Nd4j.getExecutioner().exec(op);
|
||||
|
||||
reshapedEpsilon = backpropDropOutIfPresent(reshapedEpsilon);
|
||||
return new Pair<>(gradient, reshapedEpsilon);
|
||||
return new Pair<>(gradient, outEpsilon);
|
||||
}
|
||||
|
||||
protected INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
|
||||
|
@ -113,7 +111,7 @@ public class SpaceToDepth extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
if (input.rank() != 4) {
|
||||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to space to channels with shape " + Arrays.toString(input.shape())
|
||||
+ ". Expected rank 4 array with shape [minibatchSize, channels, inputHeight, inputWidth]. "
|
||||
+ ". Expected rank 4 array with shape " + layerConf().getDataFormat().dimensionNames() + ". "
|
||||
+ layerId());
|
||||
}
|
||||
|
||||
|
@ -121,10 +119,12 @@ public class SpaceToDepth extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
return preOutput;
|
||||
}
|
||||
|
||||
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
|
||||
|
||||
long miniBatch = input.size(0);
|
||||
long depth = input.size(1);
|
||||
long inH = input.size(2);
|
||||
long inW = input.size(3);
|
||||
long depth = input.size(nchw ? 1 : 3);
|
||||
long inH = input.size(nchw ? 2 : 1);
|
||||
long inW = input.size(nchw ? 3 : 2);
|
||||
|
||||
int blockSize = getBlockSize();
|
||||
|
||||
|
@ -132,22 +132,22 @@ public class SpaceToDepth extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
long outW = inW / blockSize;
|
||||
long outDepth = depth * blockSize * blockSize;
|
||||
|
||||
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), new long[]{1, miniBatch * outDepth * outH * outW}, 'c');
|
||||
INDArray reshapedOut;
|
||||
if (isNHWC() == 1) {
|
||||
reshapedOut = out.reshape('c', miniBatch, outH, outW, outDepth);
|
||||
} else {
|
||||
reshapedOut = out.reshape('c', miniBatch, outDepth, outH, outW);
|
||||
}
|
||||
long[] outShape = nchw ? new long[]{miniBatch, outDepth, outH, outW} : new long[]{miniBatch, outH, outW, outDepth};
|
||||
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
|
||||
|
||||
//Workaround for issue: https://github.com/eclipse/deeplearning4j/issues/8859
|
||||
INDArray input = this.input;
|
||||
if(!Shape.hasDefaultStridesForShape(input))
|
||||
input = input.dup('c');
|
||||
|
||||
CustomOp op = DynamicCustomOp.builder("space_to_depth")
|
||||
.addInputs(input)
|
||||
.addIntegerArguments(blockSize, isNHWC())
|
||||
.addOutputs(reshapedOut)
|
||||
.addIntegerArguments(blockSize, nchw ? 0 : 1) //nchw = 0, nhwc = 1
|
||||
.addOutputs(out)
|
||||
.build();
|
||||
Nd4j.getExecutioner().exec(op);
|
||||
|
||||
return reshapedOut;
|
||||
return out;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.convolution;
|
|||
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
|
@ -38,11 +39,8 @@ import org.deeplearning4j.nn.workspace.ArrayType;
|
|||
*/
|
||||
public class ZeroPaddingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer> {
|
||||
|
||||
private int[] padding; //[padTop, padBottom, padLeft, padRight]
|
||||
|
||||
public ZeroPaddingLayer(NeuralNetConfiguration conf, DataType dataType) {
|
||||
super(conf, dataType);
|
||||
this.padding = ((org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer) conf.getLayer()).getPadding();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -65,9 +63,23 @@ public class ZeroPaddingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
assertInputSet(true);
|
||||
val inShape = input.shape();
|
||||
|
||||
INDArray epsNext = epsilon.get(NDArrayIndex.all(), NDArrayIndex.all(),
|
||||
NDArrayIndex.interval(padding[0], padding[0] + inShape[2]),
|
||||
NDArrayIndex.interval(padding[2], padding[2] + inShape[3]));
|
||||
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
INDArray epsNext;
|
||||
int[] padding = layerConf().getPadding();
|
||||
if(layerConf().getDataFormat() == CNN2DFormat.NCHW){
|
||||
epsNext = epsilon.get(NDArrayIndex.all(), NDArrayIndex.all(),
|
||||
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
|
||||
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx]));
|
||||
} else {
|
||||
//NHWC
|
||||
epsNext = epsilon.get(NDArrayIndex.all(),
|
||||
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
|
||||
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx]),
|
||||
NDArrayIndex.all());
|
||||
}
|
||||
|
||||
epsNext = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, epsNext);
|
||||
return new Pair<>((Gradient) new DefaultGradient(), epsNext);
|
||||
|
@ -77,16 +89,28 @@ public class ZeroPaddingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
@Override
|
||||
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
|
||||
assertInputSet(false);
|
||||
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
int[] padding = layerConf().getPadding();
|
||||
val inShape = input.shape();
|
||||
val outH = inShape[2] + padding[0] + padding[1];
|
||||
val outW = inShape[3] + padding[2] + padding[3];
|
||||
val outShape = new long[] {inShape[0], inShape[1], outH, outW};
|
||||
val outH = inShape[hIdx] + padding[0] + padding[1];
|
||||
val outW = inShape[wIdx] + padding[2] + padding[3];
|
||||
val outShape = nchw ? new long[] {inShape[0], inShape[1], outH, outW} : new long[] {inShape[0], outH, outW, inShape[3]};
|
||||
|
||||
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
|
||||
|
||||
out.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(),
|
||||
NDArrayIndex.interval(padding[0], padding[0] + inShape[2]),
|
||||
NDArrayIndex.interval(padding[2], padding[2] + inShape[3])}, input);
|
||||
if(nchw) {
|
||||
out.put(new INDArrayIndex[]{NDArrayIndex.all(), NDArrayIndex.all(),
|
||||
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
|
||||
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx])}, input);
|
||||
} else {
|
||||
out.put(new INDArrayIndex[]{NDArrayIndex.all(),
|
||||
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
|
||||
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx]),
|
||||
NDArrayIndex.all()}, input);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.deeplearning4j.nn.layers.convolution.subsampling;
|
||||
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.layers.PoolingType;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
|
@ -33,8 +34,9 @@ public interface SubsamplingHelper extends LayerHelper {
|
|||
boolean checkSupported();
|
||||
|
||||
Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad,
|
||||
PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr);
|
||||
PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation,
|
||||
CNN2DFormat format, LayerWorkspaceMgr workspaceMgr);
|
||||
|
||||
INDArray activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType,
|
||||
ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr);
|
||||
ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr);
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@ package org.deeplearning4j.nn.layers.convolution.subsampling;
|
|||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.api.MaskState;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
|
@ -108,15 +109,23 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
if(epsilon.dataType() != dataType)
|
||||
epsilon = epsilon.castTo(dataType);
|
||||
|
||||
int inH = (int)input.size(2);
|
||||
int inW = (int)input.size(3);
|
||||
CNN2DFormat dataFormat = layerConf().getCnn2dDataFormat();
|
||||
