Various fixes (#143)
* #8568 ArrayUtil optimization Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6171 Keras ReLU and ELU support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Keras softmax layer import Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8549 Webjars dependency management Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for TF import names ':0' suffix issue / NPE Signed-off-by: AlexDBlack <blacka101@gmail.com> * BiasAdd: fix default data format for TF import Signed-off-by: AlexDBlack <blacka101@gmail.com> * Update zoo test ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8509 SameDiff Listener API - provide frame + iteration Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8520 ND4J Environment Signed-off-by: AlexDBlack <blacka101@gmail.com> * Deconv3d Signed-off-by: AlexDBlack <blacka101@gmail.com> * Deconv3d fixes + gradient check Signed-off-by: AlexDBlack <blacka101@gmail.com> * Conv3d fixes + deconv3d DType test Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix issue with deconv3d gradinet check weight init Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8579 Fix BaseCudaDataBuffer constructor fix for UINT16 Signed-off-by: AlexDBlack <blacka101@gmail.com> * DataType.isNumerical() returns false for BOOL type Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8504 Reduce Spark log spam for tests Signed-off-by: AlexDBlack <blacka101@gmail.com> * Clean up DL4J gradient check test spam Signed-off-by: AlexDBlack <blacka101@gmail.com> * More Gradient check spam reduction Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff test spam reduction Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes for FlatBuffers mapping Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff log spam cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tests should extend BaseNd4jTest Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove debug line in c++ op Signed-off-by: AlexDBlack <blacka101@gmail.com> * ND4J test spam cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J test spam reduction Signed-off-by: AlexDBlack <blacka101@gmail.com> * More Dl4J and datavec test spam cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for bad conv3d test Signed-off-by: AlexDBlack <blacka101@gmail.com> * Additional test Signed-off-by: AlexDBlack <blacka101@gmail.com> * Embedding layers: don't inherit global default activation function Signed-off-by: AlexDBlack <blacka101@gmail.com> * Trigger CI Signed-off-by: AlexDBlack <blacka101@gmail.com> * Consolidate all BaseDL4JTest classes to single class used everywhere; make timeout configurable per class Signed-off-by: AlexDBlack <blacka101@gmail.com> * Test fixes and timeout increases Signed-off-by: AlexDBlack <blacka101@gmail.com> * Timeouts and PReLU fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Restore libnd4j build threads arg for CUDA build Signed-off-by: AlexDBlack <blacka101@gmail.com> * Increase timeouts on a few tests to avoid spurious failures on some CI machines Signed-off-by: AlexDBlack <blacka101@gmail.com> * More timeout fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * More test timeout fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweak timeout for one more test Signed-off-by: AlexDBlack <blacka101@gmail.com> * Final tweaks Signed-off-by: AlexDBlack <blacka101@gmail.com> * One more ignore Signed-off-by: AlexDBlack <blacka101@gmail.com>master
parent
ac0d249f07
commit
29104083cc
|
@ -311,7 +311,11 @@ public class CSVRecordReaderTest {
|
||||||
rr.reset();
|
rr.reset();
|
||||||
fail("Expected exception");
|
fail("Expected exception");
|
||||||
} catch (Exception e){
|
} catch (Exception e){
|
||||||
e.printStackTrace();
|
String msg = e.getMessage();
|
||||||
|
String msg2 = e.getCause().getMessage();
|
||||||
|
assertTrue(msg, msg.contains("Error during LineRecordReader reset"));
|
||||||
|
assertTrue(msg2, msg2.contains("Reset not supported from streams"));
|
||||||
|
// e.printStackTrace();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -55,8 +55,7 @@ public class LineReaderTest {
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void testLineReader() throws Exception {
|
public void testLineReader() throws Exception {
|
||||||
String tempDir = System.getProperty("java.io.tmpdir");
|
File tmpdir = testDir.newFolder();
|
||||||
File tmpdir = new File(tempDir, "tmpdir-testLineReader");
|
|
||||||
if (tmpdir.exists())
|
if (tmpdir.exists())
|
||||||
tmpdir.delete();
|
tmpdir.delete();
|
||||||
tmpdir.mkdir();
|
tmpdir.mkdir();
|
||||||
|
@ -84,12 +83,6 @@ public class LineReaderTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
assertEquals(9, count);
|
assertEquals(9, count);
|
||||||
|
|
||||||
try {
|
|
||||||
FileUtils.deleteDirectory(tmpdir);
|
|
||||||
} catch (Exception e) {
|
|
||||||
e.printStackTrace();
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -145,13 +138,6 @@ public class LineReaderTest {
|
||||||
assertEquals(2, subset.size());
|
assertEquals(2, subset.size());
|
||||||
assertEquals(out3.get(4), subset.get(0));
|
assertEquals(out3.get(4), subset.get(0));
|
||||||
assertEquals(out3.get(7), subset.get(1));
|
assertEquals(out3.get(7), subset.get(1));
|
||||||
|
|
||||||
|
|
||||||
try {
|
|
||||||
FileUtils.deleteDirectory(tmpdir);
|
|
||||||
} catch (Exception e) {
|
|
||||||
e.printStackTrace();
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -177,11 +163,5 @@ public class LineReaderTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
assertEquals(9, count);
|
assertEquals(9, count);
|
||||||
|
|
||||||
try {
|
|
||||||
FileUtils.deleteDirectory(tmpdir);
|
|
||||||
} catch (Exception e) {
|
|
||||||
e.printStackTrace();
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -66,9 +66,9 @@ public class JsonYamlTest {
|
||||||
String asJson = itp.toJson();
|
String asJson = itp.toJson();
|
||||||
String asYaml = itp.toYaml();
|
String asYaml = itp.toYaml();
|
||||||
|
|
||||||
System.out.println(asJson);
|
// System.out.println(asJson);
|
||||||
System.out.println("\n\n\n");
|
// System.out.println("\n\n\n");
|
||||||
System.out.println(asYaml);
|
// System.out.println(asYaml);
|
||||||
|
|
||||||
ImageWritable img = TestImageTransform.makeRandomImage(0, 0, 3);
|
ImageWritable img = TestImageTransform.makeRandomImage(0, 0, 3);
|
||||||
ImageWritable imgJson = new ImageWritable(img.getFrame().clone());
|
ImageWritable imgJson = new ImageWritable(img.getFrame().clone());
|
||||||
|
|
|
@ -60,7 +60,7 @@ public class CSVSparkTransformTest {
|
||||||
Base64NDArrayBody body = csvSparkTransform.toArray(new SingleCSVRecord(values));
|
Base64NDArrayBody body = csvSparkTransform.toArray(new SingleCSVRecord(values));
|
||||||
INDArray fromBase64 = Nd4jBase64.fromBase64(body.getNdarray());
|
INDArray fromBase64 = Nd4jBase64.fromBase64(body.getNdarray());
|
||||||
assertTrue(fromBase64.isVector());
|
assertTrue(fromBase64.isVector());
|
||||||
System.out.println("Base 64ed array " + fromBase64);
|
// System.out.println("Base 64ed array " + fromBase64);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -125,7 +125,7 @@ public class CSVSparkTransformTest {
|
||||||
|
|
||||||
SequenceBatchCSVRecord transformed = csvSparkTransform.transformSequence(sequenceBatchCSVRecord);
|
SequenceBatchCSVRecord transformed = csvSparkTransform.transformSequence(sequenceBatchCSVRecord);
|
||||||
assertNotNull(transformed.getRecords());
|
assertNotNull(transformed.getRecords());
|
||||||
System.out.println(transformed);
|
// System.out.println(transformed);
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -153,7 +153,8 @@ public class CSVSparkTransformTest {
|
||||||
new SingleCSVRecord(data2)));
|
new SingleCSVRecord(data2)));
|
||||||
|
|
||||||
final CSVSparkTransform transform = new CSVSparkTransform(transformProcess);
|
final CSVSparkTransform transform = new CSVSparkTransform(transformProcess);
|
||||||
System.out.println(transform.transformSequenceIncremental(batchCsvRecord));
|
// System.out.println(transform.transformSequenceIncremental(batchCsvRecord));
|
||||||
|
transform.transformSequenceIncremental(batchCsvRecord);
|
||||||
assertEquals(3,Nd4jBase64.fromBase64(transform.transformSequenceArrayIncremental(batchCsvRecord).getNdarray()).rank());
|
assertEquals(3,Nd4jBase64.fromBase64(transform.transformSequenceArrayIncremental(batchCsvRecord).getNdarray()).rank());
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -54,7 +54,7 @@ public class ImageSparkTransformTest {
|
||||||
Base64NDArrayBody body = imgSparkTransform.toArray(imgRecord);
|
Base64NDArrayBody body = imgSparkTransform.toArray(imgRecord);
|
||||||
|
|
||||||
INDArray fromBase64 = Nd4jBase64.fromBase64(body.getNdarray());
|
INDArray fromBase64 = Nd4jBase64.fromBase64(body.getNdarray());
|
||||||
System.out.println("Base 64ed array " + fromBase64);
|
// System.out.println("Base 64ed array " + fromBase64);
|
||||||
assertEquals(1, fromBase64.size(0));
|
assertEquals(1, fromBase64.size(0));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -78,7 +78,7 @@ public class ImageSparkTransformTest {
|
||||||
Base64NDArrayBody body = imgSparkTransform.toArray(batch);
|
Base64NDArrayBody body = imgSparkTransform.toArray(batch);
|
||||||
|
|
||||||
INDArray fromBase64 = Nd4jBase64.fromBase64(body.getNdarray());
|
INDArray fromBase64 = Nd4jBase64.fromBase64(body.getNdarray());
|
||||||
System.out.println("Base 64ed array " + fromBase64);
|
// System.out.println("Base 64ed array " + fromBase64);
|
||||||
assertEquals(3, fromBase64.size(0));
|
assertEquals(3, fromBase64.size(0));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -120,7 +120,7 @@ public class ImageSparkTransformServerTest {
|
||||||
INDArray batchResult = getNDArray(jsonNodeBatch);
|
INDArray batchResult = getNDArray(jsonNodeBatch);
|
||||||
assertEquals(3, batchResult.size(0));
|
assertEquals(3, batchResult.size(0));
|
||||||
|
|
||||||
System.out.println(array);
|
// System.out.println(array);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -136,7 +136,7 @@ public class ImageSparkTransformServerTest {
|
||||||
INDArray batchResult = getNDArray(jsonNode);
|
INDArray batchResult = getNDArray(jsonNode);
|
||||||
assertEquals(3, batchResult.size(0));
|
assertEquals(3, batchResult.size(0));
|
||||||
|
|
||||||
System.out.println(batchResult);
|
// System.out.println(batchResult);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -153,7 +153,7 @@ public class ImageSparkTransformServerTest {
|
||||||
INDArray result = getNDArray(jsonNode);
|
INDArray result = getNDArray(jsonNode);
|
||||||
assertEquals(1, result.size(0));
|
assertEquals(1, result.size(0));
|
||||||
|
|
||||||
System.out.println(result);
|
// System.out.println(result);
|
||||||
}
|
}
|
||||||
|
|
||||||
public INDArray getNDArray(JsonNode node) throws IOException {
|
public INDArray getNDArray(JsonNode node) throws IOException {
|
||||||
|
|
|
@ -72,7 +72,9 @@ public class TestAnalysis extends BaseSparkTest {
|
||||||
DataAnalysis da = AnalyzeSpark.analyze(schema, rdd);
|
DataAnalysis da = AnalyzeSpark.analyze(schema, rdd);
|
||||||
String daString = da.toString();
|
String daString = da.toString();
|
||||||
|
|
||||||
System.out.println(da);
|
// System.out.println(da);
|
||||||
|
da.toJson();
|
||||||
|
da.toString();
|
||||||
|
|
||||||
List<ColumnAnalysis> ca = da.getColumnAnalysis();
|
List<ColumnAnalysis> ca = da.getColumnAnalysis();
|
||||||
assertEquals(5, ca.size());
|
assertEquals(5, ca.size());
|
||||||
|
@ -151,7 +153,7 @@ public class TestAnalysis extends BaseSparkTest {
|
||||||
assertEquals(1, countD[countD.length - 1]);
|
assertEquals(1, countD[countD.length - 1]);
|
||||||
|
|
||||||
File f = Files.createTempFile("datavec_spark_analysis_UITest", ".html").toFile();
|
File f = Files.createTempFile("datavec_spark_analysis_UITest", ".html").toFile();
|
||||||
System.out.println(f.getAbsolutePath());
|
// System.out.println(f.getAbsolutePath());
|
||||||
f.deleteOnExit();
|
f.deleteOnExit();
|
||||||
HtmlAnalysis.createHtmlAnalysisFile(da, f);
|
HtmlAnalysis.createHtmlAnalysisFile(da, f);
|
||||||
}
|
}
|
||||||
|
@ -210,7 +212,7 @@ public class TestAnalysis extends BaseSparkTest {
|
||||||
for( int i=1; i<10; i++ ){
|
for( int i=1; i<10; i++ ){
|
||||||
counter.merge(counters.get(i));
|
counter.merge(counters.get(i));
|
||||||
sparkCounter.merge(sparkCounters.get(i));
|
sparkCounter.merge(sparkCounters.get(i));
|
||||||
System.out.println();
|
// System.out.println();
|
||||||
}
|
}
|
||||||
assertEquals(sc1.sampleStdev(), counter.getStddev(false), 1e-6);
|
assertEquals(sc1.sampleStdev(), counter.getStddev(false), 1e-6);
|
||||||
assertEquals(sparkCounter.sampleStdev(), counter.getStddev(false), 1e-6);
|
assertEquals(sparkCounter.sampleStdev(), counter.getStddev(false), 1e-6);
|
||||||
|
@ -356,7 +358,9 @@ public class TestAnalysis extends BaseSparkTest {
|
||||||
|
|
||||||
JavaRDD<List<Writable>> rdd = sc.parallelize(data);
|
JavaRDD<List<Writable>> rdd = sc.parallelize(data);
|
||||||
DataAnalysis da = AnalyzeSpark.analyze(s, rdd);
|
DataAnalysis da = AnalyzeSpark.analyze(s, rdd);
|
||||||
System.out.println(da);
|
// System.out.println(da);
|
||||||
|
da.toString();
|
||||||
|
da.toJson();
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,68 @@
|
||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
~ Copyright (c) 2020 Konduit K.K.
|
||||||
|
~
|
||||||
|
~ This program and the accompanying materials are made available under the
|
||||||
|
~ terms of the Apache License, Version 2.0 which is available at
|
||||||
|
~ https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
~
|
||||||
|
~ Unless required by applicable law or agreed to in writing, software
|
||||||
|
~ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
~ WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
~ License for the specific language governing permissions and limitations
|
||||||
|
~ under the License.
|
||||||
|
~
|
||||||
|
~ SPDX-License-Identifier: Apache-2.0
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-->
|
||||||
|
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||||
|
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||||
|
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||||
|
<parent>
|
||||||
|
<artifactId>deeplearning4j-parent</artifactId>
|
||||||
|
<groupId>org.deeplearning4j</groupId>
|
||||||
|
<version>1.0.0-SNAPSHOT</version>
|
||||||
|
</parent>
|
||||||
|
<modelVersion>4.0.0</modelVersion>
|
||||||
|
|
||||||
|
<artifactId>deeplearning4j-common-tests</artifactId>
|
||||||
|
|
||||||
|
<dependencies>
|
||||||
|
<dependency>
|
||||||
|
<groupId>junit</groupId>
|
||||||
|
<artifactId>junit</artifactId>
|
||||||
|
<scope>provided</scope>
|
||||||
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.nd4j</groupId>
|
||||||
|
<artifactId>nd4j-api</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
</dependency>
|
||||||
|
</dependencies>
|
||||||
|
|
||||||
|
<profiles>
|
||||||
|
<profile>
|
||||||
|
<id>test-nd4j-native</id>
|
||||||
|
<dependencies>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.nd4j</groupId>
|
||||||
|
<artifactId>nd4j-native</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
|
</dependencies>
|
||||||
|
</profile>
|
||||||
|
|
||||||
|
<profile>
|
||||||
|
<id>test-nd4j-cuda-10.2</id>
|
||||||
|
<dependencies>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.nd4j</groupId>
|
||||||
|
<artifactId>nd4j-cuda-10.2</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
|
</dependencies>
|
||||||
|
</profile>
|
||||||
|
</profiles>
|
||||||
|
|
||||||
|
</project>
|
|
@ -1,5 +1,6 @@
|
||||||
/*******************************************************************************
|
/* ******************************************************************************
|
||||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||||
|
* Copyright (c) 2019-2020 Konduit K.K.
|
||||||
*
|
*
|
||||||
* This program and the accompanying materials are made available under the
|
* This program and the accompanying materials are made available under the
|
||||||
* terms of the Apache License, Version 2.0 which is available at
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
@ -23,7 +24,7 @@ import org.junit.Before;
|
||||||
import org.junit.Rule;
|
import org.junit.Rule;
|
||||||
import org.junit.rules.TestName;
|
import org.junit.rules.TestName;
|
||||||
import org.junit.rules.Timeout;
|
import org.junit.rules.Timeout;
|
||||||
import org.nd4j.linalg.api.buffer.DataBuffer;
|
import org.nd4j.config.ND4JSystemProperties;
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
import org.nd4j.linalg.api.memory.MemoryWorkspace;
|
import org.nd4j.linalg.api.memory.MemoryWorkspace;
|
||||||
import org.nd4j.linalg.api.ops.executioner.OpExecutioner;
|
import org.nd4j.linalg.api.ops.executioner.OpExecutioner;
|
||||||
|
@ -31,24 +32,28 @@ import org.nd4j.linalg.factory.Nd4j;
|
||||||
import org.nd4j.linalg.profiler.ProfilerConfig;
|
import org.nd4j.linalg.profiler.ProfilerConfig;
|
||||||
|
|
||||||
import java.lang.management.ManagementFactory;
|
import java.lang.management.ManagementFactory;
|
||||||
import java.lang.management.ThreadMXBean;
|
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import java.util.Map;
|
import java.util.Map;
|
||||||
import java.util.Properties;
|
import java.util.Properties;
|
||||||
|
|
||||||
import static org.junit.Assert.assertNull;
|
|
||||||
|
|
||||||
@Slf4j
|
@Slf4j
|
||||||
public class BaseDL4JTest {
|
public abstract class BaseDL4JTest {
|
||||||
|
|
||||||
@Rule
|
@Rule
|
||||||
public TestName name = new TestName();
|
public TestName name = new TestName();
|
||||||
@Rule
|
@Rule
|
||||||
public Timeout timeout = Timeout.seconds(30);
|
public Timeout timeout = Timeout.millis(getTimeoutMilliseconds());
|
||||||
|
|
||||||
protected long startTime;
|
protected long startTime;
|
||||||
protected int threadCountBefore;
|
protected int threadCountBefore;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Override this method to set the default timeout for methods in the test class
|
||||||
|
*/
|
||||||
|
public long getTimeoutMilliseconds(){
|
||||||
|
return 30000;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Override this to set the profiling mode for the tests defined in the child class
|
* Override this to set the profiling mode for the tests defined in the child class
|
||||||
*/
|
*/
|
||||||
|
@ -70,6 +75,9 @@ public class BaseDL4JTest {
|
||||||
@Before
|
@Before
|
||||||
public void beforeTest(){
|
public void beforeTest(){
|
||||||
log.info("{}.{}", getClass().getSimpleName(), name.getMethodName());
|
log.info("{}.{}", getClass().getSimpleName(), name.getMethodName());
|
||||||
|
//Suppress ND4J initialization - don't need this logged for every test...
|
||||||
|
System.setProperty(ND4JSystemProperties.LOG_INITIALIZATION, "false");
|
||||||
|
System.setProperty(ND4JSystemProperties.ND4J_IGNORE_AVX, "true");
|
||||||
Nd4j.getExecutioner().setProfilingMode(getProfilingMode());
|
Nd4j.getExecutioner().setProfilingMode(getProfilingMode());
|
||||||
Nd4j.getExecutioner().setProfilingConfig(ProfilerConfig.builder().build());
|
Nd4j.getExecutioner().setProfilingConfig(ProfilerConfig.builder().build());
|
||||||
Nd4j.setDefaultDataTypes(getDataType(), getDefaultFPDataType());
|
Nd4j.setDefaultDataTypes(getDataType(), getDefaultFPDataType());
|
|
@ -95,6 +95,12 @@
|
||||||
<artifactId>junit</artifactId>
|
<artifactId>junit</artifactId>
|
||||||
<scope>test</scope>
|
<scope>test</scope>
|
||||||
</dependency>
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.deeplearning4j</groupId>
|
||||||
|
<artifactId>deeplearning4j-common-tests</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
|
|
||||||
<dependency>
|
<dependency>
|
||||||
<groupId>org.nd4j</groupId>
|
<groupId>org.nd4j</groupId>
|
||||||
|
|
|
@ -75,7 +75,6 @@ public class TestUtils {
|
||||||
}
|
}
|
||||||
|
|
||||||
public static ComputationGraph testModelSerialization(ComputationGraph net){
|
public static ComputationGraph testModelSerialization(ComputationGraph net){
|
||||||
|
|
||||||
ComputationGraph restored;
|
ComputationGraph restored;
|
||||||
try {
|
try {
|
||||||
ByteArrayOutputStream baos = new ByteArrayOutputStream();
|
ByteArrayOutputStream baos = new ByteArrayOutputStream();
|
||||||
|
|
|
@ -1006,7 +1006,9 @@ public class RecordReaderDataSetiteratorTest extends BaseDL4JTest {
|
||||||
for (RecordMetaData m : meta) {
|
for (RecordMetaData m : meta) {
|
||||||
Record r = csv.loadFromMetaData(m);
|
Record r = csv.loadFromMetaData(m);
|
||||||
INDArray row = ds.getFeatures().getRow(i);
|
INDArray row = ds.getFeatures().getRow(i);
|
||||||
|
if(i <= 3) {
|
||||||
System.out.println(m.getLocation() + "\t" + r.getRecord() + "\t" + row);
|
System.out.println(m.getLocation() + "\t" + r.getRecord() + "\t" + row);
|
||||||
|
}
|
||||||
|
|
||||||
for (int j = 0; j < 4; j++) {
|
for (int j = 0; j < 4; j++) {
|
||||||
double exp = r.getRecord().get(j).toDouble();
|
double exp = r.getRecord().get(j).toDouble();
|
||||||
|
|
|
@ -183,7 +183,7 @@ public class AsyncDataSetIteratorTest extends BaseDL4JTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
adsi.reset();
|
adsi.reset();
|
||||||
log.info("Epoch {} finished...", e);
|
// log.info("Epoch {} finished...", e);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -215,7 +215,7 @@ public class AsyncDataSetIteratorTest extends BaseDL4JTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
adsi.reset();
|
adsi.reset();
|
||||||
log.info("Epoch {} finished...", e);
|
// log.info("Epoch {} finished...", e);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -57,6 +57,11 @@ import static org.junit.Assert.*;
|
||||||
|
|
||||||
public class DataSetIteratorTest extends BaseDL4JTest {
|
public class DataSetIteratorTest extends BaseDL4JTest {
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public long getTimeoutMilliseconds() {
|
||||||
|
return 90000;
|
||||||
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void testBatchSizeOfOneIris() throws Exception {
|
public void testBatchSizeOfOneIris() throws Exception {
|
||||||
//Test for (a) iterators returning correct number of examples, and
|
//Test for (a) iterators returning correct number of examples, and
|
||||||
|
@ -190,7 +195,7 @@ public class DataSetIteratorTest extends BaseDL4JTest {
|
||||||
INDArray output = model.output(dataTest.getFeatures());
|
INDArray output = model.output(dataTest.getFeatures());
|
||||||
Evaluation eval = new Evaluation(outputNum);
|
Evaluation eval = new Evaluation(outputNum);
|
||||||
eval.eval(dataTest.getLabels(), output);
|
eval.eval(dataTest.getLabels(), output);
|
||||||
System.out.println(eval.stats());
|
// System.out.println(eval.stats());
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -257,7 +262,7 @@ public class DataSetIteratorTest extends BaseDL4JTest {
|
||||||
INDArray output = model.output(testDS.getFeatures());
|
INDArray output = model.output(testDS.getFeatures());
|
||||||
eval.eval(testDS.getLabels(), output);
|
eval.eval(testDS.getLabels(), output);
|
||||||
}
|
}
|
||||||
System.out.println(eval.stats(true));
|
// System.out.println(eval.stats(true));
|
||||||
listener.exportScores(System.out);
|
listener.exportScores(System.out);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -68,8 +68,8 @@ public class VariableMultiTimeseriesGenerator implements MultiDataSetIterator {
|
||||||
int localMaxima = isFirst && firstMaxima > 0 ? firstMaxima
|
int localMaxima = isFirst && firstMaxima > 0 ? firstMaxima
|
||||||
: minTS == maxTS ? minTS : rng.nextInt(maxTS - minTS) + minTS;
|
: minTS == maxTS ? minTS : rng.nextInt(maxTS - minTS) + minTS;
|
||||||
|
|
||||||
if (isFirst)
|
// if (isFirst)
|
||||||
log.info("Local maxima: {}", localMaxima);
|
// log.info("Local maxima: {}", localMaxima);
|
||||||
|
|
||||||
isFirst = false;
|
isFirst = false;
|
||||||
|
|
||||||
|
|
|
@ -69,8 +69,8 @@ public class VariableTimeseriesGenerator implements DataSetIterator {
|
||||||
int localMaxima = isFirst && firstMaxima > 0 ? firstMaxima
|
int localMaxima = isFirst && firstMaxima > 0 ? firstMaxima
|
||||||
: minTS == maxTS ? minTS : rng.nextInt(maxTS - minTS) + minTS;
|
: minTS == maxTS ? minTS : rng.nextInt(maxTS - minTS) + minTS;
|
||||||
|
|
||||||
if (isFirst)
|
// if (isFirst)
|
||||||
log.info("Local maxima: {}", localMaxima);
|
// log.info("Local maxima: {}", localMaxima);
|
||||||
|
|
||||||
isFirst = false;
|
isFirst = false;
|
||||||
|
|
||||||
|
|
|
@ -54,7 +54,7 @@ public class EvalJsonTest extends BaseDL4JTest {
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void testSerde() {
|
public void testSerde() {
|
||||||
boolean print = true;
|
boolean print = false;
|
||||||
Nd4j.getRandom().setSeed(12345);
|
Nd4j.getRandom().setSeed(12345);
|
||||||
|
|
||||||
Evaluation evaluation = new Evaluation();
|
Evaluation evaluation = new Evaluation();
|
||||||
|
@ -105,7 +105,7 @@ public class EvalJsonTest extends BaseDL4JTest {
|
||||||
@Test
|
@Test
|
||||||
public void testSerdeExactRoc() {
|
public void testSerdeExactRoc() {
|
||||||
Nd4j.getRandom().setSeed(12345);
|
Nd4j.getRandom().setSeed(12345);
|
||||||
boolean print = true;
|
boolean print = false;
|
||||||
|
|
||||||
ROC roc = new ROC(0);
|
ROC roc = new ROC(0);
|
||||||
ROCBinary roc2 = new ROCBinary(0);
|
ROCBinary roc2 = new ROCBinary(0);
|
||||||
|
|
|
@ -131,11 +131,15 @@ public class EvalTest extends BaseDL4JTest {
|
||||||
org.nd4j.evaluation.classification.Evaluation evalViaMethod = model.evaluate(new ListDataSetIterator<>(Collections.singletonList(test)));
|
org.nd4j.evaluation.classification.Evaluation evalViaMethod = model.evaluate(new ListDataSetIterator<>(Collections.singletonList(test)));
|
||||||
checkEvaluationEquality(eval, evalViaMethod);
|
checkEvaluationEquality(eval, evalViaMethod);
|
||||||
|
|
||||||
System.out.println(eval.getConfusionMatrix().toString());
|
// System.out.println(eval.getConfusionMatrix().toString());
|
||||||
System.out.println(eval.getConfusionMatrix().toCSV());
|
// System.out.println(eval.getConfusionMatrix().toCSV());
|
||||||
System.out.println(eval.getConfusionMatrix().toHTML());
|
// System.out.println(eval.getConfusionMatrix().toHTML());
|
||||||
|
// System.out.println(eval.confusionToString());
|
||||||
|
|
||||||
System.out.println(eval.confusionToString());
|
eval.getConfusionMatrix().toString();
|
||||||
|
eval.getConfusionMatrix().toCSV();
|
||||||
|
eval.getConfusionMatrix().toHTML();
|
||||||
|
eval.confusionToString();
|
||||||
}
|
}
|
||||||
|
|
||||||
private static void assertMapEquals(Map<Integer, Integer> first, Map<Integer, Integer> second) {
|
private static void assertMapEquals(Map<Integer, Integer> first, Map<Integer, Integer> second) {
|
||||||
|
@ -205,9 +209,10 @@ public class EvalTest extends BaseDL4JTest {
|
||||||
e.eval(ds.getLabels(), out, meta); //*** New - evaluate and also store metadata ***
|
e.eval(ds.getLabels(), out, meta); //*** New - evaluate and also store metadata ***
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println(e.stats());
|
// System.out.println(e.stats());
|
||||||
|
e.stats();
|
||||||
|
|
||||||
System.out.println("\n\n*** Prediction Errors: ***");
|
// System.out.println("\n\n*** Prediction Errors: ***");
|
||||||
|
|
||||||
List<org.nd4j.evaluation.meta.Prediction> errors = e.getPredictionErrors(); //*** New - get list of prediction errors from evaluation ***
|
List<org.nd4j.evaluation.meta.Prediction> errors = e.getPredictionErrors(); //*** New - get list of prediction errors from evaluation ***
|
||||||
List<RecordMetaData> metaForErrors = new ArrayList<>();
|
List<RecordMetaData> metaForErrors = new ArrayList<>();
|
||||||
|
@ -219,10 +224,11 @@ public class EvalTest extends BaseDL4JTest {
|
||||||
|
|
||||||
int count = 0;
|
int count = 0;
|
||||||
for (org.nd4j.evaluation.meta.Prediction t : errors) {
|
for (org.nd4j.evaluation.meta.Prediction t : errors) {
|
||||||
System.out.println(t + "\t\tRaw Data: "
|
String s = t + "\t\tRaw Data: "
|
||||||
+ csv.loadFromMetaData((RecordMetaData) t.getRecordMetaData()).getRecord() //*** New - load subset of data from MetaData object (usually batched for efficiency) ***
|
+ csv.loadFromMetaData((RecordMetaData) t.getRecordMetaData()).getRecord() //*** New - load subset of data from MetaData object (usually batched for efficiency) ***
|
||||||
+ "\tNormalized: " + ds.getFeatures().getRow(count) + "\tLabels: "
|
+ "\tNormalized: " + ds.getFeatures().getRow(count) + "\tLabels: "
|
||||||
+ ds.getLabels().getRow(count) + "\tNetwork predictions: " + output.getRow(count));
|
+ ds.getLabels().getRow(count) + "\tNetwork predictions: " + output.getRow(count);
|
||||||
|
// System.out.println(s);
|
||||||
count++;
|
count++;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -322,9 +328,9 @@ public class EvalTest extends BaseDL4JTest {
|
||||||
List<DataSet> l = Arrays.asList(new DataSet(in1, out1, null, lMask1), new DataSet(in2, out2, null, lMask2));
|
List<DataSet> l = Arrays.asList(new DataSet(in1, out1, null, lMask1), new DataSet(in2, out2, null, lMask2));
|
||||||
DataSetIterator iter = new ExistingDataSetIterator(l);
|
DataSetIterator iter = new ExistingDataSetIterator(l);
|
||||||
|
|
||||||
System.out.println("Net 1 eval");
|
// System.out.println("Net 1 eval");
|
||||||
org.nd4j.evaluation.IEvaluation[] e1 = net1.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
org.nd4j.evaluation.IEvaluation[] e1 = net1.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
||||||
System.out.println("Net 2 eval");
|
// System.out.println("Net 2 eval");
|
||||||
org.nd4j.evaluation.IEvaluation[] e2 = net2.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
org.nd4j.evaluation.IEvaluation[] e2 = net2.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
||||||
|
|
||||||
assertEquals(e1[0], e2[0]);
|
assertEquals(e1[0], e2[0]);
|
||||||
|
@ -403,9 +409,9 @@ public class EvalTest extends BaseDL4JTest {
|
||||||
List<DataSet> l = Arrays.asList(new DataSet(in1, out1), new DataSet(in2, out2));
|
List<DataSet> l = Arrays.asList(new DataSet(in1, out1), new DataSet(in2, out2));
|
||||||
DataSetIterator iter = new ExistingDataSetIterator(l);
|
DataSetIterator iter = new ExistingDataSetIterator(l);
|
||||||
|
|
||||||
System.out.println("Eval net 1");
|
// System.out.println("Eval net 1");
|
||||||
org.nd4j.evaluation.IEvaluation[] e1 = net1.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
org.nd4j.evaluation.IEvaluation[] e1 = net1.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
||||||
System.out.println("Eval net 2");
|
// System.out.println("Eval net 2");
|
||||||
org.nd4j.evaluation.IEvaluation[] e2 = net2.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
org.nd4j.evaluation.IEvaluation[] e2 = net2.doEvaluation(iter, new org.nd4j.evaluation.classification.Evaluation(), new org.nd4j.evaluation.classification.ROCMultiClass(), new org.nd4j.evaluation.regression.RegressionEvaluation());
|
||||||
|
|
||||||
assertEquals(e1[0], e2[0]);
|
assertEquals(e1[0], e2[0]);
|
||||||
|
|
|
@ -117,7 +117,7 @@ public class EvaluationToolsTests extends BaseDL4JTest {
|
||||||
|
|
||||||
|
|
||||||
String str = EvaluationTools.rocChartToHtml(roc, Arrays.asList("setosa", "versicolor", "virginica"));
|
String str = EvaluationTools.rocChartToHtml(roc, Arrays.asList("setosa", "versicolor", "virginica"));
|
||||||
System.out.println(str);
|
// System.out.println(str);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -46,12 +46,6 @@ public class AttentionLayerTest extends BaseDL4JTest {
|
||||||
@Rule
|
@Rule
|
||||||
public ExpectedException exceptionRule = ExpectedException.none();
|
public ExpectedException exceptionRule = ExpectedException.none();
|
||||||
|
|
||||||
private static final boolean PRINT_RESULTS = true;
|
|
||||||
private static final boolean RETURN_ON_FIRST_FAILURE = false;
|
|
||||||
private static final double DEFAULT_EPS = 1e-6;
|
|
||||||
private static final double DEFAULT_MAX_REL_ERROR = 1e-3;
|
|
||||||
private static final double DEFAULT_MIN_ABS_ERROR = 1e-8;
|
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void testSelfAttentionLayer() {
|
public void testSelfAttentionLayer() {
|
||||||
int nIn = 3;
|
int nIn = 3;
|
||||||
|
@ -104,8 +98,8 @@ public class AttentionLayerTest extends BaseDL4JTest {
|
||||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null, true, 100);
|
.labels(labels).inputMask(inMask).subset(true).maxPerParam(100));
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -165,8 +159,8 @@ public class AttentionLayerTest extends BaseDL4JTest {
|
||||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null, true, 100);
|
.labels(labels).inputMask(inMask).subset(true).maxPerParam(100));
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -226,8 +220,8 @@ public class AttentionLayerTest extends BaseDL4JTest {
|
||||||
String name = "testLearnedSelfAttentionLayer() - mb=" + mb + ", tsLength = " + tsLength + ", maskType=" + maskType + ", projectInput = " + projectInput;
|
String name = "testLearnedSelfAttentionLayer() - mb=" + mb + ", tsLength = " + tsLength + ", maskType=" + maskType + ", projectInput = " + projectInput;
|
||||||
System.out.println("Starting test: " + name);
|
System.out.println("Starting test: " + name);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null, true, 100);
|
.labels(labels).inputMask(inMask).subset(true).maxPerParam(100));
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -320,8 +314,8 @@ public class AttentionLayerTest extends BaseDL4JTest {
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
//System.out.println("Original");
|
//System.out.println("Original");
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null, true, 100, null);
|
.labels(labels).inputMask(inMask).subset(true).maxPerParam(100));
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -383,8 +377,8 @@ public class AttentionLayerTest extends BaseDL4JTest {
|
||||||
ComputationGraph net = new ComputationGraph(graph);
|
ComputationGraph net = new ComputationGraph(graph);
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(net).inputs(new INDArray[]{in})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{in}, new INDArray[]{labels}, inMask != null ? new INDArray[]{inMask} : null, null);
|
.labels(new INDArray[]{labels}).inputMask(inMask != null ? new INDArray[]{inMask} : null).subset(true).maxPerParam(100));
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -445,9 +439,8 @@ public class AttentionLayerTest extends BaseDL4JTest {
|
||||||
ComputationGraph net = new ComputationGraph(graph);
|
ComputationGraph net = new ComputationGraph(graph);
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(net).inputs(new INDArray[]{in})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{in},
|
.labels(new INDArray[]{labels}).inputMask(inMask != null ? new INDArray[]{inMask} : null));
|
||||||
new INDArray[]{labels}, inMask != null ? new INDArray[]{inMask} : null, null);
|
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -56,11 +56,6 @@ import static org.junit.Assert.assertTrue;
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
public class BNGradientCheckTest extends BaseDL4JTest {
|
public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
private static final boolean PRINT_RESULTS = true;
|
|
||||||
private static final boolean RETURN_ON_FIRST_FAILURE = false;
|
|
||||||
private static final double DEFAULT_EPS = 1e-5;
|
|
||||||
private static final double DEFAULT_MAX_REL_ERROR = 1e-5;
|
|
||||||
private static final double DEFAULT_MIN_ABS_ERROR = 1e-9;
|
|
||||||
|
|
||||||
static {
|
static {
|
||||||
Nd4j.setDataType(DataType.DOUBLE);
|
Nd4j.setDataType(DataType.DOUBLE);
|
||||||
|
@ -93,17 +88,15 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
||||||
mln.init();
|
mln.init();
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
|
||||||
}
|
|
||||||
|
|
||||||
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, excludeParams);
|
.labels(labels).excludeParams(excludeParams));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -140,17 +133,15 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
||||||
mln.init();
|
mln.init();
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
|
||||||
}
|
|
||||||
|
|
||||||
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, excludeParams);
|
.labels(labels).excludeParams(excludeParams));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -220,7 +211,7 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
String name = new Object() {
|
String name = new Object() {
|
||||||
}.getClass().getEnclosingMethod().getName();
|
}.getClass().getEnclosingMethod().getName();
|
||||||
|
|
||||||
System.out.println("Num params: " + mln.numParams());
|
// System.out.println("Num params: " + mln.numParams());
|
||||||
|
|
||||||
if (doLearningFirst) {
|
if (doLearningFirst) {
|
||||||
//Run a number of iterations of learning
|
//Run a number of iterations of learning
|
||||||
|
@ -241,20 +232,18 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
assertTrue(msg, scoreAfter < 0.9 * scoreBefore);
|
assertTrue(msg, scoreAfter < 0.9 * scoreBefore);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
|
||||||
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf
|
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf
|
||||||
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
||||||
+ doLearningFirst + ", l1=" + l1vals[j] + ", l2=" + l2vals[j]);
|
+ doLearningFirst + ", l1=" + l1vals[j] + ", l2=" + l2vals[j]);
|
||||||
for (int k = 0; k < mln.getnLayers(); k++)
|
// for (int k = 0; k < mln.getnLayers(); k++)
|
||||||
System.out.println("Layer " + k + " # params: " + mln.getLayer(k).numParams());
|
// System.out.println("Layer " + k + " # params: " + mln.getLayer(k).numParams());
|
||||||
}
|
|
||||||
|
|
||||||
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "3_mean", "3_var", "1_log10stdev", "3_log10stdev"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "3_mean", "3_var", "1_log10stdev", "3_log10stdev"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 25, excludeParams); //Most params are in output layer, only these should be skipped with this threshold
|
.labels(labels).excludeParams(excludeParams).subset(true).maxPerParam(25)); //Most params are in output layer, only these should be skipped with this threshold
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -347,20 +336,18 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
assertTrue(msg, scoreAfter < 0.8 * scoreBefore);
|
assertTrue(msg, scoreAfter < 0.8 * scoreBefore);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
|
||||||
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf
|
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf
|
||||||
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
||||||
+ doLearningFirst + ", l1=" + l1vals[j] + ", l2=" + l2vals[j]);
|
+ doLearningFirst + ", l1=" + l1vals[j] + ", l2=" + l2vals[j]);
|
||||||
for (int k = 0; k < mln.getnLayers(); k++)
|
// for (int k = 0; k < mln.getnLayers(); k++)
|
||||||
System.out.println("Layer " + k + " # params: " + mln.getLayer(k).numParams());
|
// System.out.println("Layer " + k + " # params: " + mln.getLayer(k).numParams());
|
||||||
}
|
|
||||||
|
|
||||||
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "3_mean", "3_var", "1_log10stdev", "3_log10stdev"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "3_mean", "3_var", "1_log10stdev", "3_log10stdev"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, excludeParams);
|
.labels(labels).excludeParams(excludeParams));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -396,17 +383,15 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
||||||
mln.init();
|
mln.init();
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
|
||||||
}
|
|
||||||
|
|
||||||
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, excludeParams);
|
.labels(labels).excludeParams(excludeParams));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -443,17 +428,15 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
||||||
mln.init();
|
mln.init();
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
|
||||||
}
|
|
||||||
|
|
||||||
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "1_log10stdev"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, excludeParams);
|
.labels(labels).excludeParams(excludeParams));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -496,9 +479,8 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("bn_mean", "bn_var"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("bn_mean", "bn_var"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(net).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{input},
|
.labels(new INDArray[]{labels}).excludeParams(excludeParams));
|
||||||
new INDArray[]{labels}, null, null, excludeParams);
|
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
@ -585,21 +567,18 @@ public class BNGradientCheckTest extends BaseDL4JTest {
|
||||||
assertTrue(msg, scoreAfter < 0.9 * scoreBefore);
|
assertTrue(msg, scoreAfter < 0.9 * scoreBefore);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
|
||||||
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf
|
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf
|
||||||
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
||||||
+ doLearningFirst + ", l1=" + l1vals[j] + ", l2=" + l2vals[j]);
|
+ doLearningFirst + ", l1=" + l1vals[j] + ", l2=" + l2vals[j]);
|
||||||
for (int k = 0; k < net.getNumLayers(); k++)
|
// for (int k = 0; k < net.getNumLayers(); k++)
|
||||||
System.out.println("Layer " + k + " # params: " + net.getLayer(k).numParams());
|
// System.out.println("Layer " + k + " # params: " + net.getLayer(k).numParams());
|
||||||
}
|
|
||||||
|
|
||||||
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
//Mean and variance vars are not gradient checkable; mean/variance "gradient" is used to implement running mean/variance calc
|
||||||
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
//i.e., runningMean = decay * runningMean + (1-decay) * batchMean
|
||||||
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
//However, numerical gradient will be 0 as forward pass doesn't depend on this "parameter"
|
||||||
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "3_mean", "3_var", "1_log10stdev", "3_log10stdev"));
|
Set<String> excludeParams = new HashSet<>(Arrays.asList("1_mean", "1_var", "3_mean", "3_var", "1_log10stdev", "3_log10stdev"));
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(net).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE,
|
.labels(new INDArray[]{labels}).excludeParams(excludeParams));
|
||||||
new INDArray[]{input}, new INDArray[]{labels}, null, null, excludeParams);
|
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
|
|
@ -108,8 +108,8 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -188,8 +188,8 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -272,8 +272,8 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -349,8 +349,8 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -414,8 +414,8 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
INDArray label = TestUtils.randomOneHot(2, finalNOut);
|
INDArray label = TestUtils.randomOneHot(2, finalNOut);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(f)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, f, label, fm, null);
|
.labels(label).inputMask(fm));
|
||||||
|
|
||||||
assertTrue(s, gradOK);
|
assertTrue(s, gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
@ -509,8 +509,8 @@ public class CNN1DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
INDArray label = TestUtils.randomOneHotTimeSeries(2, finalNOut, (int)outSize2);
|
INDArray label = TestUtils.randomOneHotTimeSeries(2, finalNOut, (int)outSize2);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(f)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, f, label, fm, null);
|
.labels(label).inputMask(fm));
|
||||||
|
|
||||||
assertTrue(s, gradOK);
|
assertTrue(s, gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
|
|
@ -144,14 +144,13 @@ public class CNN3DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
log.info(msg);
|
log.info(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++) {
|
// for (int j = 0; j < net.getnLayers(); j++) {
|
||||||
log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MAX_REL_ERROR, DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS,
|
.labels(labels).subset(true).maxPerParam(128));
|
||||||
RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 128);
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -248,14 +247,13 @@ public class CNN3DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
log.info(msg);
|
log.info(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++) {
|
// for (int j = 0; j < net.getnLayers(); j++) {
|
||||||
log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MAX_REL_ERROR, DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS,
|
.labels(labels).subset(true).maxPerParam(512));
|
||||||
RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 512);
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -431,9 +429,9 @@ public class CNN3DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
log.info(msg);
|
log.info(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++) {
|
// for (int j = 0; j < net.getnLayers(); j++) {
|
||||||
log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
||||||
|
@ -530,9 +528,9 @@ public class CNN3DGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
log.info(msg);
|
log.info(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++) {
|
// for (int j = 0; j < net.getnLayers(); j++) {
|
||||||
log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
||||||
|
@ -547,4 +545,95 @@ public class CNN3DGradientCheckTest extends BaseDL4JTest {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testDeconv3d() {
|
||||||
|
Nd4j.getRandom().setSeed(12345);
|
||||||
|
// Note: we checked this with a variety of parameters, but it takes a lot of time.