int hIdx = 2;
|
||||
int wIdx = 3;
|
||||
if(dataFormat == CNN2DFormat.NHWC){
|
||||
hIdx = 1;
|
||||
wIdx = 2;
|
||||
}
|
||||
|
||||
int inH = (int)input.size(hIdx);
|
||||
int inW = (int)input.size(wIdx);
|
||||
|
||||
int[] kernel = layerConf().getKernelSize();
|
||||
int[] strides = layerConf().getStride();
|
||||
int[] dilation = layerConf().getDilation();
|
||||
|
||||
int[] pad;
|
||||
int[] outSizeFwd = new int[]{(int)epsilon.size(2), (int)epsilon.size(3)}; //NCHW
|
||||
int[] outSizeFwd = new int[]{(int)epsilon.size(hIdx), (int)epsilon.size(wIdx)}; //NCHW
|
||||
boolean same = convolutionMode == ConvolutionMode.Same;
|
||||
if (same) {
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSizeFwd, new int[] {inH, inW}, kernel, strides, dilation);
|
||||
|
@ -128,7 +137,7 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
Pair<Gradient, INDArray> ret = null;
|
||||
try{
|
||||
ret = helper.backpropGradient(input, epsilon, kernel, strides, pad,
|
||||
layerConf().getPoolingType(), convolutionMode, dilation, workspaceMgr);
|
||||
layerConf().getPoolingType(), convolutionMode, dilation, dataFormat, workspaceMgr);
|
||||
} catch (ND4JOpProfilerException e){
|
||||
throw e; //NaN panic etc for debugging
|
||||
} catch (Exception e){
|
||||
|
@ -188,26 +197,14 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
b.addInputs(input, epsilon)
|
||||
.addOutputs(epsAtInput)
|
||||
.addIntegerArguments(kernel[0], kernel[1], strides[0], strides[1], pad[0], pad[1], dilation[0], dilation[1],
|
||||
(same ? 1 : 0), extra, 0); //last 0 = NCHW
|
||||
(same ? 1 : 0), extra,
|
||||
dataFormat == CNN2DFormat.NCHW ? 0 : 1); //0 = NCHW, 1=NHWC
|
||||
|
||||
Nd4j.exec(b.build());
|
||||
|
||||
return new Pair<>(retGradient, epsAtInput);
|
||||
}
|
||||
|
||||
private static double minValue(){
|
||||
switch (Nd4j.dataType()){
|
||||
case DOUBLE:
|
||||
return -Double.MAX_VALUE;
|
||||
case FLOAT:
|
||||
return -Float.MAX_VALUE;
|
||||
case HALF:
|
||||
return -65504.0;
|
||||
default:
|
||||
throw new IllegalStateException("Unexpected data type: " + Nd4j.dataType());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
|
||||
|
@ -219,16 +216,26 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
if (input.rank() != 4) {
|
||||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to SubsamplingLayer with shape " + Arrays.toString(input.shape())
|
||||
+ ". Expected rank 4 array with shape [minibatchSize, channels, inputHeight, inputWidth]. "
|
||||
+ ". Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + ". "
|
||||
+ layerId());
|
||||
}
|
||||
|
||||
INDArray input = this.input.castTo(dataType);
|
||||
|
||||
int chIdx = 1;
|
||||
int hIdx = 2;
|
||||
int wIdx = 3;
|
||||
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC){
|
||||
chIdx = 3;
|
||||
hIdx = 1;
|
||||
wIdx = 2;
|
||||
}
|
||||
|
||||
CNN2DFormat dataFormat = layerConf().getCnn2dDataFormat();
|
||||
long miniBatch = input.size(0);
|
||||
long inDepth = input.size(1);
|
||||
int inH = (int)input.size(2);
|
||||
int inW = (int)input.size(3);
|
||||
long inDepth = input.size(chIdx);
|
||||
int inH = (int)input.size(hIdx);
|
||||
int inW = (int)input.size(wIdx);
|
||||
|
||||
int[] kernel = layerConf().getKernelSize();
|
||||
int[] strides = layerConf().getStride();
|
||||
|
@ -237,11 +244,11 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
int[] outSize;
|
||||
boolean same = convolutionMode == ConvolutionMode.Same;
|
||||
if (same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, layerConf().getCnn2dDataFormat()); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {inH, inW}, kernel, strides, dilation);
|
||||
} else {
|
||||
pad = layerConf().getPadding();
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, layerConf().getCnn2dDataFormat()); //Also performs validation
|
||||
}
|
||||
long outH = outSize[0];
|
||||
long outW = outSize[1];
|
||||
|
@ -251,7 +258,7 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
INDArray ret = null;
|
||||
try {
|
||||
ret = helper.activate(input, training, kernel, strides, pad, layerConf().getPoolingType(),
|
||||
convolutionMode, dilation, workspaceMgr);
|
||||
convolutionMode, dilation, dataFormat, workspaceMgr);
|
||||
} catch (ND4JOpProfilerException e){
|
||||
throw e; //NaN panic etc for debugging
|
||||
} catch (Exception e){
|
||||
|
@ -271,7 +278,9 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
}
|
||||
}
|
||||
|
||||
INDArray output = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), new long[]{miniBatch, inDepth, outH, outW}, 'c');
|
||||
long[] outShape = (layerConf().getCnn2dDataFormat() == CNN2DFormat.NCHW) ? new long[]{miniBatch, inDepth, outH, outW} : new long[]{miniBatch, outH, outW, inDepth};
|
||||
|
||||
INDArray output = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
|
||||
DynamicCustomOp.DynamicCustomOpsBuilder b;
|
||||
int extra = 0;
|
||||
switch (layerConf().getPoolingType()){
|
||||
|
@ -299,7 +308,8 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
|
|||
b.addInputs(input)
|
||||
.addOutputs(output)
|
||||
.addIntegerArguments(kernel[0], kernel[1], strides[0], strides[1], pad[0], pad[1], dilation[0], dilation[1],
|
||||
(same ? 1 : 0), extra, 0); //Last 0: NCHW
|
||||
(same ? 1 : 0), extra,
|
||||
layerConf().getCnn2dDataFormat() == CNN2DFormat.NCHW ? 0 : 1); //0: NCHW, 1=NHWC
|
||||
|
||||
Nd4j.exec(b.build());
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.convolution.upsampling;
|
|||
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
|
@ -52,6 +53,10 @@ public class Upsampling1D extends Upsampling2D {
|
|||
super(conf, dataType);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected CNN2DFormat getFormat(){
|
||||
return CNN2DFormat.NCHW;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||
* Copyright (c) 2020 Konduit K.K.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
|
@ -18,7 +19,7 @@ package org.deeplearning4j.nn.layers.convolution.upsampling;
|
|||
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.CacheMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
|
@ -62,34 +63,41 @@ public class Upsampling2D extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
|
||||
assertInputSet(true);
|
||||
|
||||
long miniBatch = (int) input.size(0);
|
||||
long inDepth = (int) input.size(1);
|
||||
long inH = (int) input.size(2);
|
||||
long inW = (int) input.size(3);
|
||||
CNN2DFormat format = getFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
INDArray reshapedEpsilon = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, epsilon.dataType(), new long[]{miniBatch, inDepth, inH, inW}, 'c');
|
||||
long miniBatch = (int) input.size(0);
|
||||
long inDepth = (int) input.size(nchw ? 1 : 3);
|
||||
long inH = (int) input.size(nchw ? 2 : 1);
|
||||
long inW = (int) input.size(nchw ? 3 : 2);
|
||||
|
||||
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
|
||||
INDArray epsOut = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, epsilon.dataType(), epsShape, 'c');
|
||||
|
||||
Gradient gradient = new DefaultGradient();
|
||||
|
||||
int[] intArgs = new int[] {1}; // 1 is for NCHW
|
||||
|
||||
|
||||
CustomOp op = DynamicCustomOp.builder("upsampling_bp")
|
||||
.addIntegerArguments(intArgs)
|
||||
.addIntegerArguments(nchw ? 1 : 0) //1=NCHW, 0=NHWC
|
||||
.addInputs(input, epsilon)
|
||||
.addOutputs(reshapedEpsilon)
|
||||
.addOutputs(epsOut)