|
||||||
|
int[] depths = {8, 8, 9};
|
||||||
|
int[] heights = {8, 9, 9};
|
||||||
|
int[] widths = {8, 8, 9};
|
||||||
|
|
||||||
|
|
||||||
|
int[][] kernels = {{2, 2, 2}, {3, 3, 3}, {2, 3, 2}};
|
||||||
|
int[][] strides = {{1, 1, 1}, {1, 1, 1}, {2, 2, 2}};
|
||||||
|
|
||||||
|
Activation[] activations = {Activation.SIGMOID, Activation.TANH, Activation.IDENTITY};
|
||||||
|
|
||||||
|
ConvolutionMode[] modes = {ConvolutionMode.Truncate, ConvolutionMode.Same, ConvolutionMode.Same};
|
||||||
|
int[] mbs = {1, 3, 2};
|
||||||
|
Convolution3D.DataFormat[] dataFormats = new Convolution3D.DataFormat[]{Convolution3D.DataFormat.NCDHW, Convolution3D.DataFormat.NDHWC, Convolution3D.DataFormat.NCDHW};
|
||||||
|
|
||||||
|
int convNIn = 2;
|
||||||
|
int finalNOut = 2;
|
||||||
|
int[] deconvOut = {2, 3, 4};
|
||||||
|
|
||||||
|
for (int i = 0; i < activations.length; i++) {
|
||||||
|
Activation afn = activations[i];
|
||||||
|
int miniBatchSize = mbs[i];
|
||||||
|
int depth = depths[i];
|
||||||
|
int height = heights[i];
|
||||||
|
int width = widths[i];
|
||||||
|
ConvolutionMode mode = modes[i];
|
||||||
|
int[] kernel = kernels[i];
|
||||||
|
int[] stride = strides[i];
|
||||||
|
Convolution3D.DataFormat df = dataFormats[i];
|
||||||
|
int dOut = deconvOut[i];
|
||||||
|
|
||||||
|
INDArray input;
|
||||||
|
if (df == Convolution3D.DataFormat.NDHWC) {
|
||||||
|
input = Nd4j.rand(new int[]{miniBatchSize, depth, height, width, convNIn});
|
||||||
|
} else {
|
||||||
|
input = Nd4j.rand(new int[]{miniBatchSize, convNIn, depth, height, width});
|
||||||
|
}
|
||||||
|
INDArray labels = Nd4j.zeros(miniBatchSize, finalNOut);
|
||||||
|
for (int j = 0; j < miniBatchSize; j++) {
|
||||||
|
labels.putScalar(new int[]{j, j % finalNOut}, 1.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
||||||
|
.dataType(DataType.DOUBLE)
|
||||||
|
.updater(new NoOp())
|
||||||
|
.weightInit(new NormalDistribution(0, 0.1))
|
||||||
|
.list()
|
||||||
|
.layer(0, new Convolution3D.Builder().activation(afn).kernelSize(kernel)
|
||||||
|
.stride(stride).nIn(convNIn).nOut(dOut).hasBias(false)
|
||||||
|
.convolutionMode(mode).dataFormat(df)
|
||||||
|
.build())
|
||||||
|
.layer(1, new Deconvolution3D.Builder().activation(afn).kernelSize(kernel)
|
||||||
|
.stride(stride).nOut(dOut).hasBias(false)
|
||||||
|
.convolutionMode(mode).dataFormat(df)
|
||||||
|
.build())
|
||||||
|
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||||
|
.activation(Activation.SOFTMAX).nOut(finalNOut).build())
|
||||||
|
.setInputType(InputType.convolutional3D(df, depth, height, width, convNIn)).build();
|
||||||
|
|
||||||
|
String json = conf.toJson();
|
||||||
|
MultiLayerConfiguration c2 = MultiLayerConfiguration.fromJson(json);
|
||||||
|
assertEquals(conf, c2);
|
||||||
|
|
||||||
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||||
|
net.init();
|
||||||
|
|
||||||
|
String msg = "DataFormat = " + df + ", minibatch size = " + miniBatchSize + ", activationFn=" + afn
|
||||||
|
+ ", kernel = " + Arrays.toString(kernel) + ", stride = "
|
||||||
|
+ Arrays.toString(stride) + ", mode = " + mode.toString()
|
||||||
|
+ ", input depth " + depth + ", input height " + height
|
||||||
|
+ ", input width " + width;
|
||||||
|
|
||||||
|
if (PRINT_RESULTS) {
|
||||||
|
log.info(msg);
|
||||||
|
// for (int j = 0; j < net.getnLayers(); j++) {
|
||||||
|
// log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
|
// }
|
||||||
|
}
|
||||||
|
|
||||||
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
|
.labels(labels).subset(true).maxPerParam(128));
|
||||||
|
|
||||||
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
TestUtils.testModelSerialization(net);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -122,8 +122,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf + ", outputActivation="
|
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf + ", outputActivation="
|
||||||
+ outputActivation + ", doLearningFirst=" + doLearningFirst);
|
+ outputActivation + ", doLearningFirst=" + doLearningFirst);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -213,8 +213,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
System.out.println(testName + "- activationFn=" + afn + ", lossFn=" + lf
|
System.out.println(testName + "- activationFn=" + afn + ", lossFn=" + lf
|
||||||
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
+ ", outputActivation=" + outputActivation + ", doLearningFirst="
|
||||||
+ doLearningFirst);
|
+ doLearningFirst);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -275,8 +275,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
|
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
|
||||||
|
@ -336,8 +336,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
|
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
|
||||||
|
@ -346,8 +346,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
//Also check compgraph:
|
//Also check compgraph:
|
||||||
ComputationGraph cg = net.toComputationGraph();
|
ComputationGraph cg = net.toComputationGraph();
|
||||||
gradOK = GradientCheckUtil.checkGradients(cg, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(cg).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{input}, new INDArray[]{labels});
|
.labels(new INDArray[]{labels}));
|
||||||
assertTrue(msg + " - compgraph", gradOK);
|
assertTrue(msg + " - compgraph", gradOK);
|
||||||
|
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
@ -399,8 +399,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -468,8 +468,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -793,9 +793,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ convFirst;
|
+ convFirst;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input,
|
.labels(labels).subset(true).maxPerParam(128));
|
||||||
labels, null, null, true, 128);
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -863,8 +862,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -937,8 +936,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 100);
|
.labels(labels).subset(true).maxPerParam(100));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -1009,8 +1008,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 50); //Most params are in output layer
|
.labels(labels).subset(true).maxPerParam(50)); //Most params are in output layer
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -1160,12 +1159,12 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 160);
|
.labels(labels).subset(true).maxPerParam(160));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -1235,8 +1234,8 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ k + ", nIn=" + nIn + ", depthMul=" + depthMultiplier + ", s=" + s + ", cm=" + cm;
|
+ k + ", nIn=" + nIn + ", depthMul=" + depthMultiplier + ", s=" + s + ", cm=" + cm;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 256);
|
.labels(labels).subset(true).maxPerParam(256));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
|
|
@ -110,10 +110,8 @@ public class CapsnetGradientCheckTest extends BaseDL4JTest {
|
||||||
" capsules with " + capsuleDim + " dimensions and " + routing + " routings";
|
" capsules with " + capsuleDim + " dimensions and " + routing + " routings";
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
.labels(labels).subset(true).maxPerParam(100));
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input,
|
|
||||||
labels, null, null, true, 100);
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
|
|
@ -36,6 +36,7 @@ import org.nd4j.linalg.activations.Activation;
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
|
import org.nd4j.linalg.function.Consumer;
|
||||||
import org.nd4j.linalg.learning.config.NoOp;
|
import org.nd4j.linalg.learning.config.NoOp;
|
||||||
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
|
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
|
||||||
|
|
||||||
|
@ -171,10 +172,15 @@ public class DropoutGradientCheck extends BaseDL4JTest {
|
||||||
INDArray[] in = new INDArray[]{Nd4j.rand(mb, 5)};
|
INDArray[] in = new INDArray[]{Nd4j.rand(mb, 5)};
|
||||||
INDArray[] l = new INDArray[]{TestUtils.randomOneHot(mb, 5)};
|
INDArray[] l = new INDArray[]{TestUtils.randomOneHot(mb, 5)};
|
||||||
|
|
||||||
boolean ok = GradientCheckUtil.checkGradients(cg, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(cg).inputs(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, l, null, null, null, 12345);
|
.labels(l).callEachIter(new Consumer<ComputationGraph>() {
|
||||||
|
@Override
|
||||||
|
public void accept(ComputationGraph net) {
|
||||||
|
Nd4j.getRandom().setSeed(12345);
|
||||||
|
}
|
||||||
|
}));
|
||||||
|
|
||||||
assertTrue(ok);
|
assertTrue(gradOK);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -92,8 +92,8 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testLSTMGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = "
|
System.out.println("testLSTMGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = "
|
||||||
+ miniBatchSize);
|
+ miniBatchSize);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -150,8 +150,8 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(
|
System.out.println(
|
||||||
"testCnnGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = " + miniBatchSize);
|
"testCnnGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = " + miniBatchSize);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -209,12 +209,12 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testLSTMGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = " + miniBatchSize);
|
System.out.println("testLSTMGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = " + miniBatchSize);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, featuresMask, null);
|
.labels(labels).inputMask(featuresMask));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -292,12 +292,12 @@ public class GlobalPoolingGradientCheckTests extends BaseDL4JTest {
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testCnnGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = "
|
System.out.println("testCnnGlobalPoolingBasicMultiLayer() - " + pt + ", minibatch = "
|
||||||
+ miniBatchSize);
|
+ miniBatchSize);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, inputMask, null);
|
.labels(labels).inputMask(inputMask));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
|
|
@ -120,8 +120,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
System.out.println("testMinibatchApplication() - activationFn=" + afn + ", lossFn="
|
System.out.println("testMinibatchApplication() - activationFn=" + afn + ", lossFn="
|
||||||
+ lf + ", outputActivation=" + outputActivation + ", doLearningFirst="
|
+ lf + ", outputActivation=" + outputActivation + ", doLearningFirst="
|
||||||
+ doLearningFirst);
|
+ doLearningFirst);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -200,8 +200,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
System.out.println("testGradientMLP2LayerIrisSimpleRandom() - activationFn=" + afn + ", lossFn="
|
System.out.println("testGradientMLP2LayerIrisSimpleRandom() - activationFn=" + afn + ", lossFn="
|
||||||
+ lf + ", outputActivation=" + outputActivation + ", doLearningFirst="
|
+ lf + ", outputActivation=" + outputActivation + ", doLearningFirst="
|
||||||
+ doLearningFirst);
|
+ doLearningFirst);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -294,8 +294,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
System.out.println("testGradientMLP2LayerIrisSimpleRandom() - activationFn=" + afn
|
System.out.println("testGradientMLP2LayerIrisSimpleRandom() - activationFn=" + afn
|
||||||
+ ", lossFn=" + lf + ", outputActivation=" + outputActivation
|
+ ", lossFn=" + lf + ", outputActivation=" + outputActivation
|
||||||
+ ", doLearningFirst=" + doLearningFirst + ", l2=" + l2 + ", l1=" + l1);
|
+ ", doLearningFirst=" + doLearningFirst + ", l2=" + l2 + ", l1=" + l1);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -339,8 +339,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testEmbeddingLayerSimple");
|
System.out.println("testEmbeddingLayerSimple");
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -379,8 +379,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testEmbeddingLayerSimple");
|
System.out.println("testEmbeddingLayerSimple");
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -469,8 +469,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
+ doLearningFirst + ", l2=" + l2 + ", l1=" + l1;
|
+ doLearningFirst + ", l2=" + l2 + ", l1=" + l1;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -539,8 +539,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
// expectation in case linear regression(with only element wise multiplication layer): large weight for the fourth weight
|
// expectation in case linear regression(with only element wise multiplication layer): large weight for the fourth weight
|
||||||
log.info("params after learning: " + netGraph.getLayer(1).paramTable());
|
log.info("params after learning: " + netGraph.getLayer(1).paramTable());
|
||||||
|
|
||||||
boolean gradOK = checkGradients(netGraph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(netGraph).inputs(new INDArray[]{features})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{features}, new INDArray[]{labels});
|
.labels(new INDArray[]{labels}));
|
||||||
|
|
||||||
msg = "elementWiseMultiplicationLayerTest() - activationFn=" + "ID" + ", lossFn=" + "Cos-sim"
|
msg = "elementWiseMultiplicationLayerTest() - activationFn=" + "ID" + ", lossFn=" + "Cos-sim"
|
||||||
+ ", outputActivation=" + "Id" + ", doLearningFirst=" + "true";
|
+ ", outputActivation=" + "Id" + ", doLearningFirst=" + "true";
|
||||||
|
@ -592,8 +592,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
String msg = "mask=" + maskArray + ", inputRank=" + inputRank;
|
String msg = "mask=" + maskArray + ", inputRank=" + inputRank;
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, label, fMask, null);
|
.labels(label).inputMask(fMask));
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
|
||||||
|
@ -767,8 +767,8 @@ public class GradientCheckTests extends BaseDL4JTest {
|
||||||
System.out.println("testGradientMLP2LayerIrisSimpleRandom() - activationFn=" + afn + ", lossFn="
|
System.out.println("testGradientMLP2LayerIrisSimpleRandom() - activationFn=" + afn + ", lossFn="
|
||||||
+ lf + ", outputActivation=" + outputActivation + ", doLearningFirst="
|
+ lf + ", outputActivation=" + outputActivation + ", doLearningFirst="
|
||||||
+ doLearningFirst + ", layerNorm=" + layerNorm);
|
+ doLearningFirst + ", layerNorm=" + layerNorm);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
|
|
@ -103,13 +103,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testBasicIris()");
|
System.out.println("testBasicIris()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testBasicIris()";
|
String msg = "testBasicIris()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -155,13 +154,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testBasicIrisWithMerging()");
|
System.out.println("testBasicIrisWithMerging()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testBasicIrisWithMerging()";
|
String msg = "testBasicIrisWithMerging()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -213,13 +211,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testBasicIrisWithElementWiseVertex(op=" + op + ")");
|
System.out.println("testBasicIrisWithElementWiseVertex(op=" + op + ")");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testBasicIrisWithElementWiseVertex(op=" + op + ")";
|
String msg = "testBasicIrisWithElementWiseVertex(op=" + op + ")";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -274,13 +271,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testBasicIrisWithElementWiseVertex(op=" + op + ")");
|
System.out.println("testBasicIrisWithElementWiseVertex(op=" + op + ")");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testBasicIrisWithElementWiseVertex(op=" + op + ")";
|
String msg = "testBasicIrisWithElementWiseVertex(op=" + op + ")";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -328,9 +324,8 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
graph.fit(new DataSet(in, labels));
|
graph.fit(new DataSet(in, labels));
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{in},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[]{labels});
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
}
|
}
|
||||||
|
@ -372,13 +367,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testCnnDepthMerge()");
|
System.out.println("testCnnDepthMerge()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testCnnDepthMerge()";
|
String msg = "testCnnDepthMerge()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -430,13 +424,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testLSTMWithMerging()");
|
System.out.println("testLSTMWithMerging()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testLSTMWithMerging()";
|
String msg = "testLSTMWithMerging()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -466,13 +459,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testLSTMWithSubset()");
|
System.out.println("testLSTMWithSubset()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testLSTMWithSubset()";
|
String msg = "testLSTMWithSubset()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -504,26 +496,24 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testLSTMWithLastTimeStepVertex()");
|
System.out.println("testLSTMWithLastTimeStepVertex()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
//First: test with no input mask array
|
//First: test with no input mask array
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testLSTMWithLastTimeStepVertex()";
|
String msg = "testLSTMWithLastTimeStepVertex()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
//Second: test with input mask arrays.
|
//Second: test with input mask arrays.
|
||||||
INDArray inMask = Nd4j.zeros(3, 5);
|
INDArray inMask = Nd4j.zeros(3, 4);
|
||||||
inMask.putRow(0, Nd4j.create(new double[] {1, 1, 1, 0, 0}));
|
inMask.putRow(0, Nd4j.create(new double[] {1, 1, 0, 0}));
|
||||||
inMask.putRow(1, Nd4j.create(new double[] {1, 1, 1, 1, 0}));
|
inMask.putRow(1, Nd4j.create(new double[] {1, 1, 1, 0}));
|
||||||
inMask.putRow(2, Nd4j.create(new double[] {1, 1, 1, 1, 1}));
|
inMask.putRow(2, Nd4j.create(new double[] {1, 1, 1, 1}));
|
||||||
graph.setLayerMaskArrays(new INDArray[] {inMask}, null);
|
gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR, DEFAULT_MIN_ABS_ERROR,
|
.labels(new INDArray[]{labels}).inputMask(new INDArray[]{inMask}));
|
||||||
PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input}, new INDArray[] {labels});
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -566,13 +556,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testLSTMWithDuplicateToTimeSeries()");
|
System.out.println("testLSTMWithDuplicateToTimeSeries()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input1, input2})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input1, input2},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testLSTMWithDuplicateToTimeSeries()";
|
String msg = "testLSTMWithDuplicateToTimeSeries()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -615,13 +604,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testLSTMWithReverseTimeSeriesVertex()");
|
System.out.println("testLSTMWithReverseTimeSeriesVertex()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testLSTMWithDuplicateToTimeSeries()";
|
String msg = "testLSTMWithDuplicateToTimeSeries()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -632,8 +620,8 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
inMask.putRow(1, Nd4j.create(new double[] {1, 1, 0, 1, 0}));
|
inMask.putRow(1, Nd4j.create(new double[] {1, 1, 0, 1, 0}));
|
||||||
inMask.putRow(2, Nd4j.create(new double[] {1, 1, 1, 1, 1}));
|
inMask.putRow(2, Nd4j.create(new double[] {1, 1, 1, 1, 1}));
|
||||||
graph.setLayerMaskArrays(new INDArray[] {inMask}, null);
|
graph.setLayerMaskArrays(new INDArray[] {inMask}, null);
|
||||||
gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR, DEFAULT_MIN_ABS_ERROR,
|
gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input}, new INDArray[] {labels});
|
.labels(new INDArray[]{labels}));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -671,13 +659,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
String msg = "testMultipleInputsLayer() - minibatchSize = " + mb;
|
String msg = "testMultipleInputsLayer() - minibatchSize = " + mb;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(inputs)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, inputs,
|
.labels(new INDArray[]{out}));
|
||||||
new INDArray[] {out});
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -712,13 +699,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
String msg = "testMultipleOutputsLayer() - minibatchSize = " + mb;
|
String msg = "testMultipleOutputsLayer() - minibatchSize = " + mb;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{out}));
|
||||||
new INDArray[] {out});
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -759,12 +745,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
String msg = "testMultipleOutputsMergeVertex() - minibatchSize = " + mb;
|
String msg = "testMultipleOutputsMergeVertex() - minibatchSize = " + mb;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, new INDArray[] {out});
|
.labels(new INDArray[]{out}));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -810,13 +796,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
String msg = "testMultipleOutputsMergeVertex() - minibatchSize = " + mb;
|
String msg = "testMultipleOutputsMergeVertex() - minibatchSize = " + mb;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{input})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input},
|
.labels(new INDArray[]{out}));
|
||||||
new INDArray[] {out});
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -873,19 +858,18 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
Map<String, INDArray> out = graph.feedForward(new INDArray[] {pos, anc, neg}, true);
|
Map<String, INDArray> out = graph.feedForward(new INDArray[] {pos, anc, neg}, true);
|
||||||
|
|
||||||
for (String s : out.keySet()) {
|
// for (String s : out.keySet()) {
|
||||||
System.out.println(s + "\t" + Arrays.toString(out.get(s).shape()));
|
// System.out.println(s + "\t" + Arrays.toString(out.get(s).shape()));
|
||||||
}
|
// }
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testBasicIrisTripletStackingL2Loss()");
|
System.out.println("testBasicIrisTripletStackingL2Loss()");
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{pos, anc, neg})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {pos, anc, neg},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
String msg = "testBasicIrisTripletStackingL2Loss()";
|
String msg = "testBasicIrisTripletStackingL2Loss()";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
@ -941,13 +925,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
String msg = "testBasicCenterLoss() - lambda = " + lambda + ", trainFirst = " + train;
|
String msg = "testBasicCenterLoss() - lambda = " + lambda + ", trainFirst = " + train;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{example})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {example},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -1007,8 +990,8 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
String msg = "testBasicCenterLoss() - trainFirst = " + train;
|
String msg = "testBasicCenterLoss() - trainFirst = " + train;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < net.getnLayers(); j++)
|
// for (int j = 0; j < net.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -1056,13 +1039,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in1, in2})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {in1, in2},
|
.labels(new INDArray[]{labels}));
|
||||||
new INDArray[] {labels});
|
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -1115,13 +1097,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in1, in2})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {in1, in2},
|
.labels(new INDArray[]{labels1, labels2}));
|
||||||
new INDArray[] {labels1, labels2});
|
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -1174,13 +1155,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in1, in2})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {in1, in2},
|
.labels(new INDArray[]{labels1, labels2}));
|
||||||
new INDArray[] {labels1, labels2});
|
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -1238,15 +1218,14 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
graph.setLayerMaskArrays(new INDArray[] {inMask1, inMask2}, null);
|
graph.setLayerMaskArrays(new INDArray[] {inMask1, inMask2}, null);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in1, in2})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {in1, in2},
|
.labels(new INDArray[]{labels1, labels2}).inputMask(new INDArray[]{inMask1, inMask2}));
|
||||||
new INDArray[] {labels1, labels2}, new INDArray[] {inMask1, inMask2}, null);
|
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -1298,13 +1277,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in1, in2})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {in1, in2},
|
.labels(new INDArray[]{labels1, labels2}));
|
||||||
new INDArray[] {labels1, labels2});
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
}
|
}
|
||||||
|
@ -1341,13 +1319,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in1})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {in1},
|
.labels(new INDArray[]{labels1}));
|
||||||
new INDArray[] {labels1});
|
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -1391,13 +1368,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < graph.getNumLayers(); j++)
|
// for (int j = 0; j < graph.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + graph.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{in1})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {in1},
|
.labels(new INDArray[]{labels1}));
|
||||||
new INDArray[] {labels1});
|
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -1430,12 +1406,12 @@ public class GradientCheckTestsComputationGraph extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testGraphEmbeddingLayerSimple");
|
System.out.println("testGraphEmbeddingLayerSimple");
|
||||||
for (int j = 0; j < cg.getNumLayers(); j++)
|
// for (int j = 0; j < cg.getNumLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + cg.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + cg.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(cg, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR, DEFAULT_MIN_ABS_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(cg).inputs(new INDArray[]{input})
|
||||||
PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[] {input}, new INDArray[] {labels});
|
.labels(new INDArray[]{labels}));
|
||||||
|
|
||||||
String msg = "testGraphEmbeddingLayerSimple";
|
String msg = "testGraphEmbeddingLayerSimple";
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
|
@ -51,10 +51,6 @@ import static org.nd4j.linalg.indexing.NDArrayIndex.*;
|
||||||
public class GradientCheckTestsMasking extends BaseDL4JTest {
|
public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
|
|
||||||
private static final boolean PRINT_RESULTS = true;
|
private static final boolean PRINT_RESULTS = true;
|
||||||
private static final boolean RETURN_ON_FIRST_FAILURE = false;
|
|
||||||
private static final double DEFAULT_EPS = 1e-6;
|
|
||||||
private static final double DEFAULT_MAX_REL_ERROR = 1e-3;
|
|
||||||
private static final double DEFAULT_MIN_ABS_ERROR = 1e-7;
|
|
||||||
|
|
||||||
static {
|
static {
|
||||||
Nd4j.setDataType(DataType.DOUBLE);
|
Nd4j.setDataType(DataType.DOUBLE);
|
||||||
|
@ -130,8 +126,8 @@ public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
|
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
|
||||||
mln.init();
|
mln.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, maskArr);
|
.labels(labels).labelMask(maskArr));
|
||||||
|
|
||||||
String msg = "gradientCheckMaskingOutputSimple() - timeSeriesLength=" + timeSeriesLength
|
String msg = "gradientCheckMaskingOutputSimple() - timeSeriesLength=" + timeSeriesLength