|
||||
.callInplace(false)
|
||||
.build();
|
||||
Nd4j.getExecutioner().exec(op);
|
||||
|
||||
reshapedEpsilon = backpropDropOutIfPresent(reshapedEpsilon);
|
||||
return new Pair<>(gradient, reshapedEpsilon);
|
||||
epsOut = backpropDropOutIfPresent(epsOut);
|
||||
|
||||
return new Pair<>(gradient, epsOut);
|
||||
}
|
||||
|
||||
protected int[] getSize(){
|
||||
return layerConf().getSize();
|
||||
}
|
||||
|
||||
protected CNN2DFormat getFormat(){
|
||||
//Here so it can be overridden by Upsampling1D
|
||||
return layerConf().getFormat();
|
||||
}
|
||||
|
||||
protected INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
|
||||
assertInputSet(false);
|
||||
applyDropOutIfNecessary(training, workspaceMgr);
|
||||
|
@ -97,7 +105,7 @@ public class Upsampling2D extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
if (input.rank() != 4) {
|
||||
throw new DL4JInvalidInputException("Got rank " + input.rank()
|
||||
+ " array as input to SubsamplingLayer with shape " + Arrays.toString(input.shape())
|
||||
+ ". Expected rank 4 array with shape [minibatchSize, channels, inputHeight, inputWidth]. "
|
||||
+ ". Expected rank 4 array with shape " + layerConf().getFormat().dimensionNames() + ". "
|
||||
+ layerId());
|
||||
}
|
||||
|
||||
|
@ -105,18 +113,22 @@ public class Upsampling2D extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
return preOutput;
|
||||
}
|
||||
|
||||
CNN2DFormat format = getFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
|
||||
long miniBatch = (int) input.size(0);
|
||||
long inDepth = (int) input.size(1);
|
||||
long inH = (int) input.size(2);
|
||||
long inW = (int) input.size(3);
|
||||
long inDepth = (int) input.size(nchw ? 1 : 3);
|
||||
long inH = (int) input.size(nchw ? 2 : 1);
|
||||
long inW = (int) input.size(nchw ? 3 : 2);
|
||||
|
||||
int[] size = getSize();
|
||||
int outH = (int)inH * size[0];
|
||||
int outW = (int)inW * size[1];
|
||||
|
||||
INDArray reshapedOutput = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), new long[]{miniBatch, inDepth, outH, outW}, 'c');
|
||||
long[] outShape = nchw ? new long[]{miniBatch, inDepth, outH, outW} : new long[]{miniBatch, outH, outW, inDepth};
|
||||
INDArray reshapedOutput = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
|
||||
|
||||
int[] intArgs = new int[] {size[0], size[1], 1}; // 1 is for NCHW
|
||||
int[] intArgs = new int[] {size[0], size[1], nchw ? 1 : 0}; // 1 = NCHW, 0 = NHWC
|
||||
|
||||
CustomOp upsampling = DynamicCustomOp.builder("upsampling2d")
|
||||
.addIntegerArguments(intArgs)
|
||||
|
|
|
@ -41,6 +41,11 @@ public class BaseMKLDNNHelper {
|
|||
return false;
|
||||
}
|
||||
|
||||
if(!Nd4j.getEnvironment().helpersAllowed()){
|
||||
//C++ helpers not allowed
|
||||
return false;
|
||||
}
|
||||
|
||||
try{
|
||||
Class<?> c = Class.forName("org.nd4j.nativeblas.Nd4jCpu$Environment");
|
||||
Method m = c.getMethod("getInstance");
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.deeplearning4j.nn.layers.mkldnn;
|
||||
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
import org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper;
|
||||
|
@ -28,9 +29,8 @@ import org.nd4j.linalg.api.ndarray.INDArray;
|
|||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.ops.OpContext;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.BatchNorm;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.BatchNormDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.summarystats.Variance;
|
||||
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
|
||||
import org.nd4j.linalg.api.shape.Shape;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
import org.nd4j.linalg.util.ArrayUtil;
|
||||
|
@ -47,7 +47,8 @@ import java.util.Map;
|
|||
*/
|
||||
public class MKLDNNBatchNormHelper implements BatchNormalizationHelper {
|
||||
private static final int[] RANK2_DIMS = {0};
|
||||
private static final int[] RANK4_DIMS = {0,2,3};
|
||||
private static final int[] RANK4_DIMS_NCHW = {0,2,3};
|
||||
private static final int[] RANK4_DIMS_NHWC = {0,1,2};
|
||||
|
||||
protected OpContext context;
|
||||
private INDArray meanCache;
|
||||
|
@ -64,11 +65,18 @@ public class MKLDNNBatchNormHelper implements BatchNormalizationHelper {
|
|||
|
||||
@Override
|
||||
public Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma,
|
||||
INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps, LayerWorkspaceMgr workspaceMgr) {
|
||||
INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps,
|
||||
CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
|
||||
//Workaround for: https://github.com/eclipse/deeplearning4j/issues/8860
|
||||
if(!Shape.hasDefaultStridesForShape(epsilon))
|
||||
epsilon = epsilon.dup('c');
|
||||
|
||||
if(input.dataType() != DataType.FLOAT)
|
||||
return null; //MKL-DNN only supports float
|
||||
|
||||
//TODO FIXME - AB 2019/11/01 - https://github.com/eclipse/deeplearning4j/issues/8335
|
||||
int axis = (input.rank() != 4 || format == CNN2DFormat.NCHW) ? 1 : 3;
|
||||
|
||||
List<INDArray> args = new ArrayList<>();
|
||||
args.add(input);
|
||||
args.add(meanCache);
|
||||
|
@ -85,7 +93,7 @@ public class MKLDNNBatchNormHelper implements BatchNormalizationHelper {
|
|||
.addIntegerArguments(
|
||||
gamma == null ? 0 : 1, //Apply scale
|
||||
beta == null ? 0 : 1, //Apply beta
|
||||
1) //Axis (NCHW)
|
||||
axis) //Axis (NCHW) - 1=NCHW, 3=NHWC
|
||||
.addFloatingPointArguments(eps)
|
||||
.build();
|
||||
|
||||
|
@ -114,16 +122,18 @@ public class MKLDNNBatchNormHelper implements BatchNormalizationHelper {
|
|||
|
||||
@Override
|
||||
public INDArray preOutput(INDArray x, boolean training, long[] shape, INDArray gamma, INDArray beta, INDArray mean, INDArray var,
|
||||
double decay, double eps, LayerWorkspaceMgr workspaceMgr) {
|
||||
double decay, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
if(x.dataType() != DataType.FLOAT)
|
||||
return null; //MKL-DNN only supports float
|
||||
|
||||
int axis = (x.rank() != 4 || format == CNN2DFormat.NCHW) ? 1 : 3;
|
||||
|
||||
if(context == null){
|
||||
context = Nd4j.getExecutioner().buildContext();
|
||||
context.setIArguments(
|
||||
ArrayUtil.fromBoolean(gamma != null),
|
||||
ArrayUtil.fromBoolean(beta != null),
|
||||
1); //Axis
|
||||
axis); //Axis - 1 = NCHW, 3 = NHWC
|
||||
context.setTArguments(eps);
|
||||
}
|
||||
|
||||
|
@ -132,12 +142,22 @@ public class MKLDNNBatchNormHelper implements BatchNormalizationHelper {
|
|||
if(training){
|
||||
if(meanCache == null){
|
||||
try(MemoryWorkspace ws = Nd4j.getMemoryManager().scopeOutOfWorkspaces()) {
|
||||
meanCache = Nd4j.createUninitialized(x.dataType(), x.size(1));
|
||||
varCache = Nd4j.createUninitialized(x.dataType(), x.size(1));
|
||||
meanCache = Nd4j.createUninitialized(x.dataType(), x.size(axis));
|
||||
varCache = Nd4j.createUninitialized(x.dataType(), x.size(axis));
|
||||
}
|
||||
}
|
||||
x.mean(meanCache, x.rank() == 2 ? RANK2_DIMS : RANK4_DIMS);
|
||||
Nd4j.exec(new Variance(x, varCache, false, x.rank() == 2 ? RANK2_DIMS : RANK4_DIMS));
|
||||
|
||||
int[] dims;
|
||||
if(x.rank() == 2){
|
||||
dims = RANK2_DIMS;
|
||||
} else if(format == CNN2DFormat.NCHW){
|
||||
dims = RANK4_DIMS_NCHW;
|
||||
} else {
|
||||
dims = RANK4_DIMS_NHWC;
|
||||
}
|
||||
|
||||
x.mean(meanCache, dims);
|
||||
Nd4j.exec(new Variance(x, varCache, false, dims));
|
||||
|
||||
m = meanCache;
|
||||
v = varCache;
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.deeplearning4j.nn.layers.mkldnn;
|
||||
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
|
@ -61,7 +62,7 @@ public class MKLDNNConvHelper implements ConvolutionHelper {
|
|||
public Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel, int[] strides, int[] pad,
|
||||
INDArray biasGradView, INDArray weightGradView, IActivation afn, ConvolutionLayer.AlgoMode mode,
|
||||
ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo, ConvolutionLayer.BwdDataAlgo bwdDataAlgo, ConvolutionMode convolutionMode,
|
||||
int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
if(input.dataType() != DataType.FLOAT || weights.dataType() != DataType.FLOAT)
|
||||
return null; //MKL-DNN only supports floating point dtype
|
||||
|
||||
|
@ -69,8 +70,15 @@ public class MKLDNNConvHelper implements ConvolutionHelper {
|
|||
INDArray weightsPermute = weights.permute(2,3,1,0);
|
||||
INDArray weightGradViewPermute = weightGradView.permute(2,3,1,0);
|
||||
|
||||
int hDim = 2;
|
||||
int wDim = 3;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
hDim = 1;
|
||||
wDim = 2;
|
||||
}
|
||||
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(new int[]{(int)delta.size(2), (int)delta.size(3)}, new int[] {(int) input.size(2), (int) input.size(3)},
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(new int[]{(int)delta.size(hDim), (int)delta.size(wDim)}, new int[] {(int) input.size(hDim), (int) input.size(wDim)},
|
||||
kernel, strides, dilation);
|
||||
}
|
||||
|
||||
|
@ -81,7 +89,7 @@ public class MKLDNNConvHelper implements ConvolutionHelper {
|
|||
pad[0], pad[1],
|
||||
dilation[0], dilation[1],
|
||||
ArrayUtil.fromBoolean(convolutionMode == ConvolutionMode.Same),
|
||||
0 //0=NCHW
|
||||
format == CNN2DFormat.NCHW ? 0 : 1 //0=NCHW, 1=NHWC
|
||||
);
|
||||
};
|
||||
|
||||
|
@ -110,18 +118,28 @@ public class MKLDNNConvHelper implements ConvolutionHelper {
|
|||
}
|
||||
|
||||
@Override
|
||||
public INDArray preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
public INDArray preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad,
|
||||
ConvolutionLayer.AlgoMode mode, ConvolutionLayer.FwdAlgo fwdAlgo, ConvolutionMode convolutionMode,
|
||||
int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
if(input.dataType() != DataType.FLOAT || weights.dataType() != DataType.FLOAT)
|
||||
return null; //MKL-DNN only supports floating point dtype
|
||||
|
||||
int inH = (int)input.size(2);
|
||||
int inW = (int)input.size(3);
|
||||
|
||||
int hDim = 2;
|
||||
int wDim = 3;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
hDim = 1;
|
||||
wDim = 2;
|
||||
}
|
||||
|
||||
int inH = (int)input.size(hDim);
|
||||
int inW = (int)input.size(wDim);
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {inH, inW}, kernel, strides, dilation);
|
||||
} else {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format); //Also performs validation
|
||||
}
|
||||
|
||||
if(context == null ){
|
||||
|
@ -131,12 +149,13 @@ public class MKLDNNConvHelper implements ConvolutionHelper {
|
|||
pad[0], pad[1],
|
||||
dilation[0], dilation[1],
|
||||
ArrayUtil.fromBoolean(convolutionMode == ConvolutionMode.Same),
|
||||
0 //0=NCHW
|
||||
format == CNN2DFormat.NCHW ? 0 : 1 //0=NCHW, 1=NHWC
|
||||
);
|
||||
};
|
||||
|
||||
int outDepth = (int) weights.size(0);
|
||||
INDArray out = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), input.size(0), outDepth, outSize[0], outSize[1]);
|
||||
long[] outShape = (format == CNN2DFormat.NCHW) ? new long[]{input.size(0), outDepth, outSize[0], outSize[1]} : new long[]{input.size(0), outSize[0], outSize[1], outDepth};
|
||||
INDArray out = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), outShape);
|
||||
|
||||
//Note: conv2d op expects [kH, kW, iC, oC] weights... DL4J conv uses [oC, iC, kH, kW]
|
||||
weights = weights.permute(2,3,1,0);
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.deeplearning4j.nn.layers.mkldnn;
|
||||
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.layers.PoolingType;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
|
@ -59,14 +60,23 @@ public class MKLDNNSubsamplingHelper implements SubsamplingHelper {
|
|||
}
|
||||
|
||||
@Override
|
||||
public Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
public Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad,
|
||||
PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation,
|
||||
CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
if(poolingType == PoolingType.SUM || poolingType == PoolingType.PNORM)
|
||||
return null;
|
||||
|
||||
INDArray gradAtInput = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), input.shape());
|
||||
|
||||
int hIdx = 2;
|
||||
int wIdx = 3;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
hIdx = 1;
|
||||
wIdx = 2;
|
||||
}
|
||||
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(new int[]{(int)epsilon.size(2), (int)epsilon.size(3)}, new int[] {(int)input.size(2), (int)input.size(3)}, kernel, strides, dilation);
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(new int[]{(int)epsilon.size(hIdx), (int)epsilon.size(wIdx)}, new int[] {(int)input.size(hIdx), (int)input.size(wIdx)}, kernel, strides, dilation);
|
||||
}
|
||||
|
||||
Pooling2DConfig conf = Pooling2DConfig.builder()
|
||||
|
@ -75,7 +85,7 @@ public class MKLDNNSubsamplingHelper implements SubsamplingHelper {
|
|||
.sH(strides[0]).sW(strides[1])
|
||||
.dH(dilation[0]).dW(dilation[1])
|
||||
.pH(pad[0]).pW(pad[1])
|
||||
.isNHWC(false)
|
||||
.isNHWC(format == CNN2DFormat.NHWC)
|
||||
.build();
|
||||
|
||||
switch (poolingType){
|
||||
|
@ -94,16 +104,26 @@ public class MKLDNNSubsamplingHelper implements SubsamplingHelper {
|
|||
}
|
||||
|
||||
@Override
|
||||
public INDArray activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, LayerWorkspaceMgr workspaceMgr) {
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int)input.size(2), (int)input.size(3)}, kernel, strides, dilation);
|
||||
} else {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation); //Also performs validation
|
||||
public INDArray activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType,
|
||||
ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) {
|
||||
|
||||
int hIdx = 2;
|
||||
int wIdx = 3;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
hIdx = 1;
|
||||
wIdx = 2;
|
||||
}
|
||||
|
||||
long[] outShape = new long[]{input.size(0), input.size(1), outSize[0], outSize[1]};
|
||||
int[] outSize;
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation
|
||||
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {(int)input.size(hIdx), (int)input.size(wIdx)}, kernel, strides, dilation);
|
||||
} else {
|
||||
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format); //Also performs validation
|
||||
}
|
||||
|
||||
long[] outShape = format == CNN2DFormat.NCHW ? new long[]{input.size(0), input.size(1), outSize[0], outSize[1]} :
|
||||
new long[]{input.size(0), outSize[0], outSize[1], input.size(3)};
|
||||
INDArray output = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), outShape);
|
||||
|
||||
if(context == null){
|
||||
|
@ -115,7 +135,7 @@ public class MKLDNNSubsamplingHelper implements SubsamplingHelper {
|
|||
dilation[0], dilation[1],
|
||||
ArrayUtil.fromBoolean(convolutionMode == ConvolutionMode.Same),
|
||||
0, //Extra - not used?