|
||||||
+ ", miniBatchSize=" + 1;
|
+ ", miniBatchSize=" + 1;
|
||||||
|
@ -186,12 +182,12 @@ public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println("testBidirectionalLSTMMasking() - testNum = " + testNum++);
|
System.out.println("testBidirectionalLSTMMasking() - testNum = " + testNum++);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, mask, mask, true, 16);
|
.labels(labels).inputMask(mask).labelMask(mask).subset(true).maxPerParam(16));
|
||||||
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -271,8 +267,8 @@ public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
|
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(features)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, features, labels, null, labelMask);
|
.labels(labels).labelMask(labelMask));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
@ -366,8 +362,8 @@ public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
|
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(features)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, features, labels, null, labelMask);
|
.labels(labels).labelMask(labelMask));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -387,9 +383,8 @@ public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
ComputationGraph graph = new ComputationGraph(cg);
|
ComputationGraph graph = new ComputationGraph(cg);
|
||||||
graph.init();
|
graph.init();
|
||||||
|
|
||||||
gradOK = GradientCheckUtil.checkGradients(graph, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(graph).inputs(new INDArray[]{features})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE,
|
.labels(new INDArray[]{labels}).labelMask(new INDArray[]{labelMask}));
|
||||||
new INDArray[] {features}, new INDArray[] {labels}, null, new INDArray[]{labelMask}, null);
|
|
||||||
|
|
||||||
assertTrue(msg + " (compgraph)", gradOK);
|
assertTrue(msg + " (compgraph)", gradOK);
|
||||||
TestUtils.testModelSerialization(graph);
|
TestUtils.testModelSerialization(graph);
|
||||||
|
@ -425,8 +420,8 @@ public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
|
|
||||||
assertTrue(lm.sumNumber().intValue() > 0);
|
assertTrue(lm.sumNumber().intValue() > 0);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(f)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, f, l, null, lm);
|
.labels(l).labelMask(lm));
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
|
|
||||||
//Also ensure score doesn't depend on masked feature or label values
|
//Also ensure score doesn't depend on masked feature or label values
|
||||||
|
@ -478,9 +473,8 @@ public class GradientCheckTestsMasking extends BaseDL4JTest {
|
||||||
|
|
||||||
assertTrue(lm.sumNumber().intValue() > 0);
|
assertTrue(lm.sumNumber().intValue() > 0);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(net).inputs(new INDArray[]{f})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{f}, new INDArray[]{l},
|
.labels(new INDArray[]{l}).labelMask(new INDArray[]{lm}));
|
||||||
null, new INDArray[]{lm});
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
|
|
||||||
//Also ensure score doesn't depend on masked feature or label values
|
//Also ensure score doesn't depend on masked feature or label values
|
||||||
|
|
|
@ -82,10 +82,10 @@ public class LRNGradientCheckTests extends BaseDL4JTest {
|
||||||
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
|
||||||
mln.init();
|
mln.init();
|
||||||
|
|
||||||
if (PRINT_RESULTS) {
|
// if (PRINT_RESULTS) {
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
// }
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
|
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
|
||||||
|
|
|
@ -124,8 +124,8 @@ public class LSTMGradientCheckTests extends BaseDL4JTest {
|
||||||
String testName = "testLSTMBasic(" + (graves ? "GravesLSTM" : "LSTM") + ")";
|
String testName = "testLSTMBasic(" + (graves ? "GravesLSTM" : "LSTM") + ")";
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -213,12 +213,12 @@ public class LSTMGradientCheckTests extends BaseDL4JTest {
|
||||||
+ outputActivation + ", l2=" + l2 + ", l1=" + l1;
|
+ outputActivation + ", l2=" + l2 + ", l1=" + l1;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 128);
|
.labels(labels).subset(true).maxPerParam(128));
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -341,8 +341,8 @@ public class LSTMGradientCheckTests extends BaseDL4JTest {
|
||||||
System.out.println("testGradientGravesBidirectionalLSTMFull() - activationFn=" + afn
|
System.out.println("testGradientGravesBidirectionalLSTMFull() - activationFn=" + afn
|
||||||
+ ", lossFn=" + lf + ", outputActivation=" + outputActivation + ", l2=" + l2
|
+ ", lossFn=" + lf + ", outputActivation=" + outputActivation + ", l2=" + l2
|
||||||
+ ", l1=" + l1);
|
+ ", l1=" + l1);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -394,8 +394,8 @@ public class LSTMGradientCheckTests extends BaseDL4JTest {
|
||||||
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
|
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
|
||||||
mln.init();
|
mln.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 128);
|
.labels(labels).subset(true).maxPerParam(128));
|
||||||
|
|
||||||
String msg = "testGradientGravesLSTMEdgeCases() - timeSeriesLength=" + timeSeriesLength[i]
|
String msg = "testGradientGravesLSTMEdgeCases() - timeSeriesLength=" + timeSeriesLength[i]
|
||||||
+ ", miniBatchSize=" + miniBatchSize[i];
|
+ ", miniBatchSize=" + miniBatchSize[i];
|
||||||
|
@ -452,8 +452,8 @@ public class LSTMGradientCheckTests extends BaseDL4JTest {
|
||||||
System.out.println("layer " + i + "\t" + mln.getLayer(i).numParams());
|
System.out.println("layer " + i + "\t" + mln.getLayer(i).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 32);
|
.labels(labels).subset(true).maxPerParam(32));
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
}
|
}
|
||||||
|
|
|
@ -206,22 +206,20 @@ public class LossFunctionGradientCheck extends BaseDL4JTest {
|
||||||
} else {
|
} else {
|
||||||
failed.add(testName);
|
failed.add(testName);
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println("\n\n");
|
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if(failed.size() > 0) {
|
||||||
System.out.println("---- Passed ----");
|
System.out.println("---- Passed ----");
|
||||||
for (String s : passed) {
|
for (String s : passed) {
|
||||||
System.out.println(s);
|
System.out.println(s);
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println("---- Failed ----");
|
System.out.println("---- Failed ----");
|
||||||
for (String s : failed) {
|
for (String s : failed) {
|
||||||
System.out.println(s);
|
System.out.println(s);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
assertEquals("Tests failed", 0, failed.size());
|
assertEquals("Tests failed", 0, failed.size());
|
||||||
}
|
}
|
||||||
|
@ -376,7 +374,6 @@ public class LossFunctionGradientCheck extends BaseDL4JTest {
|
||||||
failed.add(testName);
|
failed.add(testName);
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println("\n\n");
|
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -684,8 +681,6 @@ public class LossFunctionGradientCheck extends BaseDL4JTest {
|
||||||
} else {
|
} else {
|
||||||
failed.add(testName);
|
failed.add(testName);
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println("\n\n");
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -136,13 +136,13 @@ public class OutputLayerGradientChecks extends BaseDL4JTest {
|
||||||
String testName = "testRnnLossLayer(lf=" + lf + ", maskType=" + mt + ", outputActivation = " + oa + ")";
|
String testName = "testRnnLossLayer(lf=" + lf + ", maskType=" + mt + ", outputActivation = " + oa + ")";
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println("Starting test: " + testName);
|
System.out.println("Starting test: " + testName);
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, labelMask);
|
.labels(labels).labelMask(labelMask));
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -243,13 +243,13 @@ public class OutputLayerGradientChecks extends BaseDL4JTest {
|
||||||
String testName = "testCnnLossLayer(lf=" + lf + ", maskType=" + mt + ", outputActivation = " + oa + ")";
|
String testName = "testCnnLossLayer(lf=" + lf + ", maskType=" + mt + ", outputActivation = " + oa + ")";
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println("Starting test: " + testName);
|
System.out.println("Starting test: " + testName);
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, labelMask);
|
.labels(labels).labelMask(labelMask));
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
@ -392,13 +392,13 @@ public class OutputLayerGradientChecks extends BaseDL4JTest {
|
||||||
String testName = "testCnn3dLossLayer(dataFormat=" + dataFormat + ",lf=" + lf + ", maskType=" + mt + ", outputActivation = " + oa + ")";
|
String testName = "testCnn3dLossLayer(dataFormat=" + dataFormat + ",lf=" + lf + ", maskType=" + mt + ", outputActivation = " + oa + ")";
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(testName);
|
System.out.println(testName);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println("Starting test: " + testName);
|
System.out.println("Starting test: " + testName);
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(mln).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, labelMask);
|
.labels(labels).labelMask(labelMask));
|
||||||
|
|
||||||
assertTrue(testName, gradOK);
|
assertTrue(testName, gradOK);
|
||||||
TestUtils.testModelSerialization(mln);
|
TestUtils.testModelSerialization(mln);
|
||||||
|
|
|
@ -127,8 +127,8 @@ public class RnnGradientChecks extends BaseDL4JTest {
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null);
|
.labels(labels).inputMask(inMask));
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
|
|
||||||
|
|
||||||
|
@ -207,8 +207,8 @@ public class RnnGradientChecks extends BaseDL4JTest {
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null);
|
.labels(labels).inputMask(inMask));
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
}
|
}
|
||||||
|
@ -282,8 +282,8 @@ public class RnnGradientChecks extends BaseDL4JTest {
|
||||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null, true, 16);
|
.labels(labels).inputMask(inMask).subset(true).maxPerParam(16));
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
}
|
}
|
||||||
|
@ -346,8 +346,8 @@ public class RnnGradientChecks extends BaseDL4JTest {
|
||||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, inMask, null, true, 16);
|
.labels(labels).inputMask(inMask).subset(true).maxPerParam(16));
|
||||||
assertTrue(name, gradOK);
|
assertTrue(name, gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
}
|
}
|
||||||
|
|
|
@ -182,9 +182,9 @@ public class UtilLayerGradientChecks extends BaseDL4JTest {
|
||||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||||
net.init();
|
net.init();
|
||||||
|
|
||||||
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
.minAbsoluteError(1e-7)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, label, inMask, null);
|
.labels(label).inputMask(inMask));
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
|
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
@ -223,9 +223,8 @@ public class UtilLayerGradientChecks extends BaseDL4JTest {
|
||||||
Set<String> excludeParams = new HashSet<>();
|
Set<String> excludeParams = new HashSet<>();
|
||||||
excludeParams.addAll(Arrays.asList("1_W", "1_b", "2_W", "2_b"));
|
excludeParams.addAll(Arrays.asList("1_W", "1_b", "2_W", "2_b"));
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(in)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, in, labels, null, null,
|
.labels(labels).excludeParams(excludeParams));
|
||||||
false, -1, excludeParams);
|
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
|
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
@ -234,9 +233,8 @@ public class UtilLayerGradientChecks extends BaseDL4JTest {
|
||||||
//Test ComputationGraph equivalent:
|
//Test ComputationGraph equivalent:
|
||||||
ComputationGraph g = net.toComputationGraph();
|
ComputationGraph g = net.toComputationGraph();
|
||||||
|
|
||||||
boolean gradOKCG = GradientCheckUtil.checkGradients(g, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOKCG = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(g).inputs(new INDArray[]{in})
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, new INDArray[]{in}, new INDArray[]{labels},
|
.labels(new INDArray[]{labels}).excludeParams(excludeParams));
|
||||||
null, null, excludeParams);
|
|
||||||
assertTrue(gradOKCG);
|
assertTrue(gradOKCG);
|
||||||
|
|
||||||
TestUtils.testModelSerialization(g);
|
TestUtils.testModelSerialization(g);
|
||||||
|
|
|
@ -46,7 +46,7 @@ import static org.junit.Assert.assertTrue;
|
||||||
*/
|
*/
|
||||||
public class VaeGradientCheckTests extends BaseDL4JTest {
|
public class VaeGradientCheckTests extends BaseDL4JTest {
|
||||||
|
|
||||||
private static final boolean PRINT_RESULTS = true;
|
private static final boolean PRINT_RESULTS = false;
|
||||||
private static final boolean RETURN_ON_FIRST_FAILURE = false;
|
private static final boolean RETURN_ON_FIRST_FAILURE = false;
|
||||||
private static final double DEFAULT_EPS = 1e-6;
|
private static final double DEFAULT_EPS = 1e-6;
|
||||||
private static final double DEFAULT_MAX_REL_ERROR = 1e-3;
|
private static final double DEFAULT_MAX_REL_ERROR = 1e-3;
|
||||||
|
@ -122,8 +122,8 @@ public class VaeGradientCheckTests extends BaseDL4JTest {
|
||||||
+ Arrays.toString(decoderSizes) + ", l2=" + l2 + ", l1=" + l1;
|
+ Arrays.toString(decoderSizes) + ", l2=" + l2 + ", l1=" + l1;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
||||||
|
@ -193,8 +193,8 @@ public class VaeGradientCheckTests extends BaseDL4JTest {
|
||||||
+ l1;
|
+ l1;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int l = 0; l < mln.getnLayers(); l++)
|
// for (int l = 0; l < mln.getnLayers(); l++)
|
||||||
System.out.println("Layer " + l + " # params: " + mln.getLayer(l).numParams());
|
// System.out.println("Layer " + l + " # params: " + mln.getLayer(l).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradientsPretrainLayer(layer, DEFAULT_EPS,
|
boolean gradOK = GradientCheckUtil.checkGradientsPretrainLayer(layer, DEFAULT_EPS,
|
||||||
|
@ -281,8 +281,8 @@ public class VaeGradientCheckTests extends BaseDL4JTest {
|
||||||
String msg = "testVaePretrainReconstructionDistributions() - " + reconstructionDistributions[i];
|
String msg = "testVaePretrainReconstructionDistributions() - " + reconstructionDistributions[i];
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradientsPretrainLayer(layer, DEFAULT_EPS,
|
boolean gradOK = GradientCheckUtil.checkGradientsPretrainLayer(layer, DEFAULT_EPS,
|
||||||
|
@ -323,8 +323,8 @@ public class VaeGradientCheckTests extends BaseDL4JTest {
|
||||||
String msg = "testVaePretrainMultipleSamples() - numSamples = " + numSamples;
|
String msg = "testVaePretrainMultipleSamples() - numSamples = " + numSamples;
|
||||||
if (PRINT_RESULTS) {
|
if (PRINT_RESULTS) {
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
for (int j = 0; j < mln.getnLayers(); j++)
|
// for (int j = 0; j < mln.getnLayers(); j++)
|
||||||
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
// System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradientsPretrainLayer(layer, DEFAULT_EPS,
|
boolean gradOK = GradientCheckUtil.checkGradientsPretrainLayer(layer, DEFAULT_EPS,
|
||||||
|
|
|
@ -120,8 +120,8 @@ public class YoloGradientCheckTests extends BaseDL4JTest {
|
||||||
String msg = "testYoloOutputLayer() - minibatch = " + mb + ", w=" + w + ", h=" + h + ", l1=" + l1[i] + ", l2=" + l2[i];
|
String msg = "testYoloOutputLayer() - minibatch = " + mb + ", w=" + w + ", h=" + h + ", l1=" + l1[i] + ", l2=" + l2[i];
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 100);
|
.labels(labels).subset(true).maxPerParam(100));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
@ -228,8 +228,8 @@ public class YoloGradientCheckTests extends BaseDL4JTest {
|
||||||
INDArray f = ds.getFeatures();
|
INDArray f = ds.getFeatures();
|
||||||
INDArray l = ds.getLabels();
|
INDArray l = ds.getLabels();
|
||||||
|
|
||||||
boolean ok = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean ok = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(f)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, f, l, null, null, true, 64);
|
.labels(l).inputMask(null).subset(true).maxPerParam(64));
|
||||||
|
|
||||||
assertTrue(ok);
|
assertTrue(ok);
|
||||||
TestUtils.testModelSerialization(net);
|
TestUtils.testModelSerialization(net);
|
||||||
|
|
|
@ -130,7 +130,7 @@ public class ComputationGraphConfigurationTest extends BaseDL4JTest {
|
||||||
.setOutputs("out").build();
|
.setOutputs("out").build();
|
||||||
|
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
ComputationGraphConfiguration conf2 = ComputationGraphConfiguration.fromJson(json);
|
ComputationGraphConfiguration conf2 = ComputationGraphConfiguration.fromJson(json);
|
||||||
|
|
||||||
|
@ -258,7 +258,7 @@ public class ComputationGraphConfigurationTest extends BaseDL4JTest {
|
||||||
.addVertex("test2", new StaticInnerGraphVertex(4, 5), "in").setOutputs("test", "test2").build();
|
.addVertex("test2", new StaticInnerGraphVertex(4, 5), "in").setOutputs("test", "test2").build();
|
||||||
|
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
ComputationGraphConfiguration conf2 = ComputationGraphConfiguration.fromJson(json);
|
ComputationGraphConfiguration conf2 = ComputationGraphConfiguration.fromJson(json);
|
||||||
|
|
||||||
|
|
|
@ -54,7 +54,7 @@ public class CustomPreprocessorTest extends BaseDL4JTest {
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
String yaml = conf.toYaml();
|
String yaml = conf.toYaml();
|
||||||
|
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
||||||
assertEquals(conf, confFromJson);
|
assertEquals(conf, confFromJson);
|
||||||
|
|
|
@ -99,6 +99,11 @@ public class DTypeTests extends BaseDL4JTest {
|
||||||
Convolution1D.class //Alias for Convolution1DLayer
|
Convolution1D.class //Alias for Convolution1DLayer
|
||||||
));
|
));
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public long getTimeoutMilliseconds() {
|
||||||
|
return 90000L;
|
||||||
|
}
|
||||||
|
|
||||||
@AfterClass
|
@AfterClass
|
||||||
public static void after() {
|
public static void after() {
|
||||||
ImmutableSet<ClassPath.ClassInfo> info;
|
ImmutableSet<ClassPath.ClassInfo> info;
|
||||||
|
@ -545,6 +550,7 @@ public class DTypeTests extends BaseDL4JTest {
|
||||||
.layer(new Convolution3D.Builder().kernelSize(2, 2, 2).stride(1, 1, 1).nOut(3).activation(Activation.TANH).build())
|
.layer(new Convolution3D.Builder().kernelSize(2, 2, 2).stride(1, 1, 1).nOut(3).activation(Activation.TANH).build())
|
||||||
.layer(new Convolution3D.Builder().kernelSize(2, 2, 2).stride(1, 1, 1).nOut(3).activation(Activation.TANH).build())
|
.layer(new Convolution3D.Builder().kernelSize(2, 2, 2).stride(1, 1, 1).nOut(3).activation(Activation.TANH).build())
|
||||||
.layer(new Subsampling3DLayer.Builder().poolingType(PoolingType.AVG).kernelSize(2, 2, 2).stride(2, 2, 2).build())
|
.layer(new Subsampling3DLayer.Builder().poolingType(PoolingType.AVG).kernelSize(2, 2, 2).stride(2, 2, 2).build())
|
||||||
|
.layer(new Deconvolution3D.Builder().kernelSize(2,2,2).stride(1,1,1).nIn(3).nOut(3).activation(Activation.TANH).build())
|
||||||
.layer(new Cropping3D.Builder(1, 1, 1, 1, 1, 1).build())
|
.layer(new Cropping3D.Builder(1, 1, 1, 1, 1, 1).build())
|
||||||
.layer(new ZeroPadding3DLayer.Builder(1, 1, 1, 1, 1, 1).build())
|
.layer(new ZeroPadding3DLayer.Builder(1, 1, 1, 1, 1, 1).build())
|
||||||
.layer(new ActivationLayer(Activation.LEAKYRELU))
|
.layer(new ActivationLayer(Activation.LEAKYRELU))
|
||||||
|
|
|
@ -531,28 +531,38 @@ public class TestComputationGraphNetwork extends BaseDL4JTest {
|
||||||
|
|
||||||
ComputationGraph graph = new ComputationGraph(conf1);
|
ComputationGraph graph = new ComputationGraph(conf1);
|
||||||
graph.init();
|
graph.init();
|
||||||
System.out.println(graph.summary());
|
// System.out.println(graph.summary());
|
||||||
System.out.println(graph.summary(InputType.feedForward(5)));
|
// System.out.println(graph.summary(InputType.feedForward(5)));
|
||||||
|
graph.summary();
|
||||||
|
graph.summary(InputType.feedForward(5));
|
||||||
|
|
||||||
graph = new ComputationGraph(conf2);
|
graph = new ComputationGraph(conf2);
|
||||||
graph.init();
|
graph.init();
|
||||||
System.out.println(graph.summary());
|
// System.out.println(graph.summary());
|
||||||
System.out.println(graph.summary(InputType.recurrent(5)));
|
// System.out.println(graph.summary(InputType.recurrent(5)));
|
||||||
|
graph.summary();
|
||||||
|
graph.summary(InputType.recurrent(5));
|
||||||
|
|
||||||
graph = new ComputationGraph(conf3);
|
graph = new ComputationGraph(conf3);
|
||||||
graph.init();
|
graph.init();
|
||||||
System.out.println(graph.summary());
|
// System.out.println(graph.summary());
|
||||||
System.out.println(graph.summary(InputType.convolutional(28, 28, 1)));
|
// System.out.println(graph.summary(InputType.convolutional(28, 28, 1)));
|
||||||
|
graph.summary();
|
||||||
|
graph.summary(InputType.convolutional(28, 28, 1));
|
||||||
|
|
||||||
graph = new ComputationGraph(conf4);
|
graph = new ComputationGraph(conf4);
|
||||||
graph.init();
|
graph.init();
|
||||||
System.out.println(graph.summary());
|
// System.out.println(graph.summary());
|
||||||
System.out.println(graph.summary(InputType.convolutional(28, 28, 1), InputType.recurrent(5)));
|
// System.out.println(graph.summary(InputType.convolutional(28, 28, 1), InputType.recurrent(5)));
|
||||||
|
graph.summary();
|
||||||
|
graph.summary(InputType.convolutional(28, 28, 1), InputType.recurrent(5));
|
||||||
|
|
||||||
graph = new ComputationGraph(conf5);
|
graph = new ComputationGraph(conf5);
|
||||||
graph.init();
|
graph.init();
|
||||||
System.out.println(graph.summary());
|
// System.out.println(graph.summary());
|
||||||
System.out.println(graph.summary(InputType.convolutional(28, 28, 1)));
|
// System.out.println(graph.summary(InputType.convolutional(28, 28, 1)));
|
||||||
|
graph.summary();
|
||||||
|
graph.summary(InputType.convolutional(28, 28, 1));
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -753,7 +763,7 @@ public class TestComputationGraphNetwork extends BaseDL4JTest {
|
||||||
int nOut = 3;
|
int nOut = 3;
|
||||||
|
|
||||||
for(WorkspaceMode ws : WorkspaceMode.values()) {
|
for(WorkspaceMode ws : WorkspaceMode.values()) {
|
||||||
System.out.println("***** WORKSPACE: " + ws);
|
// System.out.println("***** WORKSPACE: " + ws);
|
||||||
|
|
||||||
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
|
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
|
||||||
.updater(new Adam(0.01))
|
.updater(new Adam(0.01))
|
||||||
|
@ -981,7 +991,7 @@ public class TestComputationGraphNetwork extends BaseDL4JTest {
|
||||||
OptimizationAlgorithm.LBFGS};
|
OptimizationAlgorithm.LBFGS};
|
||||||
|
|
||||||
for (OptimizationAlgorithm oa : oas) {
|
for (OptimizationAlgorithm oa : oas) {
|
||||||
System.out.println(oa);
|
// System.out.println(oa);
|
||||||
ComputationGraphConfiguration conf =
|
ComputationGraphConfiguration conf =
|
||||||
new NeuralNetConfiguration.Builder().optimizationAlgo(oa).graphBuilder()
|
new NeuralNetConfiguration.Builder().optimizationAlgo(oa).graphBuilder()
|
||||||
.addInputs("input")
|
.addInputs("input")
|
||||||
|
@ -1065,12 +1075,15 @@ public class TestComputationGraphNetwork extends BaseDL4JTest {
|
||||||
|
|
||||||
ComputationGraph modelToTune = new ComputationGraph(conf);
|
ComputationGraph modelToTune = new ComputationGraph(conf);
|
||||||
modelToTune.init();
|
modelToTune.init();
|
||||||
System.out.println(modelToTune.summary());
|
// System.out.println(modelToTune.summary());
|
||||||
|
modelToTune.summary();
|
||||||
|
|
||||||
ComputationGraph modelNow =
|
ComputationGraph modelNow =
|
||||||
new TransferLearning.GraphBuilder(modelToTune).setFeatureExtractor("denseCentre2").build();
|
new TransferLearning.GraphBuilder(modelToTune).setFeatureExtractor("denseCentre2").build();
|
||||||
System.out.println(modelNow.summary());
|
// System.out.println(modelNow.summary());
|
||||||
System.out.println(modelNow.summary(InputType.feedForward(10),InputType.feedForward(2)));
|
// System.out.println(modelNow.summary(InputType.feedForward(10),InputType.feedForward(2)));
|
||||||
|
modelNow.summary();
|
||||||
|
modelNow.summary(InputType.feedForward(10),InputType.feedForward(2));
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -1315,9 +1328,12 @@ public class TestComputationGraphNetwork extends BaseDL4JTest {
|
||||||
ComputationGraph modelExpectedArch = new ComputationGraph(confForArchitecture);
|
ComputationGraph modelExpectedArch = new ComputationGraph(confForArchitecture);
|
||||||
modelExpectedArch.init();
|
modelExpectedArch.init();
|
||||||
ComputationGraph modelMow = new TransferLearning.GraphBuilder(modelExpectedArch).setFeatureExtractor("layer2").build();
|
ComputationGraph modelMow = new TransferLearning.GraphBuilder(modelExpectedArch).setFeatureExtractor("layer2").build();
|
||||||
System.out.println(modelExpectedArch.summary());
|
// System.out.println(modelExpectedArch.summary());
|
||||||
System.out.println(modelMow.summary());
|
// System.out.println(modelMow.summary());
|
||||||
System.out.println(modelExpectedArch.summary(InputType.recurrent(V_HEIGHT* V_WIDTH* 3)));
|
// System.out.println(modelExpectedArch.summary(InputType.recurrent(V_HEIGHT* V_WIDTH* 3)));
|
||||||
|
modelExpectedArch.summary();
|
||||||
|
modelMow.summary();
|
||||||
|
modelExpectedArch.summary(InputType.recurrent(V_HEIGHT* V_WIDTH* 3));
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -2117,8 +2133,8 @@ public class TestComputationGraphNetwork extends BaseDL4JTest {
|
||||||
INDArray features = Nd4j.rand(new int[] {dataSize, inputSize});
|
INDArray features = Nd4j.rand(new int[] {dataSize, inputSize});
|
||||||
INDArray labels = Nd4j.rand(new int[] {dataSize, outputSize});
|
INDArray labels = Nd4j.rand(new int[] {dataSize, outputSize});
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, 1e-6, 1e-3,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.GraphConfig().net(net).inputs(new INDArray[]{features})
|
||||||
1e-8, false, true, new INDArray[]{features}, new INDArray[]{labels}, null, null);
|
.labels(new INDArray[]{labels}));
|
||||||
assertTrue(gradOK);
|
assertTrue(gradOK);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -53,7 +53,7 @@ public class TestCustomActivation extends BaseDL4JTest {
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
String yaml = conf.toYaml();
|
String yaml = conf.toYaml();
|
||||||
|
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
||||||
assertEquals(conf, confFromJson);
|
assertEquals(conf, confFromJson);
|
||||||
|
|
|
@ -64,7 +64,7 @@ public class TestCustomLayers extends BaseDL4JTest {
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
String yaml = conf.toYaml();
|
String yaml = conf.toYaml();
|
||||||
|
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
||||||
assertEquals(conf, confFromJson);
|
assertEquals(conf, confFromJson);
|
||||||
|
@ -88,7 +88,7 @@ public class TestCustomLayers extends BaseDL4JTest {
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
String yaml = conf.toYaml();
|
String yaml = conf.toYaml();
|
||||||
|
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
ComputationGraphConfiguration confFromJson = ComputationGraphConfiguration.fromJson(json);
|
ComputationGraphConfiguration confFromJson = ComputationGraphConfiguration.fromJson(json);
|
||||||
assertEquals(conf, confFromJson);
|
assertEquals(conf, confFromJson);
|
||||||
|
@ -135,7 +135,7 @@ public class TestCustomLayers extends BaseDL4JTest {
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
String yaml = conf.toYaml();
|
String yaml = conf.toYaml();
|
||||||
|
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
MultiLayerConfiguration confFromJson = MultiLayerConfiguration.fromJson(json);
|
||||||
assertEquals(conf, confFromJson);
|