|
||||
0); //0 = NCHW
|
||||
format == CNN2DFormat.NCHW ? 0 : 1); //0 = NCHW, 1=NHWC
|
||||
}
|
||||
|
||||
DynamicCustomOp op;
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.normalization;
|
|||
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
|
@ -112,6 +113,10 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
val batchSize = epsilon.size(0); // number examples in batch
|
||||
org.deeplearning4j.nn.conf.layers.BatchNormalization layerConf = layerConf();
|
||||
|
||||
CNN2DFormat format = layerConf().getCnn2DFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int chIdx = epsilon.rank() == 2 || nchw ? 1 : 3;
|
||||
|
||||
INDArray input = this.input.castTo(dataType); //No-op if correct type
|
||||
|
||||
INDArray globalMean = params.get(BatchNormalizationParamInitializer.GLOBAL_MEAN);
|
||||
|
@ -125,7 +130,7 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
INDArray dGlobalVarView = gradientViews.get(BatchNormalizationParamInitializer.GLOBAL_VAR);
|
||||
INDArray dGlobalLog10StdView = gradientViews.get(BatchNormalizationParamInitializer.GLOBAL_LOG_STD);
|
||||
if (layerConf.isLockGammaBeta()) {
|
||||
val tempShape = new long[] {1, shape[1]};
|
||||
val tempShape = new long[] {1, shape[chIdx]};
|
||||
dGammaView = Nd4j.createUninitialized(dataType, tempShape, 'c');
|
||||
dBetaView = Nd4j.createUninitialized(dataType, tempShape, 'c');
|
||||
} else {
|
||||
|
@ -141,14 +146,15 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
if (helper != null && (helperCountFail == 0 || !layerConf().isCudnnAllowFallback())){
|
||||
//Note that cudnn does not support dense (2d) batch norm case as of v5.1
|
||||
if (layerConf.isLockGammaBeta()) {
|
||||
gamma = Nd4j.createUninitialized(dataType, 1, shape[1]).assign(layerConf.getGamma());
|
||||
gamma = Nd4j.createUninitialized(dataType, 1, shape[chIdx]).assign(layerConf.getGamma());
|
||||
}
|
||||
|
||||
INDArray in;
|
||||
INDArray eps;
|
||||
if(input.rank() == 2){
|
||||
in = input.reshape(input.ordering(), input.size(0), input.size(1), 1, 1);
|
||||
eps = epsilon.reshape(epsilon.ordering(), epsilon.size(0), epsilon.size(1), 1, 1);
|
||||
long[] shapeTemp = nchw ? new long[]{input.size(0), input.size(1), 1, 1} : new long[]{input.size(0), 1, 1, input.size(1)};
|
||||
in = input.reshape(input.ordering(), shapeTemp);
|
||||
eps = epsilon.reshape(epsilon.ordering(), shapeTemp);
|
||||
} else {
|
||||
in = input;
|
||||
eps = epsilon;
|
||||
|
@ -157,7 +163,7 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
Pair<Gradient,INDArray> ret = null;
|
||||
try {
|
||||
ret = helper.backpropGradient(in, eps, shape, gamma, beta, dGammaView, dBetaView,
|
||||
layerConf.getEps(), workspaceMgr);
|
||||
layerConf.getEps(), format, workspaceMgr);
|
||||
} catch (ND4JOpProfilerException e){
|
||||
throw e; //NaN panic etc for debugging
|
||||
} catch (Throwable t){
|
||||
|
@ -282,39 +288,43 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
batchMean = input.mean(0);
|
||||
batchVar = input.var(false, 0);
|
||||
} else if (epsilon.rank() == 4) {
|
||||
int[] nonChDims = nchw ? new int[]{0, 2, 3} : new int[]{0, 1, 2};
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
if(xHat == null && helper != null){
|
||||
INDArray mean = helper.getMeanCache(dataType);
|
||||
std = Transforms.sqrt(helper.getVarCache(dataType).addi(layerConf().getEps()));
|
||||
xMu = Nd4j.createUninitialized(dataType, input.shape(), input.ordering());
|
||||
xMu = Nd4j.getExecutioner().exec(new BroadcastSubOp(input, mean, xMu, 1));
|
||||
xMu = Nd4j.getExecutioner().exec(new BroadcastSubOp(input, mean, xMu, chIdx));
|
||||
xHat = Nd4j.createUninitialized(dataType, input.shape(), input.ordering());
|
||||
xHat = Nd4j.getExecutioner().exec(new BroadcastDivOp(xMu, std,xHat, 1));
|
||||
xHat = Nd4j.getExecutioner().exec(new BroadcastDivOp(xMu, std,xHat, chIdx));
|
||||
}
|
||||
|
||||
INDArray dBeta = epsilon.sum(0, 2, 3);
|
||||
INDArray dGamma = epsilon.mul(xHat).sum(0, 2, 3);
|
||||
INDArray dBeta = epsilon.sum(nonChDims);
|
||||
INDArray dGamma = epsilon.mul(xHat).sum(nonChDims);
|
||||
INDArray dxhat;
|
||||
if (layerConf.isLockGammaBeta()) {
|
||||
dxhat = epsilon.mul(layerConf.getGamma());
|
||||
} else {
|
||||
//Standard case
|
||||
dxhat = Nd4j.getExecutioner().exec(new BroadcastMulOp(epsilon, gamma,
|
||||
Nd4j.createUninitialized(epsilon.dataType(), epsilon.shape(), epsilon.ordering()), 1));
|
||||
Nd4j.createUninitialized(epsilon.dataType(), epsilon.shape(), epsilon.ordering()), chIdx));
|
||||
}
|
||||
|
||||
//dL/dVariance
|
||||
INDArray dLdVar = dxhat.mul(xMu).sum(0, 2, 3).muli(-0.5).muli(Transforms.pow(std, -3.0, true));
|
||||
INDArray dLdVar = dxhat.mul(xMu).sum(nonChDims).muli(-0.5).muli(Transforms.pow(std, -3.0, true));
|
||||
|
||||
//dL/dmu
|
||||
val effectiveBatchSize = input.size(0) * input.size(2) * input.size(3);
|
||||
INDArray dxmu1 = dxhat.sum(0, 2, 3).divi(std).negi();
|
||||
INDArray dxmu2 = xMu.sum(0, 2, 3).muli(-2.0 / effectiveBatchSize).muli(dLdVar);
|
||||
val effectiveBatchSize = input.size(0) * input.size(hIdx) * input.size(wIdx);
|
||||
INDArray dxmu1 = dxhat.sum(nonChDims).divi(std).negi();
|
||||
INDArray dxmu2 = xMu.sum(nonChDims).muli(-2.0 / effectiveBatchSize).muli(dLdVar);
|
||||
INDArray dLdmu = dxmu1.addi(dxmu2);
|
||||
|
||||
INDArray dLdx = Nd4j.getExecutioner().exec(new BroadcastDivOp(dxhat, std, dxhat, 1))
|
||||
.addi(Nd4j.getExecutioner().exec(new BroadcastMulOp(xMu, dLdVar.muli(2.0 / effectiveBatchSize), xMu, 1)));
|
||||
INDArray dLdx = Nd4j.getExecutioner().exec(new BroadcastDivOp(dxhat, std, dxhat, chIdx))
|
||||
.addi(Nd4j.getExecutioner().exec(new BroadcastMulOp(xMu, dLdVar.muli(2.0 / effectiveBatchSize), xMu, chIdx)));
|
||||
Nd4j.getExecutioner()
|
||||
.execAndReturn(new BroadcastAddOp(dLdx, dLdmu.muli(1.0 / effectiveBatchSize), dLdx, 1));
|
||||
.execAndReturn(new BroadcastAddOp(dLdx, dLdmu.muli(1.0 / effectiveBatchSize), dLdx, chIdx));
|
||||
|
||||
//TODO rework this to avoid the assign here
|
||||
dGammaView.assign(dGamma);
|
||||
|
@ -324,8 +334,8 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
retGradient.setGradientFor(BatchNormalizationParamInitializer.BETA, dBetaView);
|
||||
|
||||
nextEpsilon = dLdx;
|
||||
batchMean = input.mean(0, 2, 3);
|
||||
batchVar = input.var(false, 0, 2, 3);
|
||||
batchMean = input.mean(nonChDims);
|
||||
batchVar = input.var(false, nonChDims);
|
||||
} else {
|
||||
// TODO setup BatchNorm for RNN https://arxiv.org/pdf/1510.01378v1.pdf
|
||||
throw new IllegalStateException( "The layer prior to BatchNorm in the configuration is not currently supported. " + layerId());
|
||||
|
@ -401,15 +411,17 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
}
|
||||
|
||||
public INDArray preOutput(INDArray x, TrainingMode training, LayerWorkspaceMgr workspaceMgr) {
|
||||
if(x.size(1) != layerConf().getNOut()){
|
||||
throw new IllegalArgumentException("input.size(1) does not match expected input size of " + layerConf().getNIn()
|
||||
int dim = 1;
|
||||
if(x.rank() == 4 && layerConf().getCnn2DFormat() == CNN2DFormat.NHWC)
|
||||
dim = 3;
|
||||
if(x.size(dim) != layerConf().getNOut()){
|
||||
throw new IllegalArgumentException("input.size(" + dim + ") does not match expected input size of " + layerConf().getNIn()
|
||||
+ " - got input array with shape " + Arrays.toString(x.shape()));
|
||||
}
|
||||
x = x.castTo(dataType); //No-op if correct type
|
||||
|
||||
INDArray activations;
|
||||
// TODO add this directly in layer or get the layer prior...
|
||||
// batchnorm true but need to clarify if activation before or after
|
||||
|
||||
org.deeplearning4j.nn.conf.layers.BatchNormalization layerConf = layerConf();
|
||||
val shape = getShape(x);
|
||||
|
@ -449,7 +461,7 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
}
|
||||
|
||||
ret = helper.preOutput(in, training == TrainingMode.TRAIN, shape, gamma, beta, globalMeanView,
|
||||
globalVarView, decay, layerConf.getEps(), workspaceMgr);
|
||||
globalVarView, decay, layerConf.getEps(), layerConf().getCnn2DFormat(), workspaceMgr);
|
||||
} catch (ND4JOpProfilerException e){
|
||||
throw e; //NaN panic etc for debugging
|
||||
} catch (Throwable t) {
|
||||
|
@ -474,6 +486,13 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
}
|
||||
}
|
||||
|
||||
CNN2DFormat format = layerConf().getCnn2DFormat();
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int chIdx = nchw ? 1 : 3;
|
||||
int[] nonChDims = nchw ? new int[]{0, 2, 3} : new int[]{0, 1, 2};
|
||||
int hIdx = nchw ? 2 : 1;
|
||||
int wIdx = nchw ? 3 : 2;
|
||||
|
||||
// xHat = (x-xmean) / sqrt(var + epsilon)
|
||||
//Note that for CNNs, mean and variance are calculated per feature map (i.e., per activation) rather than per activation
|
||||
//Pg5 of https://arxiv.org/pdf/1502.03167v3.pdf
|
||||
|
@ -490,8 +509,9 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
break;
|
||||
case 4:
|
||||
// mean and variance over samples AND locations
|
||||
mean = x.mean(0, 2, 3);
|
||||
var = x.var(false, 0, 2, 3);
|
||||
|
||||
mean = x.mean(nonChDims);
|
||||
var = x.var(false, nonChDims);
|
||||
break;
|
||||
default:
|
||||
throw new IllegalStateException("Batch normalization on activations of rank " + x.rank()
|
||||
|
@ -538,9 +558,9 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
if (!Shape.strideDescendingCAscendingF(x))
|
||||
x = x.dup(); //TODO: temp Workaround for broadcast bug. To be removed when fixed
|
||||
xMu = workspaceMgr.createUninitialized(ArrayType.INPUT, x.dataType(), x.shape(), x.ordering());
|
||||
xMu = Nd4j.getExecutioner().exec(new BroadcastSubOp(x, mean,xMu, 1));
|
||||
xMu = Nd4j.getExecutioner().exec(new BroadcastSubOp(x, mean,xMu, chIdx));
|
||||
xHat = workspaceMgr.createUninitialized(ArrayType.INPUT, x.dataType(), x.shape(), x.ordering());
|
||||
xHat = Nd4j.getExecutioner().exec(new BroadcastDivOp(xMu, std,xHat, 1));
|
||||
xHat = Nd4j.getExecutioner().exec(new BroadcastDivOp(xMu, std,xHat, chIdx));
|
||||
|
||||
if (layerConf.isLockGammaBeta()) {
|
||||
//Special case: gamma/beta have fixed values for all outputs
|
||||
|
@ -556,8 +576,8 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
} else {
|
||||
//Standard case: gamma and beta are learned per parameter
|
||||
activations = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, x.dataType(), x.shape(), x.ordering());
|
||||
activations = Nd4j.getExecutioner().exec(new BroadcastMulOp(xHat, gamma, activations, 1));
|
||||
activations = Nd4j.getExecutioner().exec(new BroadcastAddOp(activations, beta, activations, 1));
|
||||
activations = Nd4j.getExecutioner().exec(new BroadcastMulOp(xHat, gamma, activations, chIdx));
|
||||
activations = Nd4j.getExecutioner().exec(new BroadcastAddOp(activations, beta, activations, chIdx));
|
||||
}
|
||||
} else {
|
||||
// TODO setup BatchNorm for RNN https://arxiv.org/pdf/1510.01378v1.pdf
|
||||
|
@ -611,8 +631,12 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
|
|||
}
|
||||
|
||||
public long[] getShape(INDArray x) {
|
||||
if (x.rank() == 2 || x.rank() == 4)
|
||||
if (x.rank() == 2 )
|
||||
return new long[] {1, x.size(1)};
|
||||
if(x.rank() == 4){
|
||||
int chIdx = layerConf().getCnn2DFormat() == CNN2DFormat.NCHW ? 1 : 3;
|
||||
return new long[]{1, x.size(chIdx)};
|
||||
}
|
||||
if (x.rank() == 3) {
|
||||
val wDim = x.size(1);
|
||||
val hdim = x.size(2);
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.deeplearning4j.nn.layers.normalization;
|
||||
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
import org.deeplearning4j.nn.layers.LayerHelper;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
|
@ -32,10 +33,11 @@ public interface BatchNormalizationHelper extends LayerHelper {
|
|||
boolean checkSupported(double eps, boolean fixedGammaBeta);
|
||||
|
||||
Pair<Gradient, INDArray> backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta,
|
||||
INDArray dGammaView, INDArray dBetaView, double eps, LayerWorkspaceMgr workspaceMgr);
|
||||
INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format,
|
||||
LayerWorkspaceMgr workspaceMgr);
|
||||
|
||||
INDArray preOutput(INDArray x, boolean training, long[] shape, INDArray gamma, INDArray beta, INDArray mean,
|
||||
INDArray var, double decay, double eps, LayerWorkspaceMgr workspaceMgr);
|
||||
INDArray var, double decay, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr);
|
||||
|
||||
INDArray getMeanCache(DataType dataType);
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@ package org.deeplearning4j.nn.layers.normalization;
|
|||
|
||||
import lombok.val;
|
||||
import org.deeplearning4j.nn.api.Layer;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.gradient.DefaultGradient;
|
||||
import org.deeplearning4j.nn.gradient.Gradient;
|
||||
|
@ -160,12 +161,17 @@ public class LocalResponseNormalization
|
|||
}
|
||||
}
|
||||
|
||||
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
|
||||
int chDim = nchw ? 1 : 3;
|
||||
int hDim = nchw ? 2 : 1;
|
||||
int wDim = nchw ? 3 : 2;
|
||||
|
||||
Triple<INDArray,INDArray,INDArray> triple = activateHelper(true, workspaceMgr, true);
|
||||
INDArray activations = triple.getFirst();
|
||||
INDArray unitScale = triple.getSecond();
|
||||
INDArray scale = triple.getThird();
|
||||
|
||||
val channel = input.size(1);
|
||||
val channel = input.size(chDim);
|
||||
INDArray tmp, addVal;
|
||||
Gradient retGradient = new DefaultGradient();
|
||||
INDArray reverse = activations.mul(epsilon);
|
||||
|
@ -173,15 +179,25 @@ public class LocalResponseNormalization
|
|||
|
||||
// sumPart = sum(a^j_{x,y} * gb^j_{x,y})
|
||||
for (int i = 1; i < halfN + 1; i++) {
|
||||
if(nchw) {
|
||||
tmp = sumPart.get(NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(), NDArrayIndex.all());
|
||||
addVal = reverse.get(NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(), NDArrayIndex.all());
|
||||
sumPart.put(new INDArrayIndex[] {NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(),
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(),
|
||||
NDArrayIndex.all()}, tmp.addi(addVal));
|
||||
|
||||
tmp = sumPart.get(NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(), NDArrayIndex.all());
|
||||
addVal = reverse.get(NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(), NDArrayIndex.all());
|
||||
sumPart.put(new INDArrayIndex[] {NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(),