assertEquals(conf, confFromJson);
|
||||||
|
@ -188,7 +188,7 @@ public class TestCustomLayers extends BaseDL4JTest {
|
||||||
String json = conf.toJson();
|
String json = conf.toJson();
|
||||||
String yaml = conf.toYaml();
|
String yaml = conf.toYaml();
|
||||||
|
|
||||||
System.out.println(json);
|
// System.out.println(json);
|
||||||
|
|
||||||
ComputationGraphConfiguration confFromJson = ComputationGraphConfiguration.fromJson(json);
|
ComputationGraphConfiguration confFromJson = ComputationGraphConfiguration.fromJson(json);
|
||||||
assertEquals(conf, confFromJson);
|
assertEquals(conf, confFromJson);
|
||||||
|
|
|
@ -35,6 +35,7 @@ import org.deeplearning4j.nn.weights.WeightInit;
|
||||||
import org.deeplearning4j.nn.weights.embeddings.EmbeddingInitializer;
|
import org.deeplearning4j.nn.weights.embeddings.EmbeddingInitializer;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
import org.nd4j.linalg.activations.Activation;
|
import org.nd4j.linalg.activations.Activation;
|
||||||
|
import org.nd4j.linalg.activations.impl.ActivationIdentity;
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
|
@ -156,7 +157,7 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
.layer(new RnnOutputLayer.Builder().nIn(embeddingDim).nOut(nOut).activation(Activation.SOFTMAX).build())
|
.layer(new RnnOutputLayer.Builder().nIn(embeddingDim).nOut(nOut).activation(Activation.SOFTMAX).build())
|
||||||
.build();
|
.build();
|
||||||
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH).list()
|
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH).list()
|
||||||
.layer(0, new DenseLayer.Builder().nIn(nClassesIn).nOut(5).build())
|
.layer(0, new DenseLayer.Builder().nIn(nClassesIn).nOut(5).activation(Activation.IDENTITY).build())
|
||||||
.layer(1, new OutputLayer.Builder().nIn(5).nOut(4).activation(Activation.SOFTMAX).build())
|
.layer(1, new OutputLayer.Builder().nIn(5).nOut(4).activation(Activation.SOFTMAX).build())
|
||||||
.inputPreProcessor(0, new RnnToFeedForwardPreProcessor())
|
.inputPreProcessor(0, new RnnToFeedForwardPreProcessor())
|
||||||
.build();
|
.build();
|
||||||
|
@ -204,7 +205,7 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
.layer(1, new OutputLayer.Builder().nIn(5).nOut(4).activation(Activation.SOFTMAX).build())
|
.layer(1, new OutputLayer.Builder().nIn(5).nOut(4).activation(Activation.SOFTMAX).build())
|
||||||
.build();
|
.build();
|
||||||
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH).list()
|
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH).list()
|
||||||
.layer(0, new DenseLayer.Builder().nIn(nClassesIn).nOut(5).build())
|
.layer(0, new DenseLayer.Builder().nIn(nClassesIn).nOut(5).activation(Activation.IDENTITY).build())
|
||||||
.layer(1, new OutputLayer.Builder().nIn(5).nOut(4).activation(Activation.SOFTMAX).build())
|
.layer(1, new OutputLayer.Builder().nIn(5).nOut(4).activation(Activation.SOFTMAX).build())
|
||||||
.build();
|
.build();
|
||||||
|
|
||||||
|
@ -249,8 +250,8 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
.build();
|
.build();
|
||||||
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH)
|
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH)
|
||||||
.weightInit(WeightInit.XAVIER).list()
|
.weightInit(WeightInit.XAVIER).list()
|
||||||
.layer(0, new DenseLayer.Builder().nIn(nClassesIn).nOut(5).build()).layer(1,
|
.layer(new DenseLayer.Builder().nIn(nClassesIn).nOut(5).activation(Activation.IDENTITY).build())
|
||||||
new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(5).nOut(4)
|
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(5).nOut(4)
|
||||||
.activation(Activation.SOFTMAX).build())
|
.activation(Activation.SOFTMAX).build())
|
||||||
.build();
|
.build();
|
||||||
|
|
||||||
|
@ -309,7 +310,7 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
.layer(new RnnOutputLayer.Builder().nIn(embeddingDim).nOut(nOut).activation(Activation.SOFTMAX).build())
|
.layer(new RnnOutputLayer.Builder().nIn(embeddingDim).nOut(nOut).activation(Activation.SOFTMAX).build())
|
||||||
.build();
|
.build();
|
||||||
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH).list()
|
MultiLayerConfiguration conf2 = new NeuralNetConfiguration.Builder().activation(Activation.TANH).list()
|
||||||
.layer(new DenseLayer.Builder().nIn(nClassesIn).nOut(embeddingDim).build())
|
.layer(new DenseLayer.Builder().nIn(nClassesIn).nOut(embeddingDim).activation(Activation.IDENTITY).build())
|
||||||
.layer(new RnnOutputLayer.Builder().nIn(embeddingDim).nOut(nOut).activation(Activation.SOFTMAX).build())
|
.layer(new RnnOutputLayer.Builder().nIn(embeddingDim).nOut(nOut).activation(Activation.SOFTMAX).build())
|
||||||
.setInputType(InputType.recurrent(nClassesIn))
|
.setInputType(InputType.recurrent(nClassesIn))
|
||||||
.build();
|
.build();
|
||||||
|
@ -344,7 +345,7 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
net.computeGradientAndScore();
|
net.computeGradientAndScore();
|
||||||
net2.computeGradientAndScore();
|
net2.computeGradientAndScore();
|
||||||
|
|
||||||
System.out.println(net.score() + "\t" + net2.score());
|
// System.out.println(net.score() + "\t" + net2.score());
|
||||||
assertEquals(net2.score(), net.score(), 1e-6);
|
assertEquals(net2.score(), net.score(), 1e-6);
|
||||||
|
|
||||||
Map<String, INDArray> gradient = net.gradient().gradientForVariable();
|
Map<String, INDArray> gradient = net.gradient().gradientForVariable();
|
||||||
|
@ -375,7 +376,7 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
.weightInit(WeightInit.XAVIER)
|
.weightInit(WeightInit.XAVIER)
|
||||||
.dataType(DataType.DOUBLE)
|
.dataType(DataType.DOUBLE)
|
||||||
.list()
|
.list()
|
||||||
.layer(0, new DenseLayer.Builder().nIn(nClassesIn).nOut(5).build())
|
.layer(0, new DenseLayer.Builder().nIn(nClassesIn).nOut(5).activation(Activation.IDENTITY).build())
|
||||||
.layer(1, new GravesLSTM.Builder().nIn(5).nOut(7).activation(Activation.SOFTSIGN).build())
|
.layer(1, new GravesLSTM.Builder().nIn(5).nOut(7).activation(Activation.SOFTSIGN).build())
|
||||||
.layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(7).nOut(4)
|
.layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(7).nOut(4)
|
||||||
.activation(Activation.SOFTMAX).build())
|
.activation(Activation.SOFTMAX).build())
|
||||||
|
@ -416,7 +417,7 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
net.computeGradientAndScore();
|
net.computeGradientAndScore();
|
||||||
net2.computeGradientAndScore();
|
net2.computeGradientAndScore();
|
||||||
|
|
||||||
System.out.println(net.score() + "\t" + net2.score());
|
// System.out.println(net.score() + "\t" + net2.score());
|
||||||
assertEquals(net2.score(), net.score(), 1e-5);
|
assertEquals(net2.score(), net.score(), 1e-5);
|
||||||
|
|
||||||
Map<String, INDArray> gradient = net.gradient().gradientForVariable();
|
Map<String, INDArray> gradient = net.gradient().gradientForVariable();
|
||||||
|
@ -513,7 +514,7 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
net.computeGradientAndScore();
|
net.computeGradientAndScore();
|
||||||
net2.computeGradientAndScore();
|
net2.computeGradientAndScore();
|
||||||
|
|
||||||
System.out.println(net.score() + "\t" + net2.score());
|
// System.out.println(net.score() + "\t" + net2.score());
|
||||||
assertEquals(net2.score(), net.score(), 1e-5);
|
assertEquals(net2.score(), net.score(), 1e-5);
|
||||||
|
|
||||||
Map<String, INDArray> gradients = net.gradient().gradientForVariable();
|
Map<String, INDArray> gradients = net.gradient().gradientForVariable();
|
||||||
|
@ -707,4 +708,21 @@ public class EmbeddingLayerTest extends BaseDL4JTest {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testEmbeddingDefaultActivation(){
|
||||||
|
|
||||||
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
||||||
|
.list()
|
||||||
|
.layer(new EmbeddingLayer.Builder().nIn(10).nOut(10).build())
|
||||||
|
.layer(new EmbeddingSequenceLayer.Builder().nIn(10).nOut(10).build())
|
||||||
|
.build();
|
||||||
|
|
||||||
|
EmbeddingLayer l = (EmbeddingLayer) conf.getConf(0).getLayer();
|
||||||
|
assertEquals(new ActivationIdentity(), l.getActivationFn());
|
||||||
|
|
||||||
|
EmbeddingSequenceLayer l2 = (EmbeddingSequenceLayer) conf.getConf(1).getLayer();
|
||||||
|
assertEquals(new ActivationIdentity(), l2.getActivationFn());
|
||||||
|
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -90,6 +90,11 @@ public class BatchNormalizationTest extends BaseDL4JTest {
|
||||||
public void doBefore() {
|
public void doBefore() {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public long getTimeoutMilliseconds() {
|
||||||
|
return 90000L;
|
||||||
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void testDnnForwardPass() {
|
public void testDnnForwardPass() {
|
||||||
int nOut = 10;
|
int nOut = 10;
|
||||||
|
@ -102,7 +107,7 @@ public class BatchNormalizationTest extends BaseDL4JTest {
|
||||||
INDArray mean = output.mean(0);
|
INDArray mean = output.mean(0);
|
||||||
INDArray stdev = output.std(false, 0);
|
INDArray stdev = output.std(false, 0);
|
||||||
|
|
||||||
System.out.println(Arrays.toString(mean.data().asFloat()));
|
// System.out.println(Arrays.toString(mean.data().asFloat()));
|
||||||
|
|
||||||
assertArrayEquals(new float[nOut], mean.data().asFloat(), 1e-6f);
|
assertArrayEquals(new float[nOut], mean.data().asFloat(), 1e-6f);
|
||||||
assertEquals(Nd4j.ones(nOut), stdev);
|
assertEquals(Nd4j.ones(nOut), stdev);
|
||||||
|
@ -161,8 +166,8 @@ public class BatchNormalizationTest extends BaseDL4JTest {
|
||||||
|
|
||||||
INDArray out = l.activate(input, true, LayerWorkspaceMgr.noWorkspaces());
|
INDArray out = l.activate(input, true, LayerWorkspaceMgr.noWorkspaces());
|
||||||
|
|
||||||
System.out.println(Arrays.toString(outExpected.data().asDouble()));
|
// System.out.println(Arrays.toString(outExpected.data().asDouble()));
|
||||||
System.out.println(Arrays.toString(out.data().asDouble()));
|
// System.out.println(Arrays.toString(out.data().asDouble()));
|
||||||
|
|
||||||
assertEquals(outExpected, out);
|
assertEquals(outExpected, out);
|
||||||
|
|
||||||
|
@ -190,9 +195,9 @@ public class BatchNormalizationTest extends BaseDL4JTest {
|
||||||
assertEquals(dldgammaExp, dldgamma);
|
assertEquals(dldgammaExp, dldgamma);
|
||||||
assertEquals(dldbetaExp, dldbeta);
|
assertEquals(dldbetaExp, dldbeta);
|
||||||
|
|
||||||
System.out.println("EPSILONS");
|
// System.out.println("EPSILONS");
|
||||||
System.out.println(Arrays.toString(dldinExp.data().asDouble()));
|
// System.out.println(Arrays.toString(dldinExp.data().asDouble()));
|
||||||
System.out.println(Arrays.toString(p.getSecond().dup().data().asDouble()));
|
// System.out.println(Arrays.toString(p.getSecond().dup().data().asDouble()));
|
||||||
assertEquals(dldinExp, p.getSecond());
|
assertEquals(dldinExp, p.getSecond());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -303,8 +308,8 @@ public class BatchNormalizationTest extends BaseDL4JTest {
|
||||||
|
|
||||||
INDArray out = l.activate(input, true, LayerWorkspaceMgr.noWorkspaces());
|
INDArray out = l.activate(input, true, LayerWorkspaceMgr.noWorkspaces());
|
||||||
|
|
||||||
System.out.println(Arrays.toString(outExpected.data().asDouble()));
|
// System.out.println(Arrays.toString(outExpected.data().asDouble()));
|
||||||
System.out.println(Arrays.toString(out.data().asDouble()));
|
// System.out.println(Arrays.toString(out.data().asDouble()));
|
||||||
|
|
||||||
assertEquals(outExpected, out);
|
assertEquals(outExpected, out);
|
||||||
|
|
||||||
|
|
|
@ -140,7 +140,7 @@ public class TestYolo2OutputLayer extends BaseDL4JTest {
|
||||||
y2impl.setLabels(labels);
|
y2impl.setLabels(labels);
|
||||||
double score = y2impl.computeScore(0.0, true, LayerWorkspaceMgr.noWorkspaces());
|
double score = y2impl.computeScore(0.0, true, LayerWorkspaceMgr.noWorkspaces());
|
||||||
|
|
||||||
System.out.println("SCORE: " + score);
|
// System.out.println("SCORE: " + score);
|
||||||
assertTrue(score > 0.0);
|
assertTrue(score > 0.0);
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -220,20 +220,20 @@ public class GravesLSTMTest extends BaseDL4JTest {
|
||||||
INDArray out1 = net.output(in1);
|
INDArray out1 = net.output(in1);
|
||||||
INDArray out2 = net.output(in2);
|
INDArray out2 = net.output(in2);
|
||||||
|
|
||||||
System.out.println(Arrays.toString(net.output(in1).data().asFloat()));
|
// System.out.println(Arrays.toString(net.output(in1).data().asFloat()));
|
||||||
System.out.println(Arrays.toString(net.output(in2).data().asFloat()));
|
// System.out.println(Arrays.toString(net.output(in2).data().asFloat()));
|
||||||
|
|
||||||
List<INDArray> activations1 = net.feedForward(in1);
|
List<INDArray> activations1 = net.feedForward(in1);
|
||||||
List<INDArray> activations2 = net.feedForward(in2);
|
List<INDArray> activations2 = net.feedForward(in2);
|
||||||
|
|
||||||
for (int i = 0; i < 3; i++) {
|
// for (int i = 0; i < 3; i++) {
|
||||||
System.out.println("-----\n" + i);
|
// System.out.println("-----\n" + i);
|
||||||
System.out.println(Arrays.toString(activations1.get(i).dup().data().asDouble()));
|
// System.out.println(Arrays.toString(activations1.get(i).dup().data().asDouble()));
|
||||||
System.out.println(Arrays.toString(activations2.get(i).dup().data().asDouble()));
|
// System.out.println(Arrays.toString(activations2.get(i).dup().data().asDouble()));
|
||||||
|
//
|
||||||
System.out.println(activations1.get(i));
|
// System.out.println(activations1.get(i));
|
||||||
System.out.println(activations2.get(i));
|
// System.out.println(activations2.get(i));
|
||||||
}
|
// }
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -306,8 +306,8 @@ public class TestSameDiffConv extends BaseDL4JTest {
|
||||||
INDArray l = TestUtils.randomOneHot(minibatch, nOut);
|
INDArray l = TestUtils.randomOneHot(minibatch, nOut);
|
||||||
|
|
||||||
log.info("Starting: " + msg);
|
log.info("Starting: " + msg);
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(f)
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, f, l, null, null, true, 50); //Most of weights are in output layer
|
.labels(l).subset(true).maxPerParam(50));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
|
|
@ -135,7 +135,7 @@ public class TestSameDiffDenseVertex extends BaseDL4JTest {
|
||||||
|
|
||||||
assertEquals(gStd.gradient(), gSD.gradient());
|
assertEquals(gStd.gradient(), gSD.gradient());
|
||||||
|
|
||||||
System.out.println("========================================================================");
|
// System.out.println("========================================================================");
|
||||||
|
|
||||||
//Sanity check: different minibatch size
|
//Sanity check: different minibatch size
|
||||||
in = Nd4j.rand(2 * minibatch, nIn);
|
in = Nd4j.rand(2 * minibatch, nIn);
|
||||||
|
|
|
@ -317,7 +317,7 @@ public class TestReconstructionDistributions extends BaseDL4JTest {
|
||||||
INDArray gradient = rd.gradient(x, distributionParams);
|
INDArray gradient = rd.gradient(x, distributionParams);
|
||||||
|
|
||||||
String testName = "minibatch = " + minibatch + ", size = " + inputSize + ", Distribution = " + rd;
|
String testName = "minibatch = " + minibatch + ", size = " + inputSize + ", Distribution = " + rd;
|
||||||
System.out.println("\n\n***** Starting test: " + testName + "*****");
|
System.out.println("***** Starting test: " + testName + "*****");
|
||||||
|
|
||||||
int totalFailureCount = 0;
|
int totalFailureCount = 0;
|
||||||
for (int i = 0; i < distributionParams.size(1); i++) {
|
for (int i = 0; i < distributionParams.size(1); i++) {
|
||||||
|
@ -349,7 +349,7 @@ public class TestReconstructionDistributions extends BaseDL4JTest {
|
||||||
totalFailureCount++;
|
totalFailureCount++;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
log.info("Input (" + j + "," + i + ") passed: grad= " + backpropGrad + ", numericalGrad= "
|
log.trace("Input (" + j + "," + i + ") passed: grad= " + backpropGrad + ", numericalGrad= "
|
||||||
+ numericalGrad + ", relError= " + relError);
|
+ numericalGrad + ", relError= " + relError);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -472,7 +472,7 @@ public class WorkspaceTests extends BaseDL4JTest {
|
||||||
|
|
||||||
final ComputationGraph computationGraph = new ComputationGraph(config);
|
final ComputationGraph computationGraph = new ComputationGraph(config);
|
||||||
computationGraph.init();
|
computationGraph.init();
|
||||||
computationGraph.setListeners(new ScoreIterationListener(1));
|
computationGraph.setListeners(new ScoreIterationListener(3));
|
||||||
|
|
||||||
WSTestDataSetIterator iterator = new WSTestDataSetIterator();
|
WSTestDataSetIterator iterator = new WSTestDataSetIterator();
|
||||||
computationGraph.fit(iterator);
|
computationGraph.fit(iterator);
|
||||||
|
|
|
@ -66,7 +66,7 @@ public class BackPropMLPTest extends BaseDL4JTest {
|
||||||
public void testMLP() {
|
public void testMLP() {
|
||||||
//Simple mini-batch test with multiple hidden layers
|
//Simple mini-batch test with multiple hidden layers
|
||||||
MultiLayerConfiguration conf = getIrisMLPSimpleConfig(new int[] {5, 4, 3}, Activation.SIGMOID);
|
MultiLayerConfiguration conf = getIrisMLPSimpleConfig(new int[] {5, 4, 3}, Activation.SIGMOID);
|
||||||
System.out.println(conf);
|
// System.out.println(conf);
|
||||||
MultiLayerNetwork network = new MultiLayerNetwork(conf);
|
MultiLayerNetwork network = new MultiLayerNetwork(conf);
|
||||||
network.init();
|
network.init();
|
||||||
DataSetIterator iter = new IrisDataSetIterator(10, 100);
|
DataSetIterator iter = new IrisDataSetIterator(10, 100);
|
||||||
|
@ -80,7 +80,7 @@ public class BackPropMLPTest extends BaseDL4JTest {
|
||||||
public void testMLP2() {
|
public void testMLP2() {
|
||||||
//Simple mini-batch test with multiple hidden layers
|
//Simple mini-batch test with multiple hidden layers
|
||||||
MultiLayerConfiguration conf = getIrisMLPSimpleConfig(new int[] {5, 15, 3}, Activation.TANH);
|
MultiLayerConfiguration conf = getIrisMLPSimpleConfig(new int[] {5, 15, 3}, Activation.TANH);
|
||||||
System.out.println(conf);
|
// System.out.println(conf);
|
||||||
MultiLayerNetwork network = new MultiLayerNetwork(conf);
|
MultiLayerNetwork network = new MultiLayerNetwork(conf);
|
||||||
network.init();
|
network.init();
|
||||||
|
|
||||||
|
@ -104,7 +104,7 @@ public class BackPropMLPTest extends BaseDL4JTest {
|
||||||
|
|
||||||
Layer[] layers = network.getLayers();
|
Layer[] layers = network.getLayers();
|
||||||
|
|
||||||
final boolean printCalculations = true;
|
final boolean printCalculations = false;
|
||||||
|
|
||||||
while (iris.hasNext()) {
|
while (iris.hasNext()) {
|
||||||
DataSet data = iris.next();
|
DataSet data = iris.next();
|
||||||
|
@ -212,7 +212,7 @@ public class BackPropMLPTest extends BaseDL4JTest {
|
||||||
assertEquals(l1BiasFloatAfter,expectedL1BiasAfter,eps);
|
assertEquals(l1BiasFloatAfter,expectedL1BiasAfter,eps);
|
||||||
assertArrayEquals(l2BiasFloatAfter,expectedL2BiasAfter,eps);
|
assertArrayEquals(l2BiasFloatAfter,expectedL2BiasAfter,eps);
|
||||||
*/
|
*/
|
||||||
System.out.println("\n\n--------------");
|
// System.out.println("\n\n--------------");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -922,9 +922,9 @@ public class MultiLayerTest extends BaseDL4JTest {
|
||||||
MultiLayerNetwork modelExpectedArch = new MultiLayerNetwork(confForArchitecture);
|
MultiLayerNetwork modelExpectedArch = new MultiLayerNetwork(confForArchitecture);
|
||||||
modelExpectedArch.init();
|
modelExpectedArch.init();
|
||||||
MultiLayerNetwork modelMow = new TransferLearning.Builder(modelExpectedArch).setFeatureExtractor(2).build();
|
MultiLayerNetwork modelMow = new TransferLearning.Builder(modelExpectedArch).setFeatureExtractor(2).build();
|
||||||
System.out.println(modelExpectedArch.summary());
|
// System.out.println(modelExpectedArch.summary());
|
||||||
System.out.println(modelMow.summary());
|
// System.out.println(modelMow.summary());
|
||||||
System.out.println(modelMow.summary(InputType.recurrent(V_HEIGHT*V_WIDTH*3)));
|
// System.out.println(modelMow.summary(InputType.recurrent(V_HEIGHT*V_WIDTH*3)));
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(expected = DL4JException.class)
|
@Test(expected = DL4JException.class)
|
||||||
|
@ -1149,7 +1149,7 @@ public class MultiLayerTest extends BaseDL4JTest {
|
||||||
int nOut = 3;
|
int nOut = 3;
|
||||||
|
|
||||||
for(WorkspaceMode ws : WorkspaceMode.values()) {
|
for(WorkspaceMode ws : WorkspaceMode.values()) {
|
||||||
System.out.println("***** WORKSPACE: " + ws);
|
// System.out.println("***** WORKSPACE: " + ws);
|
||||||
|
|
||||||
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
||||||
.updater(new Adam(0.01))
|
.updater(new Adam(0.01))
|
||||||
|
|
|
@ -570,8 +570,8 @@ public class MultiLayerTestRNN extends BaseDL4JTest {
|
||||||
for (int j = 0; j < expOut.size(); j++) {
|
for (int j = 0; j < expOut.size(); j++) {
|
||||||
INDArray exp = expOut.get(j);
|
INDArray exp = expOut.get(j);
|
||||||
INDArray act = outSlice.get(j);
|
INDArray act = outSlice.get(j);
|
||||||
System.out.println(j);
|
// System.out.println(j);
|
||||||
System.out.println(exp.sub(act));
|
// System.out.println(exp.sub(act));
|
||||||
assertEquals(exp, act);
|
assertEquals(exp, act);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -219,10 +219,10 @@ public class TestVariableLengthTS extends BaseDL4JTest {
|
||||||
INDArray g1s = g1map.get(s);
|
INDArray g1s = g1map.get(s);
|
||||||
INDArray g2s = g2map.get(s);
|
INDArray g2s = g2map.get(s);
|
||||||
|
|
||||||
System.out.println("-------");
|
// System.out.println("-------");
|
||||||
System.out.println("Variable: " + s);
|
// System.out.println("Variable: " + s);
|
||||||
System.out.println(Arrays.toString(g1s.dup().data().asFloat()));
|
// System.out.println(Arrays.toString(g1s.dup().data().asFloat()));
|
||||||
System.out.println(Arrays.toString(g2s.dup().data().asFloat()));
|
// System.out.println(Arrays.toString(g2s.dup().data().asFloat()));
|
||||||
assertNotEquals(s, g1s, g2s);
|
assertNotEquals(s, g1s, g2s);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -507,7 +507,7 @@ public class TestVariableLengthTS extends BaseDL4JTest {
|
||||||
for (boolean bidirectional : isBidirectional) {
|
for (boolean bidirectional : isBidirectional) {
|
||||||
for (PoolingType pt : poolingTypes) {
|
for (PoolingType pt : poolingTypes) {
|
||||||
|
|
||||||
System.out.println("Starting test: bidirectional = " + bidirectional + ", poolingType = " + pt);
|
// System.out.println("Starting test: bidirectional = " + bidirectional + ", poolingType = " + pt);
|
||||||
|
|
||||||
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER)
|
||||||
.activation(Activation.TANH).list().layer(0, bidirectional
|
.activation(Activation.TANH).list().layer(0, bidirectional
|
||||||
|
|
|
@ -51,7 +51,6 @@ public class TestFrozenLayers extends BaseDL4JTest {
|
||||||
|
|
||||||
for(double l1 : new double[]{0.0, 0.3}){
|
for(double l1 : new double[]{0.0, 0.3}){
|
||||||
for( double l2 : new double[]{0.0, 0.4}){
|
for( double l2 : new double[]{0.0, 0.4}){
|
||||||
System.out.println("--------------------");
|
|
||||||
String msg = "l1=" + l1 + ", l2=" + l2;
|
String msg = "l1=" + l1 + ", l2=" + l2;
|
||||||
|
|
||||||
FineTuneConfiguration ftc = new FineTuneConfiguration.Builder()
|
FineTuneConfiguration ftc = new FineTuneConfiguration.Builder()
|
||||||
|
|
|
@ -273,8 +273,9 @@ public class TransferLearningComplex extends BaseDL4JTest {
|
||||||
MultiDataSet rand = new MultiDataSet(new INDArray[] {Nd4j.rand(2, 2), Nd4j.rand(2, 2)},
|
MultiDataSet rand = new MultiDataSet(new INDArray[] {Nd4j.rand(2, 2), Nd4j.rand(2, 2)},
|
||||||
new INDArray[] {Nd4j.rand(2, 2), Nd4j.rand(2, 3)});
|
new INDArray[] {Nd4j.rand(2, 2), Nd4j.rand(2, 3)});
|
||||||
modelNow.fit(rand);
|
modelNow.fit(rand);
|
||||||
log.info(modelNow.summary());
|
// log.info(modelNow.summary());
|
||||||
log.info(modelNow.summary(InputType.feedForward(2),InputType.feedForward(2)));
|
// log.info(modelNow.summary(InputType.feedForward(2),InputType.feedForward(2)));
|
||||||
|
modelNow.summary();
|
||||||
|
modelNow.summary(InputType.feedForward(2),InputType.feedForward(2));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -195,9 +195,10 @@ public class TransferLearningHelperTest extends BaseDL4JTest {
|
||||||
assertEquals(modelIdentical.getLayer("denseLeft0").params(), modelToTune.getLayer("denseLeft0").params());
|
assertEquals(modelIdentical.getLayer("denseLeft0").params(), modelToTune.getLayer("denseLeft0").params());
|
||||||
assertEquals(modelIdentical.getLayer("outLeft").params(), modelToTune.getLayer("outLeft").params());
|
assertEquals(modelIdentical.getLayer("outLeft").params(), modelToTune.getLayer("outLeft").params());
|
||||||
|
|
||||||
log.info(modelIdentical.summary());
|
// log.info(modelIdentical.summary());
|
||||||
log.info(helper.unfrozenGraph().summary());
|
// log.info(helper.unfrozenGraph().summary());
|
||||||
|
modelIdentical.summary();
|
||||||
|
helper.unfrozenGraph().summary();
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
|
|
@ -84,8 +84,8 @@ public class TestDataSetConsumer {
|
||||||
|
|
||||||
count.incrementAndGet();
|
count.incrementAndGet();
|
||||||
|
|
||||||
if (count.get() % 100 == 0)
|
// if (count.get() % 100 == 0)
|
||||||
logger.info("Passed {} datasets...", count.get());
|
// logger.info("Passed {} datasets...", count.get());
|
||||||
|
|
||||||
return count.get();
|
return count.get();
|
||||||
}
|
}
|
||||||
|
|
|
@ -186,7 +186,7 @@ public class BackTrackLineSearchTest extends BaseDL4JTest {
|
||||||
|
|
||||||
MultiLayerNetwork network = new MultiLayerNetwork(getIrisMultiLayerConfig(Activation.SIGMOID, optimizer));
|
MultiLayerNetwork network = new MultiLayerNetwork(getIrisMultiLayerConfig(Activation.SIGMOID, optimizer));
|
||||||
network.init();
|
network.init();
|
||||||
TrainingListener listener = new ScoreIterationListener(1);
|
TrainingListener listener = new ScoreIterationListener(10);
|
||||||
network.setListeners(Collections.singletonList(listener));
|
network.setListeners(Collections.singletonList(listener));
|
||||||
double oldScore = network.score(data);
|
double oldScore = network.score(data);
|
||||||
for( int i=0; i<100; i++ ) {
|
for( int i=0; i<100; i++ ) {
|
||||||
|
@ -204,7 +204,7 @@ public class BackTrackLineSearchTest extends BaseDL4JTest {
|
||||||
data.normalizeZeroMeanZeroUnitVariance();
|
data.normalizeZeroMeanZeroUnitVariance();
|
||||||
MultiLayerNetwork network = new MultiLayerNetwork(getIrisMultiLayerConfig(Activation.RELU, optimizer));
|
MultiLayerNetwork network = new MultiLayerNetwork(getIrisMultiLayerConfig(Activation.RELU, optimizer));
|
||||||
network.init();
|
network.init();
|
||||||
TrainingListener listener = new ScoreIterationListener(1);
|
TrainingListener listener = new ScoreIterationListener(10);
|
||||||
network.setListeners(Collections.singletonList(listener));
|
network.setListeners(Collections.singletonList(listener));
|
||||||
double firstScore = network.score(data);
|
double firstScore = network.score(data);
|
||||||
|
|
||||||
|
@ -223,7 +223,7 @@ public class BackTrackLineSearchTest extends BaseDL4JTest {
|
||||||
data.normalizeZeroMeanZeroUnitVariance();
|
data.normalizeZeroMeanZeroUnitVariance();
|
||||||
MultiLayerNetwork network = new MultiLayerNetwork(getIrisMultiLayerConfig(Activation.RELU, optimizer));
|
MultiLayerNetwork network = new MultiLayerNetwork(getIrisMultiLayerConfig(Activation.RELU, optimizer));
|
||||||
network.init();
|
network.init();
|
||||||
TrainingListener listener = new ScoreIterationListener(1);
|
TrainingListener listener = new ScoreIterationListener(10);
|
||||||
network.setListeners(Collections.singletonList(listener));
|
network.setListeners(Collections.singletonList(listener));
|
||||||
double oldScore = network.score(data);
|
double oldScore = network.score(data);
|
||||||
|
|
||||||
|
|
|
@ -66,7 +66,7 @@ import static org.junit.Assert.assertTrue;
|
||||||
public class TestOptimizers extends BaseDL4JTest {
|
public class TestOptimizers extends BaseDL4JTest {
|
||||||
|
|
||||||
//For debugging.