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(),
|
||||
NDArrayIndex.all()}, tmp.addi(addVal));
|
||||
} else {
|
||||
tmp = sumPart.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(i, channel));
|
||||
addVal = reverse.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(0, channel - i));
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(i, channel)}, tmp.addi(addVal));
|
||||
|
||||
tmp = sumPart.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(0, channel - i));
|
||||
addVal = reverse.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(i, channel));
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(0, channel - i)}, tmp.addi(addVal));
|
||||
}
|
||||
}
|
||||
|
||||
// gx = gy * unitScale**-beta - 2 * alpha * beta * sumPart/unitScale * a^i_{x,y} - rearranged for more in-place ops
|
||||
|
@ -228,7 +244,10 @@ public class LocalResponseNormalization
|
|||
}
|
||||
}
|
||||
|
||||
val channel = input.size(1);
|
||||
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
|
||||
int chDim = nchw ? 1 : 3;
|
||||
|
||||
val channel = input.size(chDim);
|
||||
INDArray tmp, addVal;
|
||||
// x^2 = (a^j_{x,y})^2
|
||||
INDArray activitySqr = input.mul(input);
|
||||
|
@ -236,16 +255,27 @@ public class LocalResponseNormalization
|
|||
|
||||
//sum_{j=max(0, i - n/2)}^{max(N-1, i + n/2)} (a^j_{x,y})^2 )
|
||||
for (int i = 1; i < halfN + 1; i++) {
|
||||
|
||||
if(nchw) {
|
||||
tmp = sumPart.get(NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(), NDArrayIndex.all());
|
||||
addVal = activitySqr.get(NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(),
|
||||
NDArrayIndex.all());
|
||||
sumPart.put(new INDArrayIndex[] {NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(),
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(),
|
||||
NDArrayIndex.all()}, tmp.addi(addVal));
|
||||
|
||||
tmp = sumPart.get(NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(), NDArrayIndex.all());
|
||||
addVal = activitySqr.get(NDArrayIndex.all(), interval(i, channel), NDArrayIndex.all(), NDArrayIndex.all());
|
||||
sumPart.put(new INDArrayIndex[] {NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(),
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), interval(0, channel - i), NDArrayIndex.all(),
|
||||
NDArrayIndex.all()}, tmp.addi(addVal));
|
||||
} else {
|
||||
tmp = sumPart.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(i, channel));
|
||||
addVal = activitySqr.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(0, channel - i));
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(i, channel)}, tmp.addi(addVal));
|
||||
|
||||
tmp = sumPart.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(0, channel - i));
|
||||
addVal = activitySqr.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(i, channel));
|
||||
sumPart.put(new INDArrayIndex[]{NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), interval(0, channel - i)}, tmp.addi(addVal));
|
||||
}
|
||||
}
|
||||
|
||||
INDArray unitScale = null;
|
||||
|
|
|
@ -22,6 +22,7 @@ import lombok.NonNull;
|
|||
import lombok.val;
|
||||
import org.deeplearning4j.exception.DL4JInvalidConfigException;
|
||||
import org.deeplearning4j.exception.DL4JInvalidInputException;
|
||||
import org.deeplearning4j.nn.conf.CNN2DFormat;
|
||||
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||
|
@ -56,6 +57,10 @@ public class ConvolutionUtils {
|
|||
private ConvolutionUtils() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Use {@link #getOutputSize(INDArray, int[], int[], int[], ConvolutionMode, int[], CNN2DFormat)}
|
||||
*/
|
||||
@Deprecated
|
||||
public static int[] getOutputSize(INDArray inputData, int[] kernel, int[] strides, int[] padding,
|
||||
ConvolutionMode convolutionMode) {
|
||||
return getOutputSize(inputData, kernel, strides, padding, convolutionMode, ONES);
|
||||
|
@ -74,12 +79,15 @@ public class ConvolutionUtils {
|
|||
* @return Output size: int[2] with output height/width
|
||||
*/
|
||||
public static int[] getDeconvolutionOutputSize(INDArray inputData, int[] kernel, int[] strides, int[] padding,
|
||||
ConvolutionMode convolutionMode, int[] dilation) {
|
||||
ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format) {
|
||||
boolean nchw = format == CNN2DFormat.NCHW;
|
||||
int hDim = nchw ? 2 : 1;
|
||||
int wDim = nchw ? 3 : 2;
|
||||
|
||||
if (inputData.size(2) > Integer.MAX_VALUE || inputData.size(3) > Integer.MAX_VALUE)
|
||||
if (inputData.size(hDim) > Integer.MAX_VALUE || inputData.size(wDim) > Integer.MAX_VALUE)
|
||||
throw new ND4JArraySizeException();
|
||||
int hIn = (int) inputData.size(2);
|
||||
int wIn = (int) inputData.size(3);
|
||||
int hIn = (int) inputData.size(hDim);
|
||||
int wIn = (int) inputData.size(wDim);
|
||||
int[] eKernel = effectiveKernelSize(kernel, dilation);
|
||||
|
||||
if (convolutionMode == ConvolutionMode.Same) {
|
||||
|
@ -138,6 +146,15 @@ public class ConvolutionUtils {
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* @deprecated Use {@link #getOutputSize(INDArray, int[], int[], int[], ConvolutionMode, int[], CNN2DFormat)}
|
||||
*/
|
||||
@Deprecated
|
||||
public static int[] getOutputSize(INDArray inputData, int[] kernel, int[] strides, int[] padding,
|
||||
ConvolutionMode convolutionMode, int[] dilation) {
|
||||
return getOutputSize(inputData, kernel, strides, padding, convolutionMode, dilation, CNN2DFormat.NCHW);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the output size (height/width) for the given input data and CNN configuration
|
||||
*
|
||||
|
@ -147,14 +164,22 @@ public class ConvolutionUtils {
|
|||
* @param padding Padding (height/width)
|
||||
* @param convolutionMode Convolution mode (Same, Strict, Truncate)
|
||||
* @param dilation Kernel dilation (height/width)
|
||||
* @param format Format for input activations
|
||||
* @return Output size: int[2] with output height/width
|
||||
*/
|
||||
public static int[] getOutputSize(INDArray inputData, int[] kernel, int[] strides, int[] padding,
|
||||
ConvolutionMode convolutionMode, int[] dilation) {
|
||||
if (inputData.size(2) > Integer.MAX_VALUE || inputData.size(3) > Integer.MAX_VALUE)
|
||||
ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format) {
|
||||
int hDim = 2;
|
||||
int wDim = 3;
|
||||
if(format == CNN2DFormat.NHWC){
|
||||
hDim = 1;
|
||||
wDim = 2;
|
||||
}
|
||||
|
||||
if (inputData.size(hDim) > Integer.MAX_VALUE || inputData.size(wDim) > Integer.MAX_VALUE)
|
||||
throw new ND4JArraySizeException();
|
||||
int inH = (int) inputData.size(2);
|
||||
int inW = (int) inputData.size(3);
|
||||
int inH = (int) inputData.size(hDim);
|
||||
int inW = (int) inputData.size(wDim);
|
||||
|
||||
//Determine the effective kernel size, accounting for dilation
|
||||
//http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#dilated-convolutions
|
||||
|
@ -491,18 +516,28 @@ public class ConvolutionUtils {
|
|||
}
|
||||
|
||||
|
||||
public static INDArray reshape4dTo2d(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
public static INDArray reshape4dTo2d(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type) {
|
||||
return reshape4dTo2d(in, CNN2DFormat.NCHW, workspaceMgr, type);
|
||||
}
|
||||
|
||||
public static INDArray reshape4dTo2d(INDArray in, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
if (in.rank() != 4)
|
||||
throw new IllegalArgumentException("Invalid input: expect NDArray with rank 4, got rank " + in.rank()
|
||||
+ " with shape " + Arrays.toString(in.shape()));
|
||||
val shape = in.shape();
|
||||
|
||||
if(format == CNN2DFormat.NCHW){
|
||||
//Reshape: from [n,c,h,w] to [n*h*w,c]
|
||||
|
||||
INDArray out = in.permute(0, 2, 3, 1);
|
||||
if (out.ordering() != 'c' || !Shape.strideDescendingCAscendingF(out))
|
||||
out = out.dup('c');
|
||||
return out.reshape('c', shape[0] * shape[2] * shape[3], shape[1]);
|
||||
out = workspaceMgr.dup(type, out, 'c');
|
||||
return workspaceMgr.leverageTo(type, out.reshape('c', shape[0] * shape[2] * shape[3], shape[1]));
|
||||
} else {
|
||||
//Reshape: from [n,h,w,c] to [n*h*w,c]
|
||||
if (in.ordering() != 'c' || !Shape.strideDescendingCAscendingF(in))
|
||||
in = workspaceMgr.dup(type, in, 'c');
|
||||
return workspaceMgr.leverageTo(type, in.reshape('c', shape[0] * shape[1] * shape[2], shape[3]));
|
||||
}
|
||||
}
|
||||
|
||||
public static INDArray reshape5dTo2d(@NonNull Convolution3D.DataFormat format, INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
|
@ -541,18 +576,23 @@ public class ConvolutionUtils {
|
|||
}
|
||||
}
|
||||
|
||||
public static INDArray reshape2dTo4d(INDArray in2d, long[] toShape, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
public static INDArray reshape2dTo4d(INDArray in2d, long[] toShape, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
if(in2d.rank() != 2)
|
||||
throw new IllegalArgumentException("Invalid input: expect NDArray with rank 2");
|
||||
if (toShape.length != 4)
|
||||
throw new IllegalArgumentException("Invalid input: expect toShape with 4 elements: got " + Arrays.toString(toShape));
|
||||
|
||||
//Reshape: from [n*h*w,c] to [n,h,w,c] to [n,c,h,w]
|
||||
if(in2d.ordering() != 'c' || !Shape.hasDefaultStridesForShape(in2d))
|
||||
if (in2d.ordering() != 'c' || !Shape.hasDefaultStridesForShape(in2d))
|
||||
in2d = workspaceMgr.dup(type, in2d, 'c');
|
||||
|
||||
if(format == CNN2DFormat.NCHW) {
|
||||
//Reshape: from [n*h*w,c] to [n,h,w,c] to [n,c,h,w]
|
||||
INDArray out = in2d.reshape('c', toShape[0], toShape[2], toShape[3], toShape[1]);
|
||||
return workspaceMgr.leverageTo(type, out.permute(0, 3, 1, 2));
|
||||
} else {
|
||||
//Reshape: from [n*h*w,c] to [n,h,w,c]
|
||||
return workspaceMgr.leverageTo(type, in2d.reshape('c', toShape));
|
||||
}
|
||||
}
|
||||
|
||||
public static INDArray reshape2dTo5d(Convolution3D.DataFormat format, INDArray in2d, long n, long d, long h, long w, long ch, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
|
@ -563,7 +603,6 @@ public class ConvolutionUtils {
|
|||
if(in2d.ordering() != 'c' || !Shape.hasDefaultStridesForShape(in2d))
|
||||
in2d = workspaceMgr.dup(type, in2d, 'c');
|
||||
|
||||
// INDArray ndhwc = in2d.reshape('c', toShape[0], toShape[2], toShape[3], toShape[4], toShape[1]);
|
||||
INDArray ndhwc = in2d.reshape('c', n, d, h, w, ch);
|
||||
if(format == Convolution3D.DataFormat.NDHWC){
|
||||
return workspaceMgr.leverageTo(type, ndhwc);
|
||||
|
@ -572,11 +611,19 @@ public class ConvolutionUtils {
|
|||
}
|
||||
}
|
||||
|
||||
public static INDArray reshapeMaskIfRequired(INDArray mask, INDArray output, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
/**
|
||||
* @deprecated Use {@link #reshapeMaskIfRequired(INDArray, INDArray, CNN2DFormat, LayerWorkspaceMgr, ArrayType)}
|
||||
*/
|
||||
@Deprecated
|
||||
public static INDArray reshapeMaskIfRequired(INDArray mask, INDArray output, LayerWorkspaceMgr workspaceMgr, ArrayType type) {
|
||||
return reshapeMaskIfRequired(mask, output, null, workspaceMgr, type);
|
||||
}
|
||||
|
||||
public static INDArray reshapeMaskIfRequired(INDArray mask, INDArray output, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
if (mask == null)
|
||||
return null;
|
||||
if (mask.rank() == 2) {
|
||||
return adapt2dMask(mask, output, workspaceMgr, type);
|
||||
return adapt2dMask(mask, output, format, workspaceMgr, type);
|
||||
} else if (mask.rank() == 3) {
|
||||
return reshape3dMask(mask, workspaceMgr, type);
|
||||
} else {
|
||||
|
@ -584,7 +631,9 @@ public class ConvolutionUtils {
|
|||
}
|
||||
}
|
||||
|
||||
public static INDArray adapt2dMask(INDArray mask, INDArray output, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
public static INDArray adapt2dMask(INDArray mask, INDArray output, @NonNull CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
|
||||
if(format == CNN2DFormat.NCHW){
|
||||
//Input in [n,c,h,w] which is reshaped to [n*h*w,c], mask is [n,1]
|
||||
//So: We'll broadcast to [n,1,h,w] then reshape to [n*h*w,1] required for the current DL4J loss functions...
|
||||
|
||||
|
@ -597,6 +646,15 @@ public class ConvolutionUtils {
|
|||
INDArray bMaskPermute = bMask.permute(0, 2, 3, 1).dup('c'); //Not sure if dup is strictly necessary...
|
||||
|
||||
return workspaceMgr.leverageTo(type, bMaskPermute.reshape('c', s[0] * s[2] * s[3], 1));
|
||||
} else {
|
||||
//Input in [n,h,w,c] which is reshaped to [n*h*w,c], mask is [n,1]
|
||||
//So: We'll broadcast to [n,h,w,1] then reshape to [n*h*w,1] required for the current DL4J loss functions...
|
||||
val s = output.shape();
|
||||
INDArray bMask = workspaceMgr.create(type, mask.dataType(), new long[]{s[0], s[2], s[3], 1}, 'c');
|
||||
Nd4j.getExecutioner().exec(new BroadcastCopyOp(bMask, mask, bMask, 0, 3));
|
||||
|
||||
return workspaceMgr.leverageTo(type, bMask.reshape('c', s[0] * s[2] * s[3], 1));
|
||||
}
|
||||
}
|
||||
|
||||
public static INDArray reshape3dMask(INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType type){
|
||||
|
@ -679,10 +737,10 @@ public class ConvolutionUtils {
|
|||
int[] s = new int[]{stride, 1};
|
||||
int[] d = new int[]{dilation, 1};
|
||||
if (cm == ConvolutionMode.Same || cm == ConvolutionMode.Causal) {
|
||||
outSize = ConvolutionUtils.getOutputSize(reshaped4d, k, s, null, cm, d); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(reshaped4d, k, s, null, cm, d, CNN2DFormat.NCHW); //Also performs validation
|
||||
} else {
|
||||
pad = new int[]{padding, 0};
|
||||
outSize = ConvolutionUtils.getOutputSize(reshaped4d, k, s, pad, cm, d); //Also performs validation
|
||||
outSize = ConvolutionUtils.getOutputSize(reshaped4d, k, s, pad, cm, d, CNN2DFormat.NCHW); //Also performs validation
|
||||
}
|
||||
int outH = outSize[0];
|
||||
|
||||
|
|
Loading…
Reference in New Issue