|
//For debugging.
|
||||||
private static final boolean PRINT_OPT_RESULTS = true;
|
private static final boolean PRINT_OPT_RESULTS = false;
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void testOptimizersBasicMLPBackprop() {
|
public void testOptimizersBasicMLPBackprop() {
|
||||||
|
|
|
@ -1,79 +0,0 @@
|
||||||
/*******************************************************************************
|
|
||||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
||||||
*
|
|
||||||
* This program and the accompanying materials are made available under the
|
|
||||||
* terms of the Apache License, Version 2.0 which is available at
|
|
||||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
||||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
||||||
* License for the specific language governing permissions and limitations
|
|
||||||
* under the License.
|
|
||||||
*
|
|
||||||
* SPDX-License-Identifier: Apache-2.0
|
|
||||||
******************************************************************************/
|
|
||||||
|
|
||||||
package org.deeplearning4j.optimizer.listener;
|
|
||||||
|
|
||||||
|
|
||||||
import org.deeplearning4j.BaseDL4JTest;
|
|
||||||
import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator;
|
|
||||||
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
|
|
||||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
|
||||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
|
||||||
import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
|
||||||
import org.deeplearning4j.nn.conf.layers.OutputLayer;
|
|
||||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
|
||||||
import org.deeplearning4j.optimize.api.TrainingListener;
|
|
||||||
import org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener;
|
|
||||||
import org.junit.Rule;
|
|
||||||
import org.junit.Test;
|
|
||||||
import org.junit.rules.TemporaryFolder;
|
|
||||||
import org.nd4j.linalg.activations.Activation;
|
|
||||||
import org.nd4j.linalg.learning.config.Sgd;
|
|
||||||
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
|
||||||
|
|
||||||
import java.io.File;
|
|
||||||
|
|
||||||
import static org.junit.Assert.assertEquals;
|
|
||||||
|
|
||||||
public class TestParamAndGradientIterationListener extends BaseDL4JTest {
|
|
||||||
|
|
||||||
@Rule
|
|
||||||
public TemporaryFolder testDir = new TemporaryFolder();
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void test() throws Exception {
|
|
||||||
|
|
||||||
IrisDataSetIterator iter = new IrisDataSetIterator(30, 150);
|
|
||||||
|
|
||||||
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
|
||||||
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).updater(new Sgd(1e-5))
|
|
||||||
.list().layer(0, new DenseLayer.Builder().nIn(4).nOut(20).build())
|
|
||||||
.layer(1, new DenseLayer.Builder().nIn(20).nOut(30).build())
|
|
||||||
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
|
||||||
.activation(Activation.SOFTMAX).nIn(30).nOut(3).build())
|
|
||||||
.build();
|
|
||||||
|
|
||||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
|
||||||
net.init();
|
|
||||||
|
|
||||||
File f = testDir.newFile("paramAndGradTest.txt");
|
|
||||||
TrainingListener listener = ParamAndGradientIterationListener.builder().outputToFile(true)
|
|
||||||
.file(f)
|
|
||||||
.outputToConsole(true).outputToLogger(false).iterations(2).printHeader(true).printMean(false)
|
|
||||||
.printMinMax(false).printMeanAbsValue(true).delimiter("\t").build();
|
|
||||||
net.setListeners(listener);
|
|
||||||
|
|
||||||
for (int i = 0; i < 2; i++) {
|
|
||||||
net.fit(iter);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
|
@ -91,7 +91,7 @@ public class BarnesHutTsneTest extends BaseDL4JTest {
|
||||||
.useAdaGrad(false).build();
|
.useAdaGrad(false).build();
|
||||||
|
|
||||||
b.fit(data);
|
b.fit(data);
|
||||||
log.info("Result: {}", b.getData());
|
// log.info("Result: {}", b.getData());
|
||||||
|
|
||||||
val exp = Nd4j.createFromArray(new double[]{-3.5318212819287327, 35.40331834897696, 3.890809489531651, -1.291195609955519, -42.854099388207466, 7.8761368019456635, 28.798057251442877, 7.1456564000935225, 2.9518396278984786, -42.860181054199636, -34.989343304202, -108.99770355680282, 31.78123839126566, -29.322118879730205, 163.87558311206212, 2.9538984612478396, 31.419519824305546, 13.105400907817279, 25.46987139120746, -43.27317406736858, 32.455151773056144, 25.28067703547214, 0.005442008567682552, 21.005029233370358, -61.71390311950051, 5.218417653362599, 47.15762099517554, 8.834739256343404, 17.845790108867153, -54.31654219224107, -18.71285871476804, -16.446982180909007, -71.22568781913213, -12.339975548387091, 70.49096598213703, 25.022454385237456, -14.572652938207126, -5.320080866729078, 1.5874449933639676, -40.60960510287835, -31.98564381157643, -95.40875746933808, 19.196346639002364, -38.80930682421929, 135.00454225923906, 5.277879540549592, 30.79963767087089, -0.007276462027131683, 31.278796123365815, -38.47381680049993, 10.415728497075905, 36.567265019013085, -7.406587944733211, -18.376174615781114, -45.26976962854271}).reshape(-1, 5);
|
val exp = Nd4j.createFromArray(new double[]{-3.5318212819287327, 35.40331834897696, 3.890809489531651, -1.291195609955519, -42.854099388207466, 7.8761368019456635, 28.798057251442877, 7.1456564000935225, 2.9518396278984786, -42.860181054199636, -34.989343304202, -108.99770355680282, 31.78123839126566, -29.322118879730205, 163.87558311206212, 2.9538984612478396, 31.419519824305546, 13.105400907817279, 25.46987139120746, -43.27317406736858, 32.455151773056144, 25.28067703547214, 0.005442008567682552, 21.005029233370358, -61.71390311950051, 5.218417653362599, 47.15762099517554, 8.834739256343404, 17.845790108867153, -54.31654219224107, -18.71285871476804, -16.446982180909007, -71.22568781913213, -12.339975548387091, 70.49096598213703, 25.022454385237456, -14.572652938207126, -5.320080866729078, 1.5874449933639676, -40.60960510287835, -31.98564381157643, -95.40875746933808, 19.196346639002364, -38.80930682421929, 135.00454225923906, 5.277879540549592, 30.79963767087089, -0.007276462027131683, 31.278796123365815, -38.47381680049993, 10.415728497075905, 36.567265019013085, -7.406587944733211, -18.376174615781114, -45.26976962854271}).reshape(-1, 5);
|
||||||
|
|
||||||
|
@ -178,7 +178,7 @@ public class BarnesHutTsneTest extends BaseDL4JTest {
|
||||||
INDArray data = iter.next().getFeatures();
|
INDArray data = iter.next().getFeatures();
|
||||||
|
|
||||||
INDArray perplexityOutput = b.computeGaussianPerplexity(data, 30.0);
|
INDArray perplexityOutput = b.computeGaussianPerplexity(data, 30.0);
|
||||||
System.out.println(perplexityOutput);
|
// System.out.println(perplexityOutput);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -217,17 +217,17 @@ public class BarnesHutTsneTest extends BaseDL4JTest {
|
||||||
StopWatch watch = new StopWatch();
|
StopWatch watch = new StopWatch();
|
||||||
watch.start();
|
watch.start();
|
||||||
b.fit(data);
|
b.fit(data);
|
||||||
System.out.println(b.getData());
|
// System.out.println(b.getData());
|
||||||
watch.stop();
|
watch.stop();
|
||||||
File outDir = testDir.newFolder();
|
File outDir = testDir.newFolder();
|
||||||
ClassPathResource labels = new ClassPathResource("mnist2500_labels.txt");
|
ClassPathResource labels = new ClassPathResource("mnist2500_labels.txt");
|
||||||
List<String> labelsList = IOUtils.readLines(labels.getInputStream());
|
List<String> labelsList = IOUtils.readLines(labels.getInputStream());
|
||||||
b.saveAsFile(/*labelsList,*/ new File(outDir, "raw.txt").getAbsolutePath());
|
b.saveAsFile(/*labelsList,*/ new File(outDir, "raw.txt").getAbsolutePath());
|
||||||
System.out.println(b.getData());
|
// System.out.println(b.getData());
|
||||||
|
|
||||||
System.out.println("Fit done in " + watch);
|
System.out.println("Fit done in " + watch);
|
||||||
assertEquals(2500, b.getData().size(0));
|
assertEquals(2500, b.getData().size(0));
|
||||||
System.out.println(b.getData());
|
// System.out.println(b.getData());
|
||||||
|
|
||||||
INDArray a1 = b.getData().getRow(0);
|
INDArray a1 = b.getData().getRow(0);
|
||||||
INDArray a2 = b.getData().getRow(1);
|
INDArray a2 = b.getData().getRow(1);
|
||||||
|
@ -338,7 +338,7 @@ public class BarnesHutTsneTest extends BaseDL4JTest {
|
||||||
|
|
||||||
double[] dC = {-0.0618386320333619, -0.06266654959379839, 0.029998268806149204, 0.10780566335888186, -0.19449543068355346, -0.14763764361792697, 0.17493572758118422, 0.1926109839221966, -0.15176648259935419, 0.10974665709698186, 0.13102419155322598, 0.004941641352409449, 0.19159764518354974, -0.26332838053474944, -0.023631441261541583, 0.09838669432305949, 0.09709129638394683, -0.01605053000727605, 0.06566171635025217, -0.17325078066035252, -0.1090854255505605, 0.023350644966904276, 0.075192354899586, -0.08278373866517603, 0.18431338134579323, 0.2766031655578053, -0.17557907233268688, 0.10616148241800637, -0.09999024423215641, -0.017181932145255287, 0.06711331400576945, -0.01388231800826619, -0.10248189290485302, 0.20786521034824304, 0.11254913977572988, -0.289564646781519, 0.13491805919337516, -0.07504249344962562, 0.004154656287570634, -0.10516715438388784, -0.27984655075804576, 0.09811828071286613, 0.03684521473995052, -0.054645216532387256, -0.18147132772800725, 0.027588750493223044, 0.214734364419479, -0.026729138234415008, -0.28410504978879136, 0.007015481601883835, 0.04427981739424874, -0.059253265830134655, -0.05325479031206952, -0.11319889109674944, 0.1530133971867549};
|
double[] dC = {-0.0618386320333619, -0.06266654959379839, 0.029998268806149204, 0.10780566335888186, -0.19449543068355346, -0.14763764361792697, 0.17493572758118422, 0.1926109839221966, -0.15176648259935419, 0.10974665709698186, 0.13102419155322598, 0.004941641352409449, 0.19159764518354974, -0.26332838053474944, -0.023631441261541583, 0.09838669432305949, 0.09709129638394683, -0.01605053000727605, 0.06566171635025217, -0.17325078066035252, -0.1090854255505605, 0.023350644966904276, 0.075192354899586, -0.08278373866517603, 0.18431338134579323, 0.2766031655578053, -0.17557907233268688, 0.10616148241800637, -0.09999024423215641, -0.017181932145255287, 0.06711331400576945, -0.01388231800826619, -0.10248189290485302, 0.20786521034824304, 0.11254913977572988, -0.289564646781519, 0.13491805919337516, -0.07504249344962562, 0.004154656287570634, -0.10516715438388784, -0.27984655075804576, 0.09811828071286613, 0.03684521473995052, -0.054645216532387256, -0.18147132772800725, 0.027588750493223044, 0.214734364419479, -0.026729138234415008, -0.28410504978879136, 0.007015481601883835, 0.04427981739424874, -0.059253265830134655, -0.05325479031206952, -0.11319889109674944, 0.1530133971867549};
|
||||||
INDArray actual = gradient.getGradientFor("yIncs");
|
INDArray actual = gradient.getGradientFor("yIncs");
|
||||||
System.out.println(actual);
|
// System.out.println(actual);
|
||||||
assertArrayEquals(dC, actual.reshape(1,55).toDoubleVector(), 1e-05);
|
assertArrayEquals(dC, actual.reshape(1,55).toDoubleVector(), 1e-05);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -482,8 +482,8 @@ public class BarnesHutTsneTest extends BaseDL4JTest {
|
||||||
List<DataPoint> results = new ArrayList<>();
|
List<DataPoint> results = new ArrayList<>();
|
||||||
List<Double> distances = new ArrayList<>();
|
List<Double> distances = new ArrayList<>();
|
||||||
tree.search(target, 11, results, distances);
|
tree.search(target, 11, results, distances);
|
||||||
System.out.println("Results:" + results);
|
// System.out.println("Results:" + results);
|
||||||
System.out.println("Distances:" + distances);
|
// System.out.println("Distances:" + distances);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -250,7 +250,7 @@ public class CompareTrainingImplementations extends BaseDL4JTest {
|
||||||
sd.evaluate(iter, "softmax", rEvalSd);
|
sd.evaluate(iter, "softmax", rEvalSd);
|
||||||
assertEquals(rEvalDl4j, rEvalSd);
|
assertEquals(rEvalDl4j, rEvalSd);
|
||||||
|
|
||||||
System.out.println("---------------------------------");
|
// System.out.println("---------------------------------");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -47,6 +47,11 @@ import static org.junit.Assert.*;
|
||||||
|
|
||||||
public class CrashReportingUtilTest extends BaseDL4JTest {
|
public class CrashReportingUtilTest extends BaseDL4JTest {
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public long getTimeoutMilliseconds() {
|
||||||
|
return 120000;
|
||||||
|
}
|
||||||
|
|
||||||
@Rule
|
@Rule
|
||||||
public TemporaryFolder testDir = new TemporaryFolder();
|
public TemporaryFolder testDir = new TemporaryFolder();
|
||||||
|
|
||||||
|
|
|
@ -51,7 +51,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("MultiLayerNetwork", vr0.getFormatType());
|
assertEquals("MultiLayerNetwork", vr0.getFormatType());
|
||||||
assertEquals(MultiLayerNetwork.class, vr0.getFormatClass());
|
assertEquals(MultiLayerNetwork.class, vr0.getFormatClass());
|
||||||
assertNull(vr0.getException());
|
assertNull(vr0.getException());
|
||||||
System.out.println(vr0.toString());
|
// System.out.println(vr0.toString());
|
||||||
|
|
||||||
//Test empty file
|
//Test empty file
|
||||||
File f1 = new File(f, "empty.bin");
|
File f1 = new File(f, "empty.bin");
|
||||||
|
@ -63,7 +63,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("MultiLayerNetwork", vr1.getFormatType());
|
assertEquals("MultiLayerNetwork", vr1.getFormatType());
|
||||||
assertEquals(MultiLayerNetwork.class, vr1.getFormatClass());
|
assertEquals(MultiLayerNetwork.class, vr1.getFormatClass());
|
||||||
assertNull(vr1.getException());
|
assertNull(vr1.getException());
|
||||||
System.out.println(vr1.toString());
|
// System.out.println(vr1.toString());
|
||||||
|
|
||||||
//Test invalid zip file
|
//Test invalid zip file
|
||||||
File f2 = new File(f, "notReallyZip.zip");
|
File f2 = new File(f, "notReallyZip.zip");
|
||||||
|
@ -75,7 +75,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("MultiLayerNetwork", vr2.getFormatType());
|
assertEquals("MultiLayerNetwork", vr2.getFormatType());
|
||||||
assertEquals(MultiLayerNetwork.class, vr2.getFormatClass());
|
assertEquals(MultiLayerNetwork.class, vr2.getFormatClass());
|
||||||
assertNotNull(vr2.getException());
|
assertNotNull(vr2.getException());
|
||||||
System.out.println(vr2.toString());
|
// System.out.println(vr2.toString());
|
||||||
|
|
||||||
//Test valid zip, but missing configuration
|
//Test valid zip, but missing configuration
|
||||||
File f3 = new File(f, "modelNoConfig.zip");
|
File f3 = new File(f, "modelNoConfig.zip");
|
||||||
|
@ -92,7 +92,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("MultiLayerNetwork", vr3.getFormatType());
|
assertEquals("MultiLayerNetwork", vr3.getFormatType());
|
||||||
assertEquals(MultiLayerNetwork.class, vr3.getFormatClass());
|
assertEquals(MultiLayerNetwork.class, vr3.getFormatClass());
|
||||||
assertNull(vr3.getException());
|
assertNull(vr3.getException());
|
||||||
System.out.println(vr3.toString());
|
// System.out.println(vr3.toString());
|
||||||
|
|
||||||
|
|
||||||
//Test valid sip, but missing params
|
//Test valid sip, but missing params
|
||||||
|
@ -110,7 +110,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("MultiLayerNetwork", vr4.getFormatType());
|
assertEquals("MultiLayerNetwork", vr4.getFormatType());
|
||||||
assertEquals(MultiLayerNetwork.class, vr4.getFormatClass());
|
assertEquals(MultiLayerNetwork.class, vr4.getFormatClass());
|
||||||
assertNull(vr4.getException());
|
assertNull(vr4.getException());
|
||||||
System.out.println(vr4.toString());
|
// System.out.println(vr4.toString());
|
||||||
|
|
||||||
|
|
||||||
//Test valid model
|
//Test valid model
|
||||||
|
@ -122,7 +122,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("MultiLayerNetwork", vr5.getFormatType());
|
assertEquals("MultiLayerNetwork", vr5.getFormatType());
|
||||||
assertEquals(MultiLayerNetwork.class, vr5.getFormatClass());
|
assertEquals(MultiLayerNetwork.class, vr5.getFormatClass());
|
||||||
assertNull(vr5.getException());
|
assertNull(vr5.getException());
|
||||||
System.out.println(vr5.toString());
|
// System.out.println(vr5.toString());
|
||||||
|
|
||||||
|
|
||||||
//Test valid model with corrupted JSON
|
//Test valid model with corrupted JSON
|
||||||
|
@ -141,7 +141,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
bytes = IOUtils.toByteArray(zis);
|
bytes = IOUtils.toByteArray(zis);
|
||||||
}
|
}
|
||||||
zo.write(bytes);
|
zo.write(bytes);
|
||||||
System.out.println("WROTE: " + ze.getName());
|
// System.out.println("WROTE: " + ze.getName());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -153,7 +153,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("MultiLayerNetwork", vr6.getFormatType());
|
assertEquals("MultiLayerNetwork", vr6.getFormatType());
|
||||||
assertEquals(MultiLayerNetwork.class, vr6.getFormatClass());
|
assertEquals(MultiLayerNetwork.class, vr6.getFormatClass());
|
||||||
assertNotNull(vr6.getException());
|
assertNotNull(vr6.getException());
|
||||||
System.out.println(vr6.toString());
|
// System.out.println(vr6.toString());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -169,7 +169,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("ComputationGraph", vr0.getFormatType());
|
assertEquals("ComputationGraph", vr0.getFormatType());
|
||||||
assertEquals(ComputationGraph.class, vr0.getFormatClass());
|
assertEquals(ComputationGraph.class, vr0.getFormatClass());
|
||||||
assertNull(vr0.getException());
|
assertNull(vr0.getException());
|
||||||
System.out.println(vr0.toString());
|
// System.out.println(vr0.toString());
|
||||||
|
|
||||||
//Test empty file
|
//Test empty file
|
||||||
File f1 = new File(f, "empty.bin");
|
File f1 = new File(f, "empty.bin");
|
||||||
|
@ -181,7 +181,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("ComputationGraph", vr1.getFormatType());
|
assertEquals("ComputationGraph", vr1.getFormatType());
|
||||||
assertEquals(ComputationGraph.class, vr1.getFormatClass());
|
assertEquals(ComputationGraph.class, vr1.getFormatClass());
|
||||||
assertNull(vr1.getException());
|
assertNull(vr1.getException());
|
||||||
System.out.println(vr1.toString());
|
// System.out.println(vr1.toString());
|
||||||
|
|
||||||
//Test invalid zip file
|
//Test invalid zip file
|
||||||
File f2 = new File(f, "notReallyZip.zip");
|
File f2 = new File(f, "notReallyZip.zip");
|
||||||
|
@ -193,7 +193,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("ComputationGraph", vr2.getFormatType());
|
assertEquals("ComputationGraph", vr2.getFormatType());
|
||||||
assertEquals(ComputationGraph.class, vr2.getFormatClass());
|
assertEquals(ComputationGraph.class, vr2.getFormatClass());
|
||||||
assertNotNull(vr2.getException());
|
assertNotNull(vr2.getException());
|
||||||
System.out.println(vr2.toString());
|
// System.out.println(vr2.toString());
|
||||||
|
|
||||||
//Test valid zip, but missing configuration
|
//Test valid zip, but missing configuration
|
||||||
File f3 = new File(f, "modelNoConfig.zip");
|
File f3 = new File(f, "modelNoConfig.zip");
|
||||||
|
@ -210,7 +210,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("ComputationGraph", vr3.getFormatType());
|
assertEquals("ComputationGraph", vr3.getFormatType());
|
||||||
assertEquals(ComputationGraph.class, vr3.getFormatClass());
|
assertEquals(ComputationGraph.class, vr3.getFormatClass());
|
||||||
assertNull(vr3.getException());
|
assertNull(vr3.getException());
|
||||||
System.out.println(vr3.toString());
|
// System.out.println(vr3.toString());
|
||||||
|
|
||||||
|
|
||||||
//Test valid sip, but missing params
|
//Test valid sip, but missing params
|
||||||
|
@ -228,7 +228,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("ComputationGraph", vr4.getFormatType());
|
assertEquals("ComputationGraph", vr4.getFormatType());
|
||||||
assertEquals(ComputationGraph.class, vr4.getFormatClass());
|
assertEquals(ComputationGraph.class, vr4.getFormatClass());
|
||||||
assertNull(vr4.getException());
|
assertNull(vr4.getException());
|
||||||
System.out.println(vr4.toString());
|
// System.out.println(vr4.toString());
|
||||||
|
|
||||||
|
|
||||||
//Test valid model
|
//Test valid model
|
||||||
|
@ -240,7 +240,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("ComputationGraph", vr5.getFormatType());
|
assertEquals("ComputationGraph", vr5.getFormatType());
|
||||||
assertEquals(ComputationGraph.class, vr5.getFormatClass());
|
assertEquals(ComputationGraph.class, vr5.getFormatClass());
|
||||||
assertNull(vr5.getException());
|
assertNull(vr5.getException());
|
||||||
System.out.println(vr5.toString());
|
// System.out.println(vr5.toString());
|
||||||
|
|
||||||
|
|
||||||
//Test valid model with corrupted JSON
|
//Test valid model with corrupted JSON
|
||||||
|
@ -259,7 +259,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
bytes = IOUtils.toByteArray(zis);
|
bytes = IOUtils.toByteArray(zis);
|
||||||
}
|
}
|
||||||
zo.write(bytes);
|
zo.write(bytes);
|
||||||
System.out.println("WROTE: " + ze.getName());
|
// System.out.println("WROTE: " + ze.getName());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -271,7 +271,7 @@ public class ModelValidatorTests extends BaseDL4JTest {
|
||||||
assertEquals("ComputationGraph", vr6.getFormatType());
|
assertEquals("ComputationGraph", vr6.getFormatType());
|
||||||
assertEquals(ComputationGraph.class, vr6.getFormatClass());
|
assertEquals(ComputationGraph.class, vr6.getFormatClass());
|
||||||
assertNotNull(vr6.getException());
|
assertNotNull(vr6.getException());
|
||||||
System.out.println(vr6.toString());
|
// System.out.println(vr6.toString());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -83,6 +83,12 @@
|
||||||
<artifactId>junit</artifactId>
|
<artifactId>junit</artifactId>
|
||||||
<scope>test</scope>
|
<scope>test</scope>
|
||||||
</dependency>
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.deeplearning4j</groupId>
|
||||||
|
<artifactId>deeplearning4j-common-tests</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
</dependencies>
|
</dependencies>
|
||||||
|
|
||||||
<build>
|
<build>
|
||||||
|
|
|
@ -1,141 +0,0 @@
|
||||||
/*******************************************************************************
|
|
||||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
||||||
*
|
|
||||||
* This program and the accompanying materials are made available under the
|
|
||||||
* terms of the Apache License, Version 2.0 which is available at
|
|
||||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
||||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
||||||
* License for the specific language governing permissions and limitations
|
|
||||||
* under the License.
|
|
||||||
*
|
|
||||||
* SPDX-License-Identifier: Apache-2.0
|
|
||||||
******************************************************************************/
|
|
||||||
|
|
||||||
package org.deeplearning4j;
|
|
||||||
|
|
||||||
import lombok.extern.slf4j.Slf4j;
|
|
||||||
import org.bytedeco.javacpp.Pointer;
|
|
||||||
import org.junit.After;
|
|
||||||
import org.junit.Before;
|
|
||||||
import org.junit.Rule;
|
|
||||||
import org.junit.rules.TestName;
|
|
||||||
import org.nd4j.linalg.api.buffer.DataBuffer;
|
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
|
||||||
import org.nd4j.linalg.api.memory.MemoryWorkspace;
|
|
||||||
import org.nd4j.linalg.api.ops.executioner.OpExecutioner;
|
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
|
||||||
import org.nd4j.linalg.profiler.ProfilerConfig;
|
|
||||||
|
|
||||||
import java.lang.management.ManagementFactory;
|
|
||||||
import java.util.List;
|
|
||||||
import java.util.Map;
|
|
||||||
import java.util.Properties;
|
|
||||||
|
|
||||||
@Slf4j
|
|
||||||
public class BaseDL4JTest {
|
|
||||||
|
|
||||||
@Rule
|
|
||||||
public TestName name = new TestName();
|
|
||||||
|
|
||||||
protected long startTime;
|
|
||||||
protected int threadCountBefore;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Override this to set the profiling mode for the tests defined in the child class
|
|
||||||
*/
|
|
||||||
public OpExecutioner.ProfilingMode getProfilingMode(){
|
|
||||||
return OpExecutioner.ProfilingMode.SCOPE_PANIC;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Override this to set the datatype of the tests defined in the child class
|
|
||||||
*/
|
|
||||||
public DataType getDataType(){
|
|
||||||
return DataType.DOUBLE;
|
|
||||||
}
|
|
||||||
|
|
||||||
public DataType getDefaultFPDataType(){
|
|
||||||
return getDataType();
|
|
||||||
}
|
|
||||||
|
|
||||||
@Before
|
|
||||||
public void beforeTest(){
|
|
||||||
log.info("{}.{}", getClass().getSimpleName(), name.getMethodName());
|
|
||||||
Nd4j.getExecutioner().setProfilingMode(getProfilingMode());
|
|
||||||
Nd4j.getExecutioner().setProfilingConfig(ProfilerConfig.builder().build());
|
|
||||||
Nd4j.setDefaultDataTypes(getDataType(), getDefaultFPDataType());
|
|
||||||
startTime = System.currentTimeMillis();
|
|
||||||
threadCountBefore = ManagementFactory.getThreadMXBean().getThreadCount();
|
|
||||||
}
|
|
||||||
|
|
||||||
@After
|
|
||||||
public void afterTest(){
|
|
||||||
//Attempt to keep workspaces isolated between tests
|
|
||||||
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
|
|
||||||
MemoryWorkspace currWS = Nd4j.getMemoryManager().getCurrentWorkspace();
|
|
||||||
Nd4j.getMemoryManager().setCurrentWorkspace(null);
|
|
||||||
if(currWS != null){
|
|
||||||
//Not really safe to continue testing under this situation... other tests will likely fail with obscure
|
|
||||||
// errors that are hard to track back to this
|
|
||||||
log.error("Open workspace leaked from test! Exiting - {}, isOpen = {} - {}", currWS.getId(), currWS.isScopeActive(), currWS);
|
|
||||||
System.exit(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
StringBuilder sb = new StringBuilder();
|
|
||||||
long maxPhys = Pointer.maxPhysicalBytes();
|
|
||||||
long maxBytes = Pointer.maxBytes();
|
|
||||||
long currPhys = Pointer.physicalBytes();
|
|
||||||
long currBytes = Pointer.totalBytes();
|
|
||||||
|
|
||||||
long jvmTotal = Runtime.getRuntime().totalMemory();
|
|
||||||
long jvmMax = Runtime.getRuntime().maxMemory();
|
|
||||||
|
|
||||||
int threadsAfter = ManagementFactory.getThreadMXBean().getThreadCount();
|
|
||||||
|
|
||||||
long duration = System.currentTimeMillis() - startTime;
|
|
||||||
sb.append(getClass().getSimpleName()).append(".").append(name.getMethodName())
|
|
||||||
.append(": ").append(duration).append(" ms")
|
|
||||||
.append(", threadCount: (").append(threadCountBefore).append("->").append(threadsAfter).append(")")
|
|
||||||
.append(", jvmTotal=").append(jvmTotal)
|
|
||||||
.append(", jvmMax=").append(jvmMax)
|
|
||||||
.append(", totalBytes=").append(currBytes).append(", maxBytes=").append(maxBytes)
|
|
||||||
.append(", currPhys=").append(currPhys).append(", maxPhys=").append(maxPhys);
|
|
||||||
|
|
||||||
List<MemoryWorkspace> ws = Nd4j.getWorkspaceManager().getAllWorkspacesForCurrentThread();
|
|
||||||
if(ws != null && ws.size() > 0){
|
|
||||||
long currSize = 0;
|
|
||||||
for(MemoryWorkspace w : ws){
|
|
||||||
currSize += w.getCurrentSize();
|
|
||||||
}
|
|
||||||
if(currSize > 0){
|
|
||||||
sb.append(", threadWSSize=").append(currSize)
|
|
||||||
.append(" (").append(ws.size()).append(" WSs)");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
Properties p = Nd4j.getExecutioner().getEnvironmentInformation();
|
|
||||||
Object o = p.get("cuda.devicesInformation");
|
|
||||||
if(o instanceof List){
|
|
||||||
List<Map<String,Object>> l = (List<Map<String, Object>>) o;
|
|
||||||
if(l.size() > 0) {
|
|
||||||
|
|
||||||
sb.append(" [").append(l.size())
|
|
||||||
.append(" GPUs: ");
|
|
||||||
|
|
||||||
for (int i = 0; i < l.size(); i++) {
|
|
||||||
Map<String,Object> m = l.get(i);
|
|
||||||
if(i > 0)
|
|
||||||
sb.append(",");
|
|
||||||
sb.append("(").append(m.get("cuda.freeMemory")).append(" free, ")
|
|
||||||
.append(m.get("cuda.totalMemory")).append(" total)");
|
|
||||||
}
|
|
||||||
sb.append("]");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
log.info(sb.toString());
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -735,9 +735,10 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ convFirst;
|
+ convFirst;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input,
|
new GradientCheckUtil.MLNConfig().net(net)
|
||||||
labels, null, null, true, 128);
|
.input(input).labels(labels)
|
||||||
|
.subset(true).maxPerParam(128));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -879,8 +880,10 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 100);
|
new GradientCheckUtil.MLNConfig().net(net)
|
||||||
|
.input(input).labels(labels)
|
||||||
|
.subset(true).maxPerParam(100));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -948,8 +951,10 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ k + ", nIn=" + nIn + ", depthMul=" + depthMultiplier + ", s=" + s + ", cm=" + cm;
|
+ k + ", nIn=" + nIn + ", depthMul=" + depthMultiplier + ", s=" + s + ", cm=" + cm;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 256);
|
new GradientCheckUtil.MLNConfig().net(net)
|
||||||
|
.input(input).labels(labels)
|
||||||
|
.subset(true).maxPerParam(256));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -1021,8 +1026,10 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
+ k + ", s=" + s + ", d=" + d + ", cm=" + cm;
|
||||||
System.out.println(msg);
|
System.out.println(msg);
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 50); //Most params are in output layer
|
new GradientCheckUtil.MLNConfig().net(net)
|
||||||
|
.input(input).labels(labels)
|
||||||
|
.subset(true).maxPerParam(50));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
@ -1176,8 +1183,10 @@ public class CNNGradientCheckTest extends BaseDL4JTest {
|
||||||
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
System.out.println("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||||
}
|
}
|
||||||
|
|
||||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
|
boolean gradOK = GradientCheckUtil.checkGradients(
|
||||||
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, null, true, 160);
|
new GradientCheckUtil.MLNConfig().net(net)
|
||||||
|
.input(input).labels(labels)
|
||||||
|
.subset(true).maxPerParam(160));
|
||||||
|
|
||||||
assertTrue(msg, gradOK);
|
assertTrue(msg, gradOK);
|
||||||
|
|
||||||
|
|
|
@ -51,6 +51,13 @@
|
||||||
<scope>test</scope>
|
<scope>test</scope>
|
||||||
</dependency>
|
</dependency>
|
||||||
|
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.deeplearning4j</groupId>
|
||||||
|
<artifactId>deeplearning4j-common-tests</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
|
|
||||||
</dependencies>
|
</dependencies>
|
||||||
|
|
||||||
<profiles>
|
<profiles>
|
||||||
|
|
|
@ -1,140 +0,0 @@
|
||||||
/*******************************************************************************
|
|
||||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
||||||
*
|
|
||||||
* This program and the accompanying materials are made available under the
|
|
||||||
* terms of the Apache License, Version 2.0 which is available at
|
|
||||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
||||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
||||||
* License for the specific language governing permissions and limitations
|
|
||||||
* under the License.
|
|
||||||
*
|
|
||||||
* SPDX-License-Identifier: Apache-2.0
|
|
||||||
******************************************************************************/
|
|
||||||
|
|
||||||
package org.deeplearning4j.graph;
|
|
||||||
|
|
||||||
import lombok.extern.slf4j.Slf4j;
|
|
||||||
import org.bytedeco.javacpp.Pointer;
|
|
||||||
import org.junit.After;
|
|
||||||
import org.junit.Before;
|
|
||||||
import org.junit.Rule;
|
|
||||||
import org.junit.rules.TestName;
|
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
|
||||||
import org.nd4j.linalg.api.memory.MemoryWorkspace;
|
|
||||||
import org.nd4j.linalg.api.ops.executioner.OpExecutioner;
|
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
|
||||||
import org.nd4j.linalg.profiler.ProfilerConfig;
|
|
||||||
|
|
||||||
import java.lang.management.ManagementFactory;
|
|
||||||
import java.util.List;
|
|
||||||
import java.util.Map;
|
|
||||||
import java.util.Properties;
|
|
||||||
|
|
||||||
@Slf4j
|
|
||||||
public class BaseDL4JTest {
|
|
||||||
|
|
||||||
@Rule
|
|
||||||
public TestName name = new TestName();
|
|
||||||
|
|
||||||
protected long startTime;
|
|
||||||
protected int threadCountBefore;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Override this to set the profiling mode for the tests defined in the child class
|
|
||||||
*/
|
|
||||||
public OpExecutioner.ProfilingMode getProfilingMode(){
|
|
||||||
return OpExecutioner.ProfilingMode.SCOPE_PANIC;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Override this to set the datatype of the tests defined in the child class
|
|
||||||
*/
|
|
||||||
public DataType getDataType(){
|
|
||||||
return DataType.DOUBLE;
|
|
||||||
}
|
|
||||||
|
|
||||||
public DataType getDefaultFPDataType(){
|
|
||||||
return getDataType();
|
|
||||||
}
|
|
||||||
|
|
||||||
@Before
|
|
||||||
public void beforeTest(){
|
|
||||||
log.info("{}.{}", getClass().getSimpleName(), name.getMethodName());
|
|
||||||
Nd4j.getExecutioner().setProfilingMode(getProfilingMode());
|
|
||||||
Nd4j.getExecutioner().setProfilingConfig(ProfilerConfig.builder().build());
|
|
||||||
Nd4j.setDefaultDataTypes(getDataType(), getDefaultFPDataType());
|
|
||||||
startTime = System.currentTimeMillis();
|
|
||||||
threadCountBefore = ManagementFactory.getThreadMXBean().getThreadCount();
|
|
||||||
}
|
|
||||||
|
|
||||||
@After
|
|
||||||
public void afterTest(){
|
|
||||||
//Attempt to keep workspaces isolated between tests
|
|
||||||
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
|
|
||||||
MemoryWorkspace currWS = Nd4j.getMemoryManager().getCurrentWorkspace();
|
|
||||||
Nd4j.getMemoryManager().setCurrentWorkspace(null);
|
|
||||||
if(currWS != null){
|
|
||||||
//Not really safe to continue testing under this situation... other tests will likely fail with obscure
|
|
||||||
// errors that are hard to track back to this
|
|
||||||
log.error("Open workspace leaked from test! Exiting - {}, isOpen = {} - {}", currWS.getId(), currWS.isScopeActive(), currWS);
|
|
||||||
System.exit(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
StringBuilder sb = new StringBuilder();
|
|
||||||
long maxPhys = Pointer.maxPhysicalBytes();
|
|
||||||
long maxBytes = Pointer.maxBytes();
|
|
||||||
long currPhys = Pointer.physicalBytes();
|
|
||||||
long currBytes = Pointer.totalBytes();
|
|
||||||
|
|
||||||
long jvmTotal = Runtime.getRuntime().totalMemory();
|
|
||||||
long jvmMax = Runtime.getRuntime().maxMemory();
|
|
||||||
|
|
||||||
int threadsAfter = ManagementFactory.getThreadMXBean().getThreadCount();
|
|
||||||
|
|
||||||
long duration = System.currentTimeMillis() - startTime;
|
|
||||||
sb.append(getClass().getSimpleName()).append(".").append(name.getMethodName())
|
|
||||||
.append(": ").append(duration).append(" ms")
|
|
||||||
.append(", threadCount: (").append(threadCountBefore).append("->").append(threadsAfter).append(")")
|
|
||||||
.append(", jvmTotal=").append(jvmTotal)
|
|
||||||
.append(", jvmMax=").append(jvmMax)
|
|
||||||
.append(", totalBytes=").append(currBytes).append(", maxBytes=").append(maxBytes)
|
|
||||||
.append(", currPhys=").append(currPhys).append(", maxPhys=").append(maxPhys);
|
|
||||||
|
|
||||||
List<MemoryWorkspace> ws = Nd4j.getWorkspaceManager().getAllWorkspacesForCurrentThread();
|
|
||||||
if(ws != null && ws.size() > 0){
|
|
||||||
long currSize = 0;
|
|
||||||
for(MemoryWorkspace w : ws){
|
|
||||||
currSize += w.getCurrentSize();
|
|
||||||
}
|
|
||||||
if(currSize > 0){
|
|
||||||
sb.append(", threadWSSize=").append(currSize)
|
|
||||||
.append(" (").append(ws.size()).append(" WSs)");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
Properties p = Nd4j.getExecutioner().getEnvironmentInformation();
|
|
||||||
Object o = p.get("cuda.devicesInformation");
|
|
||||||
if(o instanceof List){
|
|
||||||
List<Map<String,Object>> l = (List<Map<String, Object>>) o;
|
|
||||||
if(l.size() > 0) {
|
|
||||||
|
|
||||||
sb.append(" [").append(l.size())
|
|
||||||
.append(" GPUs: ");
|
|
||||||
|
|
||||||
for (int i = 0; i < l.size(); i++) {
|
|
||||||
Map<String,Object> m = l.get(i);
|
|
||||||
if(i > 0)
|
|
||||||
sb.append(",");
|
|
||||||
sb.append("(").append(m.get("cuda.freeMemory")).append(" free, ")
|
|
||||||
.append(m.get("cuda.totalMemory")).append(" total)");
|
|
||||||
}
|
|
||||||
sb.append("]");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
log.info(sb.toString());
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -17,7 +17,7 @@
|
||||||
package org.deeplearning4j.graph.data;
|
package org.deeplearning4j.graph.data;
|
||||||
|
|
||||||
import org.apache.commons.lang3.ArrayUtils;
|
import org.apache.commons.lang3.ArrayUtils;
|
||||||
import org.deeplearning4j.graph.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.graph.api.Edge;
|
import org.deeplearning4j.graph.api.Edge;
|
||||||
import org.deeplearning4j.graph.api.IGraph;
|
import org.deeplearning4j.graph.api.IGraph;
|
||||||
import org.deeplearning4j.graph.data.impl.DelimitedEdgeLineProcessor;
|
import org.deeplearning4j.graph.data.impl.DelimitedEdgeLineProcessor;
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
package org.deeplearning4j.graph.data;
|
package org.deeplearning4j.graph.data;
|
||||||
|
|
||||||
import org.apache.commons.lang3.ArrayUtils;
|
import org.apache.commons.lang3.ArrayUtils;
|
||||||
import org.deeplearning4j.graph.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.graph.api.Edge;
|
import org.deeplearning4j.graph.api.Edge;
|
||||||
import org.deeplearning4j.graph.api.IGraph;
|
import org.deeplearning4j.graph.api.IGraph;
|
||||||
import org.deeplearning4j.graph.data.impl.WeightedEdgeLineProcessor;
|
import org.deeplearning4j.graph.data.impl.WeightedEdgeLineProcessor;
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
package org.deeplearning4j.graph.graph;
|
package org.deeplearning4j.graph.graph;
|
||||||
|
|
||||||
import org.apache.commons.lang3.ArrayUtils;
|
import org.apache.commons.lang3.ArrayUtils;
|
||||||
import org.deeplearning4j.graph.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.graph.api.*;
|
import org.deeplearning4j.graph.api.*;
|
||||||
import org.deeplearning4j.graph.data.GraphLoader;
|
import org.deeplearning4j.graph.data.GraphLoader;
|
||||||
import org.deeplearning4j.graph.iterator.RandomWalkIterator;
|
import org.deeplearning4j.graph.iterator.RandomWalkIterator;
|
||||||
|
|
|
@ -16,7 +16,7 @@
|
||||||
|
|
||||||
package org.deeplearning4j.graph.models.deepwalk;
|
package org.deeplearning4j.graph.models.deepwalk;
|
||||||
|
|
||||||
import org.deeplearning4j.graph.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.graph.data.GraphLoader;
|
import org.deeplearning4j.graph.data.GraphLoader;
|
||||||
import org.deeplearning4j.graph.graph.Graph;
|
import org.deeplearning4j.graph.graph.Graph;
|
||||||
import org.deeplearning4j.graph.iterator.GraphWalkIterator;
|
import org.deeplearning4j.graph.iterator.GraphWalkIterator;
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
package org.deeplearning4j.graph.models.deepwalk;
|
package org.deeplearning4j.graph.models.deepwalk;
|
||||||
|
|
||||||
import org.apache.commons.io.FilenameUtils;
|
import org.apache.commons.io.FilenameUtils;
|
||||||
import org.deeplearning4j.graph.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.graph.api.Edge;
|
import org.deeplearning4j.graph.api.Edge;
|
||||||
import org.deeplearning4j.graph.api.IGraph;
|
import org.deeplearning4j.graph.api.IGraph;
|
||||||
import org.deeplearning4j.graph.data.GraphLoader;
|
import org.deeplearning4j.graph.data.GraphLoader;
|
||||||
|
|
|
@ -16,7 +16,7 @@
|
||||||
|
|
||||||
package org.deeplearning4j.graph.models.deepwalk;
|
package org.deeplearning4j.graph.models.deepwalk;
|
||||||
|
|
||||||
import org.deeplearning4j.graph.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
|
|
||||||
import java.util.Arrays;
|
import java.util.Arrays;
|
||||||
|
|
|
@ -55,6 +55,13 @@
|
||||||
<artifactId>nd4j-api</artifactId>
|
<artifactId>nd4j-api</artifactId>
|
||||||
<version>${nd4j.version}</version>
|
<version>${nd4j.version}</version>
|
||||||
</dependency>
|
</dependency>
|
||||||
|
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.deeplearning4j</groupId>
|
||||||
|
<artifactId>deeplearning4j-common-tests</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
</dependencies>
|
</dependencies>
|
||||||
|
|
||||||
<profiles>
|
<profiles>
|
||||||
|
|
|
@ -17,6 +17,7 @@
|
||||||
package org.deeplearning4j.plot;
|
package org.deeplearning4j.plot;
|
||||||
|
|
||||||
import lombok.val;
|
import lombok.val;
|
||||||
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
|
@ -25,7 +26,7 @@ import java.util.ArrayList;
|
||||||
|
|
||||||
import static org.junit.Assert.assertTrue;
|
import static org.junit.Assert.assertTrue;
|
||||||
|
|
||||||
public class Test6058 {
|
public class Test6058 extends BaseDL4JTest {
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void test() throws Exception {
|
public void test() throws Exception {
|
||||||
|
|
|
@ -86,6 +86,12 @@
|
||||||
<artifactId>junit</artifactId> <!-- Version set by deeplearning4j-parent dependency management -->
|
<artifactId>junit</artifactId> <!-- Version set by deeplearning4j-parent dependency management -->
|
||||||
<scope>test</scope>
|
<scope>test</scope>
|
||||||
</dependency>
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.deeplearning4j</groupId>
|
||||||
|
<artifactId>deeplearning4j-common-tests</artifactId>
|
||||||
|
<version>${project.version}</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
|
|
||||||
<dependency>
|
<dependency>
|
||||||
<groupId>ch.qos.logback</groupId>
|
<groupId>ch.qos.logback</groupId>
|
||||||
|
|
|
@ -108,6 +108,9 @@ public class KerasLayerConfiguration {
|
||||||
private final String LAYER_CLASS_NAME_LEAKY_RELU = "LeakyReLU";
|
private final String LAYER_CLASS_NAME_LEAKY_RELU = "LeakyReLU";
|
||||||
private final String LAYER_CLASS_NAME_PRELU = "PReLU";
|
private final String LAYER_CLASS_NAME_PRELU = "PReLU";
|
||||||
private final String LAYER_CLASS_NAME_THRESHOLDED_RELU = "ThresholdedReLU";
|
private final String LAYER_CLASS_NAME_THRESHOLDED_RELU = "ThresholdedReLU";
|
||||||
|
private final String LAYER_CLASS_NAME_RELU = "ReLU";
|
||||||
|
private final String LAYER_CLASS_NAME_ELU = "ELU";
|
||||||
|
private final String LAYER_CLASS_NAME_SOFTMAX = "Softmax";
|
||||||
private final String LAYER_CLASS_NAME_UPSAMPLING_1D = "UpSampling1D";
|
private final String LAYER_CLASS_NAME_UPSAMPLING_1D = "UpSampling1D";
|
||||||
private final String LAYER_CLASS_NAME_UPSAMPLING_2D = "UpSampling2D";
|
private final String LAYER_CLASS_NAME_UPSAMPLING_2D = "UpSampling2D";
|
||||||
private final String LAYER_CLASS_NAME_UPSAMPLING_3D = "UpSampling3D";
|
private final String LAYER_CLASS_NAME_UPSAMPLING_3D = "UpSampling3D";
|
||||||
|
|
|
@ -0,0 +1,95 @@
|
||||||
|
/* ******************************************************************************
|
||||||
|
* Copyright (c) 2019 Konduit K.K.
|
||||||
|
*
|
||||||
|
* This program and the accompanying materials are made available under the
|
||||||
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
* License for the specific language governing permissions and limitations
|
||||||
|
* under the License.
|
||||||
|
*
|
||||||
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
package org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations;
|
||||||
|
|
||||||
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||||
|
import org.deeplearning4j.nn.conf.layers.ActivationLayer;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.utils.KerasLayerUtils;
|
||||||
|
import org.nd4j.linalg.activations.IActivation;
|
||||||
|
import org.nd4j.linalg.activations.impl.ActivationELU;
|
||||||
|
import org.nd4j.linalg.activations.impl.ActivationLReLU;
|
||||||
|
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Imports ELU layer from Keras
|
||||||
|
*
|
||||||
|
* @author Alex Black
|
||||||
|
*/
|
||||||
|
public class KerasELU extends KerasLayer {
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructor from parsed Keras layer configuration dictionary.
|
||||||
|
*
|
||||||
|
* @param layerConfig dictionary containing Keras layer configuration
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
* @throws UnsupportedKerasConfigurationException Unsupported Invalid Keras config
|
||||||
|
*/
|
||||||
|
public KerasELU(Map<String, Object> layerConfig)
|
||||||
|
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
|
||||||
|
this(layerConfig, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructor from parsed Keras layer configuration dictionary.
|
||||||
|
*
|
||||||
|
* @param layerConfig dictionary containing Keras layer configuration
|
||||||
|
* @param enforceTrainingConfig whether to enforce training-related configuration options
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
* @throws UnsupportedKerasConfigurationException Invalid Keras config
|
||||||
|
*/
|
||||||
|
public KerasELU(Map<String, Object> layerConfig, boolean enforceTrainingConfig)
|
||||||
|
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
|
||||||
|
super(layerConfig, enforceTrainingConfig);
|
||||||
|
Map<String, Object> innerConfig = KerasLayerUtils.getInnerLayerConfigFromConfig(layerConfig, conf);
|
||||||
|
double alpha = 1.0; // Set default alpha to default in nd4j
|
||||||
|
String layerFieldLeakyReluAlpha = "alpha";
|
||||||
|
if (innerConfig.containsKey(layerFieldLeakyReluAlpha)) {
|
||||||
|
alpha = (double) innerConfig.get(layerFieldLeakyReluAlpha);
|
||||||
|
}
|
||||||
|
IActivation leakyReLU = new ActivationELU(alpha);
|
||||||
|
this.layer = new ActivationLayer.Builder().name(this.layerName).activation(leakyReLU).build();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get layer output type.
|
||||||
|
*
|
||||||
|
* @param inputType Array of InputTypes
|
||||||
|
* @return output type as InputType
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
*/
|
||||||
|
public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException {
|
||||||
|
if (inputType.length > 1)
|
||||||
|
throw new InvalidKerasConfigurationException(
|
||||||
|
"Keras Activation layer accepts only one input (received " + inputType.length + ")");
|
||||||
|
return this.getActivationLayer().getOutputType(-1, inputType[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get DL4J ActivationLayer.
|
||||||
|
*
|
||||||
|
* @return ActivationLayer
|
||||||
|
*/
|
||||||
|
public ActivationLayer getActivationLayer() {
|
||||||
|
return (ActivationLayer) this.layer;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
|
@ -0,0 +1,99 @@
|
||||||
|
/* ******************************************************************************
|
||||||
|
* Copyright (c) 2019 Konduit K.K.
|
||||||
|
*
|
||||||
|
* This program and the accompanying materials are made available under the
|
||||||
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
* License for the specific language governing permissions and limitations
|
||||||
|
* under the License.
|
||||||
|
*
|
||||||
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
package org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations;
|
||||||
|
|
||||||
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||||
|
import org.deeplearning4j.nn.conf.layers.ActivationLayer;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.utils.KerasLayerUtils;
|
||||||
|
import org.nd4j.linalg.activations.IActivation;
|
||||||
|
import org.nd4j.linalg.activations.impl.ActivationLReLU;
|
||||||
|
import org.nd4j.linalg.activations.impl.ActivationReLU;
|
||||||
|
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Imports ReLU layer from Keras
|
||||||
|
*
|
||||||
|
* @author Alex Black
|
||||||
|
*/
|
||||||
|
public class KerasReLU extends KerasLayer {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructor from parsed Keras layer configuration dictionary.
|
||||||
|
*
|
||||||
|
* @param layerConfig dictionary containing Keras layer configuration
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
* @throws UnsupportedKerasConfigurationException Unsupported Invalid Keras config
|
||||||
|
*/
|
||||||
|
public KerasReLU(Map<String, Object> layerConfig)
|
||||||
|
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
|
||||||
|
this(layerConfig, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructor from parsed Keras layer configuration dictionary.
|
||||||
|
*
|
||||||
|
* @param layerConfig dictionary containing Keras layer configuration
|
||||||
|
* @param enforceTrainingConfig whether to enforce training-related configuration options
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
* @throws UnsupportedKerasConfigurationException Invalid Keras config
|
||||||
|
*/
|
||||||
|
public KerasReLU(Map<String, Object> layerConfig, boolean enforceTrainingConfig)
|
||||||
|
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
|
||||||
|
super(layerConfig, enforceTrainingConfig);
|
||||||
|
Map<String, Object> innerConfig = KerasLayerUtils.getInnerLayerConfigFromConfig(layerConfig, conf);
|
||||||
|
Double maxValue = (Double) innerConfig.get("max_value");
|
||||||
|
double negativeSlope = 0.0;
|
||||||
|
double threshold = 0.0;
|
||||||
|
if (innerConfig.containsKey("negative_slope")) {
|
||||||
|
negativeSlope = (double) innerConfig.get("negative_slope");
|
||||||
|
}
|
||||||
|
if (innerConfig.containsKey("threshold")) {
|
||||||
|
threshold = (double) innerConfig.get("threshold");
|
||||||
|
}
|
||||||
|
|
||||||
|
this.layer = new ActivationLayer.Builder().name(this.layerName)
|
||||||
|
.activation(new ActivationReLU(maxValue, threshold, negativeSlope)).build();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get layer output type.
|
||||||
|
*
|
||||||
|
* @param inputType Array of InputTypes
|
||||||
|
* @return output type as InputType
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
*/
|
||||||
|
public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException {
|
||||||
|
if (inputType.length > 1)
|
||||||
|
throw new InvalidKerasConfigurationException(
|
||||||
|
"Keras Activation layer accepts only one input (received " + inputType.length + ")");
|
||||||
|
return this.getActivationLayer().getOutputType(-1, inputType[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get DL4J ActivationLayer.
|
||||||
|
*
|
||||||
|
* @return ActivationLayer
|
||||||
|
*/
|
||||||
|
public ActivationLayer getActivationLayer() {
|
||||||
|
return (ActivationLayer) this.layer;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
|
@ -0,0 +1,85 @@
|
||||||
|
/* ******************************************************************************
|
||||||
|
* Copyright (c) 2019 Konduit K.K.
|
||||||
|
*
|
||||||
|
* This program and the accompanying materials are made available under the
|
||||||
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
* License for the specific language governing permissions and limitations
|
||||||
|
* under the License.
|
||||||
|
*
|
||||||
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
package org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations;
|
||||||
|
|
||||||
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||||
|
import org.deeplearning4j.nn.conf.layers.ActivationLayer;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
||||||
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
|
||||||
|
import org.nd4j.linalg.activations.impl.ActivationSoftmax;
|
||||||
|
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Imports Softmax layer from Keras
|
||||||
|
*
|
||||||
|
* @author Alex Black
|
||||||
|
*/
|
||||||
|
public class KerasSoftmax extends KerasLayer {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructor from parsed Keras layer configuration dictionary.
|
||||||
|
*
|
||||||
|
* @param layerConfig dictionary containing Keras layer configuration
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
* @throws UnsupportedKerasConfigurationException Unsupported Invalid Keras config
|
||||||
|
*/
|
||||||
|
public KerasSoftmax(Map<String, Object> layerConfig)
|
||||||
|
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
|
||||||
|
this(layerConfig, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Constructor from parsed Keras layer configuration dictionary.
|
||||||
|
*
|
||||||
|
* @param layerConfig dictionary containing Keras layer configuration
|
||||||
|
* @param enforceTrainingConfig whether to enforce training-related configuration options
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
* @throws UnsupportedKerasConfigurationException Invalid Keras config
|
||||||
|
*/
|
||||||
|
public KerasSoftmax(Map<String, Object> layerConfig, boolean enforceTrainingConfig)
|
||||||
|
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
|
||||||
|
super(layerConfig, enforceTrainingConfig);
|
||||||
|
|
||||||
|
this.layer = new ActivationLayer.Builder().name(this.layerName).activation(new ActivationSoftmax()).build();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get layer output type.
|
||||||
|
*
|
||||||
|
* @param inputType Array of InputTypes
|
||||||
|
* @return output type as InputType
|
||||||
|
* @throws InvalidKerasConfigurationException Invalid Keras config
|
||||||
|
*/
|
||||||
|
public InputType getOutputType(InputType... inputType) throws InvalidKerasConfigurationException {
|
||||||
|
if (inputType.length > 1)
|
||||||
|
throw new InvalidKerasConfigurationException(
|
||||||
|
"Keras Activation layer accepts only one input (received " + inputType.length + ")");
|
||||||
|
return this.getActivationLayer().getOutputType(-1, inputType[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get DL4J ActivationLayer.
|
||||||
|
*
|
||||||
|
* @return ActivationLayer
|
||||||
|
*/
|
||||||
|
public ActivationLayer getActivationLayer() {
|
||||||
|
return (ActivationLayer) this.layer;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
|
@ -25,9 +25,7 @@ import org.deeplearning4j.nn.modelimport.keras.config.KerasLayerConfiguration;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.KerasInput;
|
import org.deeplearning4j.nn.modelimport.keras.layers.KerasInput;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations.KerasLeakyReLU;
|
import org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations.*;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations.KerasPReLU;
|
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.advanced.activations.KerasThresholdedReLU;
|
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.*;
|
import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.*;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.core.*;
|
import org.deeplearning4j.nn.modelimport.keras.layers.core.*;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.embeddings.KerasEmbedding;
|
import org.deeplearning4j.nn.modelimport.keras.layers.embeddings.KerasEmbedding;
|
||||||
|
@ -313,6 +311,12 @@ public class KerasLayerUtils {
|
||||||
if (lambdaLayer != null){
|
if (lambdaLayer != null){
|
||||||
layer = new KerasLambda(layerConfig, enforceTrainingConfig, lambdaLayer);
|
layer = new KerasLambda(layerConfig, enforceTrainingConfig, lambdaLayer);
|
||||||
}
|
}
|
||||||
|
} else if(layerClassName.equals(conf.getLAYER_CLASS_NAME_RELU())){
|
||||||
|
layer = new KerasReLU(layerConfig, enforceTrainingConfig);
|
||||||
|
} else if(layerClassName.equals(conf.getLAYER_CLASS_NAME_ELU())){
|
||||||
|
layer = new KerasELU(layerConfig, enforceTrainingConfig);
|
||||||
|
} else if(layerClassName.equals(conf.getLAYER_CLASS_NAME_SOFTMAX())){
|
||||||
|
layer = new KerasSoftmax(layerConfig, enforceTrainingConfig);
|
||||||
}
|
}
|
||||||
if (layer == null){
|
if (layer == null){
|
||||||
Class<? extends KerasLayer> customConfig = customLayers.get(layerClassName);
|
Class<? extends KerasLayer> customConfig = customLayers.get(layerClassName);
|
||||||
|
|
|
@ -1,140 +0,0 @@
|
||||||
/*******************************************************************************
|
|
||||||
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
||||||
*
|
|
||||||
* This program and the accompanying materials are made available under the
|
|
||||||
* terms of the Apache License, Version 2.0 which is available at
|
|
||||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
||||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
||||||
* License for the specific language governing permissions and limitations
|
|
||||||
* under the License.
|
|
||||||
*
|
|
||||||
* SPDX-License-Identifier: Apache-2.0
|
|
||||||
******************************************************************************/
|
|
||||||
|
|
||||||
package org.deeplearning4j.nn.modelimport.keras;
|
|
||||||
|
|
||||||
import lombok.extern.slf4j.Slf4j;
|
|
||||||
import org.bytedeco.javacpp.Pointer;
|
|
||||||
import org.junit.After;
|
|
||||||
import org.junit.Before;
|
|
||||||
import org.junit.Rule;
|
|
||||||
import org.junit.rules.TestName;
|
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
|
||||||
import org.nd4j.linalg.api.memory.MemoryWorkspace;
|
|
||||||
import org.nd4j.linalg.api.ops.executioner.OpExecutioner;
|
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
|
||||||
import org.nd4j.linalg.profiler.ProfilerConfig;
|
|
||||||
|
|
||||||
import java.lang.management.ManagementFactory;
|
|
||||||
import java.util.List;
|
|
||||||
import java.util.Map;
|
|
||||||
import java.util.Properties;
|
|
||||||
|
|
||||||
@Slf4j
|
|
||||||
public class BaseDL4JTest {
|
|
||||||
|
|
||||||
@Rule
|
|
||||||
public TestName name = new TestName();
|
|
||||||
|
|
||||||
protected long startTime;
|
|
||||||
protected int threadCountBefore;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Override this to set the profiling mode for the tests defined in the child class
|
|
||||||
*/
|
|
||||||
public OpExecutioner.ProfilingMode getProfilingMode(){
|
|
||||||
return OpExecutioner.ProfilingMode.SCOPE_PANIC;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Override this to set the datatype of the tests defined in the child class
|
|
||||||
*/
|
|
||||||
public DataType getDataType(){
|
|
||||||
return DataType.DOUBLE;
|
|
||||||
}
|
|
||||||
|
|
||||||
public DataType getDefaultFPDataType(){
|
|
||||||
return getDataType();
|
|
||||||
}
|
|
||||||
|
|
||||||
@Before
|
|
||||||
public void beforeTest(){
|
|
||||||
log.info("{}.{}", getClass().getSimpleName(), name.getMethodName());
|
|
||||||
Nd4j.getExecutioner().setProfilingMode(getProfilingMode());
|
|
||||||
Nd4j.getExecutioner().setProfilingConfig(ProfilerConfig.builder().build());
|
|
||||||
Nd4j.setDefaultDataTypes(getDataType(), getDefaultFPDataType());
|
|
||||||
startTime = System.currentTimeMillis();
|
|
||||||
threadCountBefore = ManagementFactory.getThreadMXBean().getThreadCount();
|
|
||||||
}
|
|
||||||
|
|
||||||
@After
|
|
||||||
public void afterTest(){
|
|
||||||
//Attempt to keep workspaces isolated between tests
|
|
||||||
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
|
|
||||||
MemoryWorkspace currWS = Nd4j.getMemoryManager().getCurrentWorkspace();
|
|
||||||
Nd4j.getMemoryManager().setCurrentWorkspace(null);
|
|
||||||
if(currWS != null){
|
|
||||||
//Not really safe to continue testing under this situation... other tests will likely fail with obscure
|
|
||||||
// errors that are hard to track back to this
|
|
||||||
log.error("Open workspace leaked from test! Exiting - {}, isOpen = {} - {}", currWS.getId(), currWS.isScopeActive(), currWS);
|
|
||||||
System.exit(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
StringBuilder sb = new StringBuilder();
|
|
||||||
long maxPhys = Pointer.maxPhysicalBytes();
|
|
||||||
long maxBytes = Pointer.maxBytes();
|
|
||||||
long currPhys = Pointer.physicalBytes();
|
|
||||||
long currBytes = Pointer.totalBytes();
|
|
||||||
|
|
||||||
long jvmTotal = Runtime.getRuntime().totalMemory();
|
|
||||||
long jvmMax = Runtime.getRuntime().maxMemory();
|
|
||||||
|
|
||||||
int threadsAfter = ManagementFactory.getThreadMXBean().getThreadCount();
|
|
||||||
|
|
||||||
long duration = System.currentTimeMillis() - startTime;
|
|
||||||
sb.append(getClass().getSimpleName()).append(".").append(name.getMethodName())
|
|
||||||
.append(": ").append(duration).append(" ms")
|
|
||||||
.append(", threadCount: (").append(threadCountBefore).append("->").append(threadsAfter).append(")")
|
|
||||||
.append(", jvmTotal=").append(jvmTotal)
|
|
||||||
.append(", jvmMax=").append(jvmMax)
|
|
||||||
.append(", totalBytes=").append(currBytes).append(", maxBytes=").append(maxBytes)
|
|
||||||
.append(", currPhys=").append(currPhys).append(", maxPhys=").append(maxPhys);
|
|
||||||
|
|
||||||
List<MemoryWorkspace> ws = Nd4j.getWorkspaceManager().getAllWorkspacesForCurrentThread();
|
|
||||||
if(ws != null && ws.size() > 0){
|
|
||||||
long currSize = 0;
|
|
||||||
for(MemoryWorkspace w : ws){
|
|
||||||
currSize += w.getCurrentSize();
|
|
||||||
}
|
|
||||||
if(currSize > 0){
|
|
||||||
sb.append(", threadWSSize=").append(currSize)
|
|
||||||
.append(" (").append(ws.size()).append(" WSs)");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
Properties p = Nd4j.getExecutioner().getEnvironmentInformation();
|
|
||||||
Object o = p.get("cuda.devicesInformation");
|
|
||||||
if(o instanceof List){
|
|
||||||
List<Map<String,Object>> l = (List<Map<String, Object>>) o;
|
|
||||||
if(l.size() > 0) {
|
|
||||||
|
|
||||||
sb.append(" [").append(l.size())
|
|
||||||
.append(" GPUs: ");
|
|
||||||
|
|
||||||
for (int i = 0; i < l.size(); i++) {
|
|
||||||
Map<String,Object> m = l.get(i);
|
|
||||||
if(i > 0)
|
|
||||||
sb.append(",");
|
|
||||||
sb.append("(").append(m.get("cuda.freeMemory")).append(" free, ")
|
|
||||||
.append(m.get("cuda.totalMemory")).append(" total)");
|
|
||||||
}
|
|
||||||
sb.append("]");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
log.info(sb.toString());
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -17,6 +17,7 @@
|
||||||
package org.deeplearning4j.nn.modelimport.keras;
|
package org.deeplearning4j.nn.modelimport.keras;
|
||||||
|
|
||||||
import org.apache.commons.io.FileUtils;
|
import org.apache.commons.io.FileUtils;
|
||||||
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.utils.DL4JKerasModelValidator;
|
import org.deeplearning4j.nn.modelimport.keras.utils.DL4JKerasModelValidator;
|
||||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||||
import org.junit.Rule;
|
import org.junit.Rule;
|
||||||
|
|
|
@ -23,7 +23,7 @@ import org.datavec.api.split.NumberedFileInputSplit;
|
||||||
import org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator;
|
import org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator;
|
||||||
import org.deeplearning4j.nn.layers.recurrent.LSTM;
|
import org.deeplearning4j.nn.layers.recurrent.LSTM;
|
||||||
import org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer;
|
import org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
||||||
|
|
|
@ -18,7 +18,7 @@ package org.deeplearning4j.nn.modelimport.keras.configurations;
|
||||||
|
|
||||||
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
import org.deeplearning4j.nn.conf.InputPreProcessor;
|
||||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.preprocessors.KerasFlattenRnnPreprocessor;
|
import org.deeplearning4j.nn.modelimport.keras.preprocessors.KerasFlattenRnnPreprocessor;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.preprocessors.PermutePreprocessor;
|
import org.deeplearning4j.nn.modelimport.keras.preprocessors.PermutePreprocessor;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.preprocessors.ReshapePreprocessor;
|
import org.deeplearning4j.nn.modelimport.keras.preprocessors.ReshapePreprocessor;
|
||||||
|
|
|
@ -20,7 +20,7 @@ import lombok.extern.slf4j.Slf4j;
|
||||||
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
|
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
|
||||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
||||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
|
|
|
@ -21,7 +21,7 @@ import lombok.val;
|
||||||
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
|
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
|
||||||
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
||||||
|
|
|
@ -18,7 +18,7 @@ package org.deeplearning4j.nn.modelimport.keras.configurations;
|
||||||
|
|
||||||
import org.deeplearning4j.nn.conf.distribution.*;
|
import org.deeplearning4j.nn.conf.distribution.*;
|
||||||
import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.config.Keras1LayerConfiguration;
|
import org.deeplearning4j.nn.modelimport.keras.config.Keras1LayerConfiguration;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.config.Keras2LayerConfiguration;
|
import org.deeplearning4j.nn.modelimport.keras.config.Keras2LayerConfiguration;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.config.KerasLayerConfiguration;
|
import org.deeplearning4j.nn.modelimport.keras.config.KerasLayerConfiguration;
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
package org.deeplearning4j.nn.modelimport.keras.configurations;
|
package org.deeplearning4j.nn.modelimport.keras.configurations;
|
||||||
|
|
||||||
import lombok.extern.slf4j.Slf4j;
|
import lombok.extern.slf4j.Slf4j;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
|
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
|
||||||
|
|
|
@ -20,7 +20,7 @@ import lombok.extern.slf4j.Slf4j;
|
||||||
import org.apache.commons.io.FileUtils;
|
import org.apache.commons.io.FileUtils;
|
||||||
import org.deeplearning4j.common.resources.DL4JResources;
|
import org.deeplearning4j.common.resources.DL4JResources;
|
||||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.custom.KerasLRN;
|
import org.deeplearning4j.nn.modelimport.keras.layers.custom.KerasLRN;
|
||||||
|
|
|
@ -19,7 +19,7 @@ package org.deeplearning4j.nn.modelimport.keras.e2e;
|
||||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||||
import org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer;
|
import org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer;
|
||||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel;
|
||||||
|
|
|
@ -30,7 +30,7 @@ import org.deeplearning4j.nn.conf.layers.FeedForwardLayer;
|
||||||
import org.deeplearning4j.nn.conf.layers.LossLayer;
|
import org.deeplearning4j.nn.conf.layers.LossLayer;
|
||||||
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
|
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
|
||||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.Hdf5Archive;
|
import org.deeplearning4j.nn.modelimport.keras.Hdf5Archive;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasSequentialModel;
|
||||||
|
@ -724,6 +724,29 @@ public class KerasModelEndToEndTest extends BaseDL4JTest {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testActivationLayers() throws Exception {
|
||||||
|
String[] names = new String[]{
|
||||||
|
"ELU_0_model.h5",
|
||||||
|
"LeakyReLU_0_model.h5",
|
||||||
|
"ReLU_0_model.h5",
|
||||||
|
"ReLU_1_model.h5",
|
||||||
|
"ReLU_2_model.h5",
|
||||||
|
"ReLU_3_model.h5",
|
||||||
|
"Softmax_0_model.h5",
|
||||||
|
"ThresholdReLU_0_model.h5",
|
||||||
|
};
|
||||||
|
|
||||||
|
for(String name : names ){
|
||||||
|
System.out.println("Starting test: " + name);
|
||||||
|
String modelPath = "modelimport/keras/examples/activations/" + name;
|
||||||
|
String inputsOutputPath = "modelimport/keras/examples/activations/" + (name.substring(0,name.length()-"model.h5".length()) + "inputs_and_outputs.h5");
|
||||||
|
|
||||||
|
importEndModelTest(modelPath, inputsOutputPath, true, true,
|
||||||
|
true, true, false, null, null);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
private ComputationGraph importFunctionalModelH5Test(String modelPath) throws Exception {
|
private ComputationGraph importFunctionalModelH5Test(String modelPath) throws Exception {
|
||||||
return importFunctionalModelH5Test(modelPath, null, false);
|
return importFunctionalModelH5Test(modelPath, null, false);
|
||||||
}
|
}
|
||||||
|
@ -991,8 +1014,8 @@ public class KerasModelEndToEndTest extends BaseDL4JTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
Nd4j.setDataType(DataType.DOUBLE);
|
Nd4j.setDataType(DataType.DOUBLE);
|
||||||
boolean passed = GradientCheckUtil.checkGradients(netToTest, eps, max_rel_error, min_abs_error, true, false,
|
boolean passed = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(netToTest).input(input)
|
||||||
input, labels, null, null, true, 9);
|
.labels(labels).subset(true).maxPerParam(9));
|
||||||
assertTrue("Gradient check failed", passed);
|
assertTrue("Gradient check failed", passed);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -19,7 +19,7 @@ package org.deeplearning4j.nn.modelimport.keras.e2e;
|
||||||
import lombok.extern.slf4j.Slf4j;
|
import lombok.extern.slf4j.Slf4j;
|
||||||
import org.deeplearning4j.nn.conf.inputs.InputType;
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModelImport;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.KerasSpaceToDepth;
|
import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.KerasSpaceToDepth;
|
||||||
|
|
|
@ -18,7 +18,7 @@ package org.deeplearning4j.nn.modelimport.keras.e2e;
|
||||||
|
|
||||||
import lombok.extern.slf4j.Slf4j;
|
import lombok.extern.slf4j.Slf4j;
|
||||||
import org.deeplearning4j.nn.graph.ComputationGraph;
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
import org.deeplearning4j.nn.modelimport.keras.KerasLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
import org.deeplearning4j.nn.modelimport.keras.KerasModel;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.KerasSpaceToDepth;
|
import org.deeplearning4j.nn.modelimport.keras.layers.convolutional.KerasSpaceToDepth;
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
package org.deeplearning4j.nn.modelimport.keras.layers.advanced.activation;
|
package org.deeplearning4j.nn.modelimport.keras.layers.advanced.activation;
|
||||||
|
|
||||||
import org.deeplearning4j.nn.conf.layers.ActivationLayer;
|
import org.deeplearning4j.nn.conf.layers.ActivationLayer;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.BaseDL4JTest;
|
import org.deeplearning4j.BaseDL4JTest;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.config.Keras1LayerConfiguration;
|
import org.deeplearning4j.nn.modelimport.keras.config.Keras1LayerConfiguration;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.config.Keras2LayerConfiguration;
|
import org.deeplearning4j.nn.modelimport.keras.config.Keras2LayerConfiguration;
|
||||||
import org.deeplearning4j.nn.modelimport.keras.config.KerasLayerConfiguration;
|
import org.deeplearning4j.nn.modelimport.keras.config.KerasLayerConfiguration;
|
||||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue