[WIP] build time improvements (#106)

* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* Fix functions of OpaqueVariablesSet

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* couple of legacy groups reorganized into separate compialtion units

Signed-off-by: raver119 <raver119@gmail.com>

* wrong include

Signed-off-by: raver119 <raver119@gmail.com>

* wrong include

Signed-off-by: raver119 <raver119@gmail.com>

* ReductionLoops_float split

Signed-off-by: raver119 <raver119@gmail.com>

* maximum

Signed-off-by: raver119 <raver119@gmail.com>

* some more rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* spare ifdef

Signed-off-by: raver119 <raver119@gmail.com>

* mirror pad

Signed-off-by: raver119 <raver119@gmail.com>

* - reduce_float split
- mcmodel

Signed-off-by: raver119 <raver119@gmail.com>

* bad include fix

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax

Signed-off-by: raver119 <raver119@gmail.com>

* norelax gone

Signed-off-by: raver119 <raver119@gmail.com>

* get back sm

Signed-off-by: raver119 <raver119@gmail.com>

* fix couple of tests for msvc

Signed-off-by: raver119 <raver119@gmail.com>

* fix couple of tests for msvc

Signed-off-by: raver119 <raver119@gmail.com>

* compress-all

Signed-off-by: raver119 <raver119@gmail.com>

* reduced arch list

Signed-off-by: raver119 <raver119@gmail.com>

* compress-all

Signed-off-by: raver119 <raver119@gmail.com>

* reduced arch list

Signed-off-by: raver119 <raver119@gmail.com>

* all compute capabilities option for tests

Signed-off-by: raver119 <raver119@gmail.com>
master
raver119 2019-08-07 17:49:13 +03:00 committed by GitHub
parent c78f5a8225
commit 24e43e9856
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
65 changed files with 2558 additions and 1135 deletions

View File

@ -99,7 +99,7 @@ elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Intel")
elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC") elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
# using Visual Studio C++ # using Visual Studio C++
set( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /EHsc") set( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /EHsc /w")
elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
# using GCC # using GCC
SET( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${ARCH_TUNE}") SET( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${ARCH_TUNE}")
@ -118,16 +118,6 @@ if(!CUDA_BLAS)
endif() endif()
endif() endif()
# TODO: get rid of this once problem confirmed solved
#if (APPLE)
# if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
# if ("${CMAKE_C_COMPILER_VERSION}" VERSION_GREATER 6.0 OR "${CMAKE_C_COMPILER_VERSION}" VERSION_EQUAL 6.0)
# SET( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wa,-mavx512f,-mavx512vl,-mavx512bw,-mavx512dq,-mavx512cd ")
# endif()
# endif()
#endif()
if(CUDA_BLAS) if(CUDA_BLAS)
message("Build cublas") message("Build cublas")
find_package(CUDA) find_package(CUDA)
@ -173,32 +163,32 @@ if(CUDA_BLAS)
if(CUDA_VERSION VERSION_GREATER "9.2") # cuda 10 if(CUDA_VERSION VERSION_GREATER "9.2") # cuda 10
if ("${COMPUTE}" STREQUAL "all") if ("${COMPUTE}" STREQUAL "all")
if (APPLE) if (APPLE)
list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61) list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60)
else() else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75) list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70)
endif() endif()
else() else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w --cudart=static --expt-extended-lambda -O3 -arch=compute_${COMPUTE} -code=sm_${COMPUTE}) list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w --cudart=static --expt-extended-lambda -O3 --fatbin -arch=compute_${COMPUTE} -code=sm_${COMPUTE})
endif() endif()
elseif(CUDA_VERSION VERSION_GREATER "8.0") # cuda 9 elseif(CUDA_VERSION VERSION_GREATER "8.0") # cuda 9
if ("${COMPUTE}" STREQUAL "all") if ("${COMPUTE}" STREQUAL "all")
if (APPLE) if (APPLE)
list(APPEND CUDA_NVCC_FLAGS -DCUDA_9 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61) list(APPEND CUDA_NVCC_FLAGS -DCUDA_9 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60)
else() else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_9 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61) list(APPEND CUDA_NVCC_FLAGS -DCUDA_9 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60)
endif() endif()
else() else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_9 ${EXPM} -w --cudart=static --expt-extended-lambda -O3 -arch=compute_${COMPUTE} -code=sm_${COMPUTE}) list(APPEND CUDA_NVCC_FLAGS -DCUDA_9 ${EXPM} -w --cudart=static --expt-extended-lambda -O3 -arch=compute_${COMPUTE} -code=sm_${COMPUTE})
endif() endif()
elseif (CUDA_VERSION VERSION_GREATER "7.5") # cuda 8.0 elseif (CUDA_VERSION VERSION_GREATER "7.5") # cuda 8.0
if ("${COMPUTE}" STREQUAL "all") if ("${COMPUTE}" STREQUAL "all")
list(APPEND CUDA_NVCC_FLAGS -DCUDA_8 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61) list(APPEND CUDA_NVCC_FLAGS -DCUDA_8 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_30,code=sm_30 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60)
else() else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_8 ${EXPM} -w --cudart=static --expt-extended-lambda -O3 -arch=compute_${COMPUTE} -code=sm_${COMPUTE}) list(APPEND CUDA_NVCC_FLAGS -DCUDA_8 ${EXPM} -w --cudart=static --expt-extended-lambda -O3 -arch=compute_${COMPUTE} -code=sm_${COMPUTE})
endif() endif()
else() else()
if ("${COMPUTE}" STREQUAL "all") if ("${COMPUTE}" STREQUAL "all")
list(APPEND CUDA_NVCC_FLAGS -DCUDA_75 ${EXPM} --cudart=static --expt-extended-lambda -O3 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52) list(APPEND CUDA_NVCC_FLAGS -DCUDA_75 ${EXPM} --cudart=static --expt-extended-lambda -O3 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_52,code=sm_52 )
else() else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_75 ${EXPM} --cudart=static --expt-extended-lambda -O3 -arch=compute_${COMPUTE} -code=sm_${COMPUTE}) list(APPEND CUDA_NVCC_FLAGS -DCUDA_75 ${EXPM} --cudart=static --expt-extended-lambda -O3 -arch=compute_${COMPUTE} -code=sm_${COMPUTE})
endif() endif()
@ -220,7 +210,7 @@ if(CUDA_BLAS)
list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w -G -g --cudart=static --expt-extended-lambda -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70) list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w -G -g --cudart=static --expt-extended-lambda -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70)
endif() endif()
else() else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w -G -g --cudart=static --expt-extended-lambda -arch=compute_${COMPUTE} -code=sm_${COMPUTE}) list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w -G -g --cudart=static --expt-extended-lambda -arch=compute_${COMPUTE} -code=compute_${COMPUTE})
endif() endif()
elseif(CUDA_VERSION VERSION_GREATER "8.0") # cuda 9 elseif(CUDA_VERSION VERSION_GREATER "8.0") # cuda 9
if ("${COMPUTE}" STREQUAL "all") if ("${COMPUTE}" STREQUAL "all")

View File

@ -40,7 +40,7 @@ namespace nd4j {
DISPATCH_BY_OPNUM_TT(innerloopReduce, PARAMS(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams ), REDUCE_FLOAT_OPS); DISPATCH_BY_OPNUM_TT(innerloopReduce, PARAMS(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams ), REDUCE_FLOAT_OPS);
} }
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReductionFloatLoops, , LIBND4J_TYPES, FLOAT_TYPES); BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReductionFloatLoops, , LIBND4J_TYPES, FLOAT_TYPES_0);
} }

View File

@ -0,0 +1,46 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "ReductionLoops.hpp"
#include <pointercast.h>
#include <types/types.h>
using namespace simdOps;
namespace nd4j {
template<typename X, typename Z>
template <typename OpType>
void ReductionFloatLoops<X, Z>::innerloopReduce(X * x, Nd4jLong* xShapeInfo, Z* z, Nd4jLong* zShapeInfo, Nd4jLong* tadShapeInfo, Nd4jLong* tadOffsets, Z* extraParams) {
ReductionLoops<X,Z,Z>::template loopReduce<OpType>(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams);
}
template<typename X, typename Y>
void ReductionFloatLoops<X, Y>::wrapper(const int opNum, X *x, Nd4jLong *xShapeInfo, Y *z,
Nd4jLong *zShapeInfo, Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffsets, Y *extraParams) {
DISPATCH_BY_OPNUM_TT(innerloopReduce, PARAMS(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams ), REDUCE_FLOAT_OPS);
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReductionFloatLoops, , LIBND4J_TYPES, FLOAT_TYPES_1);
}

View File

@ -0,0 +1,46 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "ReductionLoops.hpp"
#include <pointercast.h>
#include <types/types.h>
using namespace simdOps;
namespace nd4j {
template<typename X, typename Z>
template <typename OpType>
void ReductionFloatLoops<X, Z>::innerloopReduce(X * x, Nd4jLong* xShapeInfo, Z* z, Nd4jLong* zShapeInfo, Nd4jLong* tadShapeInfo, Nd4jLong* tadOffsets, Z* extraParams) {
ReductionLoops<X,Z,Z>::template loopReduce<OpType>(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams);
}
template<typename X, typename Y>
void ReductionFloatLoops<X, Y>::wrapper(const int opNum, X *x, Nd4jLong *xShapeInfo, Y *z,
Nd4jLong *zShapeInfo, Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffsets, Y *extraParams) {
DISPATCH_BY_OPNUM_TT(innerloopReduce, PARAMS(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams ), REDUCE_FLOAT_OPS);
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReductionFloatLoops, , LIBND4J_TYPES, FLOAT_TYPES_2);
}

View File

@ -0,0 +1,46 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "ReductionLoops.hpp"
#include <pointercast.h>
#include <types/types.h>
using namespace simdOps;
namespace nd4j {
template<typename X, typename Z>
template <typename OpType>
void ReductionFloatLoops<X, Z>::innerloopReduce(X * x, Nd4jLong* xShapeInfo, Z* z, Nd4jLong* zShapeInfo, Nd4jLong* tadShapeInfo, Nd4jLong* tadOffsets, Z* extraParams) {
ReductionLoops<X,Z,Z>::template loopReduce<OpType>(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams);
}
template<typename X, typename Y>
void ReductionFloatLoops<X, Y>::wrapper(const int opNum, X *x, Nd4jLong *xShapeInfo, Y *z,
Nd4jLong *zShapeInfo, Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffsets, Y *extraParams) {
DISPATCH_BY_OPNUM_TT(innerloopReduce, PARAMS(x, xShapeInfo, z, zShapeInfo, tadShapeInfo, tadOffsets, extraParams ), REDUCE_FLOAT_OPS);
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReductionFloatLoops, , LIBND4J_TYPES, FLOAT_TYPES_3);
}

View File

@ -220,7 +220,7 @@ namespace functions {
} }
} }
} }
/*
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_0); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_0);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_1); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_1);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_2); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_2);
@ -231,5 +231,6 @@ namespace functions {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_7); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_7);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_8); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_8);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_9); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_9);
*/
} }
} }

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_0);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_1);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_2);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_3);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_4);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_5);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_6);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_7);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_8);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../broadcasting.chpp"
namespace functions {
namespace broadcast {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_9);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_0);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_1);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_2);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_3);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_4);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_5);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_6);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_7);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_8);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../pairwise.chpp"
namespace functions {
namespace pairwise_transforms {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_9);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce3.chpp"
namespace functions {
namespace reduce3 {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES_0);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce3.chpp"
namespace functions {
namespace reduce3 {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES_1);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce3.chpp"
namespace functions {
namespace reduce3 {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES_2);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce3.chpp"
namespace functions {
namespace reduce3 {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES_3);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce/reduce_float.chpp"
namespace functions {
namespace reduce {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES_0);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce/reduce_float.chpp"
namespace functions {
namespace reduce {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES_1);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce/reduce_float.chpp"
namespace functions {
namespace reduce {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES_2);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../reduce/reduce_float.chpp"
namespace functions {
namespace reduce {
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES_3);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_0);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_1);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_2);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_3);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_4);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_5);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_6);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_7);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_8);
}
}

View File

@ -0,0 +1,27 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "../../scalar.chpp"
namespace functions {
namespace scalar {
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_9);
}
}

View File

@ -106,7 +106,7 @@ void __host__ PairWiseTransform<X,Y,Z>::executeCudaShaped(dim3& launchDims, cuda
DISPATCH_BY_OPNUM_TTT(intermediateShaped, PARAMS(launchDims, stream, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, vextraParams), PAIRWISE_TRANSFORM_OPS); DISPATCH_BY_OPNUM_TTT(intermediateShaped, PARAMS(launchDims, stream, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, vextraParams), PAIRWISE_TRANSFORM_OPS);
} }
/*
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_0); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_0);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_1); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_1);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_2); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_2);
@ -117,6 +117,7 @@ void __host__ PairWiseTransform<X,Y,Z>::executeCudaShaped(dim3& launchDims, cuda
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_7); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_7);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_8); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_8);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_9); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT PairWiseTransform, , PAIRWISE_TYPES_9);
*/
} }
} }

View File

@ -304,7 +304,7 @@ __device__ void initializeShared(X *extraParams, X **sPartials, int sMemSize) {
} }
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES); //BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES);
} }
} }

View File

@ -559,7 +559,7 @@ __host__ void Reduce3<X,Z>::execScalar(dim3 launchDims, cudaStream_t *stream,
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES); //BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES);
} }
} }

View File

@ -165,18 +165,6 @@ void ScalarTransform<X,Y,Z>::executeCudaAlongDimension(dim3& launchDims, cudaStr
} }
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_0);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_1);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_2);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_3);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_4);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_5);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_6);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_7);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_8);
BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT ScalarTransform, , PAIRWISE_TYPES_9);
} }
} }

View File

@ -0,0 +1,129 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void concatCuda(const int numOfArrs, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) {
__shared__ int arrIdx, blocksPerArr;
__shared__ T *x, *z;
__shared__ Nd4jLong *zShapeInfo, *xShapeInfo, arrLen, arrLenPerBlock, start, end;
if (threadIdx.x == 0) {
blocksPerArr = (gridDim.x + numOfArrs - 1) / numOfArrs; // ceil
arrIdx = blockIdx.x / blocksPerArr;
x = reinterpret_cast<T*>(reinterpret_cast<void**>(pVx)[arrIdx]);
z = reinterpret_cast<T*>(reinterpret_cast<void**>(pVz)[arrIdx]);
xShapeInfo = reinterpret_cast<Nd4jLong**>(pxShapeInfo)[arrIdx];
zShapeInfo = reinterpret_cast<Nd4jLong**>(pzShapeInfo)[arrIdx];
arrLen = shape::length(xShapeInfo);
arrLenPerBlock = (arrLen + blocksPerArr - 1) / blocksPerArr; // ceil
start = (blockIdx.x % blocksPerArr) * arrLenPerBlock;
end = (start + arrLenPerBlock) > arrLen ? arrLen : (start + arrLenPerBlock);
}
__syncthreads();
for (Nd4jLong i = start + threadIdx.x; i < end; i += blockDim.x)
z[shape::getIndexOffset(i, zShapeInfo, arrLen)] = x[shape::getIndexOffset(i, xShapeInfo, arrLen)];
}
///////////////////////////////////////////////////////////////////
template<typename T>
__host__ static void concatCudaLauncher(const int numOfArrs, const cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) {
concatCuda<T><<<512, 256, 1024, *stream>>>(numOfArrs, pVx, pxShapeInfo, pVz, pzShapeInfo);
}
BUILD_SINGLE_TEMPLATE(template void concatCudaLauncher, (const int numOfArrs, const cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo), LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////////
void concat(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output, const int axis) {
const int numOfArrs = inArrs.size();
for(int i = 0; i < numOfArrs; ++i)
if(!inArrs[i]->isActualOnDeviceSide()) inArrs[i]->syncToDevice();
const int rank = inArrs[0]->rankOf();
const int rank2 = 2*rank;
std::vector<std::vector<Nd4jLong>> indices(numOfArrs, std::vector<Nd4jLong>(rank2,0));
// take into account indices for first array
indices[0][2 * axis + 1] = inArrs[0]->sizeAt(axis);
// loop through the rest of input arrays
for(int i = 1; i < numOfArrs; ++i) {
indices[i][2 * axis] = indices[i-1][2 * axis + 1]; // index start from
indices[i][2 * axis + 1] = indices[i-1][2 * axis + 1] + inArrs[i]->sizeAt(axis); // index end with (excluding)
}
std::vector<NDArray*> outSubArrs(numOfArrs);
for(int i = 0; i < numOfArrs; ++i)
outSubArrs[i] = new NDArray(output(indices[i], true));
// prepare arrays of pointers on buffers and shapes
std::vector<void*> hOutBuffers(numOfArrs), hInBuffers(numOfArrs);
std::vector<Nd4jLong*> hOutShapeInfo(numOfArrs), hInShapeInfo(numOfArrs);
for(int i = 0; i < numOfArrs; ++i) {
hOutBuffers[i] = outSubArrs[i]->getSpecialBuffer();
hInBuffers[i] = inArrs[i]->getSpecialBuffer();
hOutShapeInfo[i] = outSubArrs[i]->getSpecialShapeInfo();
hInShapeInfo[i] = inArrs[i]->getSpecialShapeInfo();
}
// allocate and copy all buffers and shapes arrays to global memory
PointersManager manager(context, "helpers::concat");
void* dOutBuffers = manager.replicatePointer(hOutBuffers.data(), hOutBuffers.size() * sizeof(void*));
void* dInBuffers = manager.replicatePointer(hInBuffers.data(), hInBuffers.size() * sizeof(void*));
void* dInShapeInfo = manager.replicatePointer(hInShapeInfo.data(), hInShapeInfo.size() * sizeof(Nd4jLong*));
void* dOutShapeInfo = manager.replicatePointer(hOutShapeInfo.data(), hOutShapeInfo.size() * sizeof(Nd4jLong*));
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), concatCudaLauncher, (numOfArrs, context->getCudaStream(), dInBuffers, dInShapeInfo, dOutBuffers, dOutShapeInfo), LIBND4J_TYPES);
manager.synchronize();
for(int i = 0; i < numOfArrs; ++i)
delete outSubArrs[i];
for(int i = 0; i < numOfArrs; ++i)
inArrs[i]->tickReadHost();
output.tickWriteDevice();
}
}
}
}

View File

@ -0,0 +1,147 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
// x - input, y - indices, z - output
template<typename X, typename Y>
__global__ static void gatherNDCuda(const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<X*>(vz);
__shared__ int xRank, yRank, zRank, maxRank, yLastDim;
__shared__ Nd4jLong zLen, totalThreads, *sharedMem;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
maxRank = nd4j::math::nd4j_max<int>(yRank, nd4j::math::nd4j_max<int>(xRank, zRank));
zLen = shape::length(zShapeInfo);
yLastDim = yShapeInfo[yRank];
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
auto coord = sharedMem + threadIdx.x * maxRank;
Nd4jLong *zCoordStart, *xCoordStart;
if(yLastDim == xRank) {
zCoordStart = coord;
xCoordStart = coord;
}
if(zRank >= xRank) {
zCoordStart = coord;
xCoordStart = coord + zRank - xRank;
}
else {
zCoordStart = coord + xRank - zRank;
xCoordStart = coord;
}
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(zRank, zShapeInfo + 1, i, zLen, zCoordStart);
const auto zOffset = shape::getOffset(0, zShapeInfo + 1, zShapeInfo + zRank + 1, zCoordStart, zRank);
// last y coordinate
int coordToRestore;
if(yLastDim != xRank)
coordToRestore = static_cast<int>(zCoordStart[yRank - 1]);
zCoordStart[yRank - 1] = 0; // last y coordinate
const auto yOffset = shape::getOffset(0, yShapeInfo + 1, yShapeInfo + yRank + 1, zCoordStart, yRank);
//restore z coordinate
if(yLastDim != xRank)
zCoordStart[yRank - 1] = coordToRestore;
// construct coordinates for x
for(uint j = 0; j < yLastDim; ++j)
xCoordStart[j] = y[yOffset + j * yShapeInfo[2 * yRank]]; // last stride
const auto xOffset = shape::getOffset(0, xShapeInfo + 1, xShapeInfo + xRank + 1, xCoordStart, xRank);
z[zOffset] = x[xOffset];
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void gatherNDCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
gatherNDCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
}
BUILD_DOUBLE_TEMPLATE(template void gatherNDCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo), LIBND4J_TYPES, INTEGER_TYPES);
///////////////////////////////////////////////////////////////////
void gatherND(nd4j::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) {
const int maxRank = nd4j::math::nd4j_max<int>(indices.rankOf(), nd4j::math::nd4j_max<int>(input.rankOf(), output.rankOf()));
const int threadsPerBlock = MAX_NUM_THREADS;
const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = 8 * threadsPerBlock * maxRank + 128;
const auto xType = input.dataType();
const auto yType = indices.dataType();
PointersManager manager(context, "gatherND");
NDArray::prepareSpecialUse({&output}, {&input, &indices});
BUILD_DOUBLE_SELECTOR(xType, yType, gatherNDCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo()), LIBND4J_TYPES, INTEGER_TYPES);
NDArray::registerSpecialUse({&output}, {&input, &indices});
manager.synchronize();
}
}
}
}

View File

@ -0,0 +1,118 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/legacy_helpers.h>
#include <NDArrayFactory.h>
#include <op_boilerplate.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
linkage void reluDerivative__(NDArray* theFirst, NDArray* theSecond) {
auto functor = LAMBDA_TT(x, y){
return x > (T) 0.f ? y : T(0.f);
};
theFirst->applyPairwiseLambda(theSecond, functor, nullptr);
}
BUILD_SINGLE_TEMPLATE(template void reluDerivative__, (NDArray* input, NDArray* epsilon), FLOAT_TYPES);
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative__, (theFirst, theSecond), FLOAT_TYPES);
}
template <typename T>
linkage void reluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T)0.f ? y : T(0.f);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void reluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void relu6Derivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T)0.f && x < (T)6.f? y : T(0.f);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void relu6Derivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void relu6Derivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), relu6Derivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x >= (T)0.f? y : T(0.f);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void leakyReluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * nd4j::math::nd4j_eluderivative<T,T>(x);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void eluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void seluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * simdOps::SELUDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void seluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void seluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), seluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
}
}
}

View File

@ -0,0 +1,93 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/legacy_helpers.h>
#include <NDArrayFactory.h>
#include <op_boilerplate.h>
namespace nd4j {
namespace ops {
namespace helpers {
////////////////////////////////////////////////////////////////////////
template <typename T>
linkage void tanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T th = nd4j::math::nd4j_tanh<T,T>(x);
return y * ((T)1.0f - (th * th));
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void tanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), tanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
// return static_cast<X>(d2) * simdOps::HardTanhDerivative<X>::op(d1, nullptr);
template <typename T>
linkage void hardTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T th = nd4j::math::nd4j_tanh<T,T>(x);
return y * simdOps::HardTanhDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void hardTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void rationalTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * simdOps::RationalTanhDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void rationalTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rationalTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void rectifiedTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T) 0.0f ? y * (nd4j::math::nd4j_tanhderivative<T,T>(x)) : (T) 0.0f;
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void rectifiedTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rectifiedTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
}
}
}

View File

@ -25,93 +25,6 @@
namespace nd4j { namespace nd4j {
namespace ops { namespace ops {
namespace helpers { namespace helpers {
template <typename T>
linkage void reluDerivative__(NDArray* theFirst, NDArray* theSecond) {
auto functor = LAMBDA_TT(x, y){
return x > (T) 0.f ? y : T(0.f);
};
theFirst->applyPairwiseLambda(theSecond, functor, nullptr);
}
BUILD_SINGLE_TEMPLATE(template void reluDerivative__, (NDArray* input, NDArray* epsilon), FLOAT_TYPES);
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative__, (theFirst, theSecond), FLOAT_TYPES);
}
template <typename T>
linkage void reluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T)0.f ? y : T(0.f);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void reluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void relu6Derivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T)0.f && x < (T)6.f? y : T(0.f);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void relu6Derivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void relu6Derivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), relu6Derivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x >= (T)0.f? y : T(0.f);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void leakyReluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * nd4j::math::nd4j_eluderivative<T,T>(x);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void eluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void seluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * simdOps::SELUDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void seluDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void seluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), seluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T> template <typename T>
linkage void cubeDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { linkage void cubeDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
@ -180,70 +93,6 @@ namespace helpers {
BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropyGrad_, (logits, labels, output), FLOAT_TYPES); BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropyGrad_, (logits, labels, output), FLOAT_TYPES);
} }
////////////////////////////////////////////////////////////////////////
template <typename T>
linkage void tanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T th = nd4j::math::nd4j_tanh<T,T>(x);
return y * ((T)1.0f - (th * th));
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void tanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), tanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
// return static_cast<X>(d2) * simdOps::HardTanhDerivative<X>::op(d1, nullptr);
template <typename T>
linkage void hardTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
T th = nd4j::math::nd4j_tanh<T,T>(x);
return y * simdOps::HardTanhDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void hardTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void rationalTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return y * simdOps::RationalTanhDerivative<T>::op(x, nullptr);
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void rationalTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rationalTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
template <typename T>
linkage void rectifiedTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
auto functor = LAMBDA_TT(x, y){
return x > (T) 0.0f ? y * (nd4j::math::nd4j_tanhderivative<T,T>(x)) : (T) 0.0f;
};
input->applyPairwiseLambda(epsilon, functor, output);
}
BUILD_SINGLE_TEMPLATE(template void rectifiedTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES);
void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rectifiedTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
}
// X f = (X) 1.0f + nd4j::math::nd4j_abs<X>(d1); // X f = (X) 1.0f + nd4j::math::nd4j_abs<X>(d1);
// return (X) d2 * ((X) 1.0f / (f * f)); // return (X) d2 * ((X) 1.0f / (f * f));

View File

@ -0,0 +1,114 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <op_boilerplate.h>
#include <NDArray.h>
#include <helpers/ShapeUtils.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
void maximumBPFunctor_(NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) {
auto lambdaX = LAMBDA_TTT(_e, _x, _y) {
return _x >= _y ? _e : (T) 0.;
};
auto lambdaY = LAMBDA_TTT(_e, _x, _y) {
return _x <= _y ? _e : (T) 0.;
};
if (x->isSameShape(y)) {
// PWT case case
// X gradient
epsNext->applyTriplewiseLambda(x, y, lambdaX, gradX);
// Y gradient
epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY);
} else if (y->isScalar()) {
T s = y->e<T>(0);
auto lambdaS = LAMBDA_TT(_e, _x, s) {
return _x >= s ? _e : (T) 0.;
};
// scalar case
auto tmp = epsNext->reduceNumber(reduce::Sum);
if (x <= y)
gradY->assign(tmp);
else
gradY->assign(0.0f);
epsNext->applyPairwiseLambda(x, lambdaS, gradX);
} else {
// broadcast case
// in this case we want to boost our X and Y shapes to the size of FF pass output (or epsNext, which has the same shape)
auto preX = x->dup();
auto preY = y->dup();
auto targetShape = epsNext->getShapeAsVector();
preX->tileToShape(targetShape);
preY->tileToShape(targetShape);
epsNext->applyTriplewiseLambda(preX, preY, lambdaX, preX);
epsNext->applyTriplewiseLambda(preX, preY, lambdaY, preY);
auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo());
auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo());
if (axisX.size() > 0) {
auto sum = preX->reduceAlongDimension(reduce::Sum, axisX);
gradX->assign(sum);
delete sum;
} else
gradX->assign(preX);
if (axisY.size() > 0) {
auto sum = preY->reduceAlongDimension(reduce::Sum, axisY);
gradY->assign(sum);
delete sum;
} else
gradY->assign(preY);
delete preX;
delete preY;
}
}
void maximumBPFunctor(nd4j::LaunchContext * context, NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) {
NDArray::prepareSpecialUse({gradX, gradY}, {x, y, epsNext});
BUILD_SINGLE_SELECTOR(x->dataType(), maximumBPFunctor_, (x, y, epsNext, gradX, gradY), NUMERIC_TYPES);
NDArray::registerSpecialUse({gradX, gradY}, {x, y, epsNext});
}
BUILD_SINGLE_TEMPLATE(template void maximumBPFunctor_, (NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY), NUMERIC_TYPES);
}
}
}

View File

@ -0,0 +1,234 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T, typename Z>
static __global__ void global_mergeMaxIndex_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<Z*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
Z mIdx(0);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape, length)];;
if (mVal < val)
mIdx = static_cast<Z>(e);
}
__syncthreads();
output[shape::getIndexOffset(e, outputShape, length)] = mIdx;
}
}
template <typename T, typename Z>
static void mergeMaxIndex_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeMaxIndex");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeMaxIndex_<T,Z><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
void mergeMaxIndex(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (context, inArrs, output), LIBND4J_TYPES, INTEGER_TYPES);
}
BUILD_DOUBLE_TEMPLATE(template void mergeMaxIndex_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES, INTEGER_TYPES);
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeMax_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape, length)];;
if (mVal < val)
mVal = val;
}
__syncthreads();
output[shape::getIndexOffset(e, outputShape, length)] = mVal;
}
}
template<typename T>
static void mergeMax_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeMax");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeMax_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeMax_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
void mergeMax(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (context, inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeAvg_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T sum(0.0f);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
sum += x[shape::getIndexOffset(e, xShape, length)];
}
output[shape::getIndexOffset(e, outputShape, length)] = sum / numArrays;
}
}
template<typename T>
static void mergeAvg_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAvg");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeAvg_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeAvg_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
void mergeAvg(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (context, inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeAdd_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T sum(0.0f);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
sum += x[shape::getIndexOffset(e, xShape, length)];
}
output[shape::getIndexOffset(e, outputShape, length)] = sum;
}
}
template<typename T>
static void mergeAdd_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAdd");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeAdd_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
void mergeAdd(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (context, inArrs, output), LIBND4J_TYPES);
}
}
}
}

View File

@ -100,78 +100,6 @@ namespace nd4j {
} }
} }
template <typename T>
void maximumBPFunctor_(NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) {
auto lambdaX = LAMBDA_TTT(_e, _x, _y) {
return _x >= _y ? _e : (T) 0.;
};
auto lambdaY = LAMBDA_TTT(_e, _x, _y) {
return _x <= _y ? _e : (T) 0.;
};
if (x->isSameShape(y)) {
// PWT case case
// X gradient
epsNext->applyTriplewiseLambda(x, y, lambdaX, gradX);
// Y gradient
epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY);
} else if (y->isScalar()) {
T s = y->e<T>(0);
auto lambdaS = LAMBDA_TT(_e, _x, s) {
return _x >= s ? _e : (T) 0.;
};
// scalar case
auto tmp = epsNext->reduceNumber(reduce::Sum);
if (x <= y)
gradY->assign(tmp);
else
gradY->assign(0.0f);
epsNext->applyPairwiseLambda(x, lambdaS, gradX);
} else {
// broadcast case
// in this case we want to boost our X and Y shapes to the size of FF pass output (or epsNext, which has the same shape)
auto preX = x->dup();
auto preY = y->dup();
auto targetShape = epsNext->getShapeAsVector();
preX->tileToShape(targetShape);
preY->tileToShape(targetShape);
epsNext->applyTriplewiseLambda(preX, preY, lambdaX, preX);
epsNext->applyTriplewiseLambda(preX, preY, lambdaY, preY);
auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo());
auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo());
if (axisX.size() > 0) {
auto sum = preX->reduceAlongDimension(reduce::Sum, axisX);
gradX->assign(sum);
delete sum;
} else
gradX->assign(preX);
if (axisY.size() > 0) {
auto sum = preY->reduceAlongDimension(reduce::Sum, axisY);
gradY->assign(sum);
delete sum;
} else
gradY->assign(preY);
delete preX;
delete preY;
}
}
void minimumBPFunctor(nd4j::LaunchContext * context, NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) { void minimumBPFunctor(nd4j::LaunchContext * context, NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) {
NDArray::prepareSpecialUse({gradX, gradY}, {x, y, epsNext}); NDArray::prepareSpecialUse({gradX, gradY}, {x, y, epsNext});
@ -181,15 +109,7 @@ namespace nd4j {
NDArray::registerSpecialUse({gradX, gradY}, {x, y, epsNext}); NDArray::registerSpecialUse({gradX, gradY}, {x, y, epsNext});
} }
void maximumBPFunctor(nd4j::LaunchContext * context, NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) {
NDArray::prepareSpecialUse({gradX, gradY}, {x, y, epsNext});
BUILD_SINGLE_SELECTOR(x->dataType(), maximumBPFunctor_, (x, y, epsNext, gradX, gradY), NUMERIC_TYPES);
NDArray::registerSpecialUse({gradX, gradY}, {x, y, epsNext});
}
BUILD_SINGLE_TEMPLATE(template void minimumBPFunctor_, (NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY), NUMERIC_TYPES); BUILD_SINGLE_TEMPLATE(template void minimumBPFunctor_, (NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY), NUMERIC_TYPES);
BUILD_SINGLE_TEMPLATE(template void maximumBPFunctor_, (NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY), NUMERIC_TYPES);
} }
} }

View File

@ -0,0 +1,283 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
// x - input, y - paddings, z - output
template<typename X, typename Y>
__global__ static void padCuda(const int mode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo,
const void *vPadVal) {
const X padVal = *reinterpret_cast<const X*>(vPadVal);
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<X*>(vz);
__shared__ int rank, rankMinusOne;
__shared__ Nd4jLong zLen, yLen, totalThreads, *coords, *xShape, *zShape, *xStride, *zStride, shift1, shift2, yStride0;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
coords = reinterpret_cast<Nd4jLong*>(shmem);
zLen = shape::length(zShapeInfo);
xShape = shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo));
zShape = shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo));
xStride = shape::stride(const_cast<Nd4jLong*>(xShapeInfo));
zStride = shape::stride(const_cast<Nd4jLong*>(zShapeInfo));
yStride0 = shape::stride(const_cast<Nd4jLong*>(yShapeInfo))[0];
rank = shape::rank(xShapeInfo);
zLen = shape::length(zShapeInfo);
yLen = 2 * rank;
rankMinusOne = rank - 1;
totalThreads = gridDim.x * blockDim.x;
shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC
shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC
}
__syncthreads();
auto xzCoord = coords + threadIdx.x * rank; // we use xzCoord storage both for x and z arrays
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if(mode == 0) { // CONSTANT case
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(rank, zShape, i, zLen, xzCoord);
const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank);
bool within = true;
for(int j = rankMinusOne; j >= 0; --j) {
if(xShape[j] == zShape[j]) continue;
const auto left = y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)];
if(xzCoord[j] < left || xzCoord[j] >= left + xShape[j]) {within = false; break;}
else {xzCoord[j] = xzCoord[j] - left;}
}
if(within)
z[zOffset] = x[shape::getOffset(0, xShape, xStride, xzCoord, rank)];
else
z[zOffset] = padVal;
}
}
else { // REFLECT and SYMMETRIC cases
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(rank, zShape, i, zLen, xzCoord);
const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank);
for(int j = rankMinusOne; j >= 0; --j) {
if(xShape[j] == zShape[j]) continue;
xzCoord[j] = xzCoord[j] - y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)]; // are ready to fill middle (within input dimension range)
if(xzCoord[j] < 0) xzCoord[j] = -xzCoord[j] - shift1; // means fill from left
else if(xzCoord[j] >= xShape[j]) xzCoord[j] = 2 * xShape[j] - xzCoord[j] - shift2; // means fill from right
}
const auto xOffset = shape::getOffset(0, xShape, xStride, xzCoord, rank);
z[zOffset] = x[xOffset];
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void padCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int mode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo,
const void* padVal) {
padCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(mode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, padVal);
}
BUILD_DOUBLE_TEMPLATE(template void padCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int mode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const void* vPadVal), LIBND4J_TYPES, INTEGER_TYPES);
///////////////////////////////////////////////////////////////////
void pad(nd4j::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) {
PointersManager manager(context, "pad");
NDArray::prepareSpecialUse({&output}, {&input, &paddings, &padValue});
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = 8 * threadsPerBlock * output.rankOf() + 128;
const auto xType = input.dataType();
const auto yType = paddings.dataType();
BUILD_DOUBLE_SELECTOR(xType, yType, padCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), mode, input.getSpecialBuffer(), input.getSpecialShapeInfo(), paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), padValue.getSpecialBuffer()), LIBND4J_TYPES, INTEGER_TYPES);
NDArray::registerSpecialUse({&output}, {&input, &paddings, &padValue});
manager.synchronize();
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mirrorPadLinearKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong leftSide, Nd4jLong leftSideCorrected, Nd4jLong xLen, Nd4jLong len, Nd4jLong zLen) {
__shared__ T const* x;
__shared__ T* z;
if (threadIdx.x == 0) {
x = reinterpret_cast<T const*>(vx);
z = reinterpret_cast<T*>(vz);
}
__syncthreads();
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = blockDim.x * gridDim.x;
for(int i = start; i < zLen; i+= step) {
auto zIndex = shape::getIndexOffset(i, zShape, zLen);
auto xIndex = shape::getIndexOffset(len - i, xShape, xLen);
if (i < leftSide) // left side
xIndex = shape::getIndexOffset(leftSideCorrected - i, xShape, xLen);
else if(i >= leftSide && i < leftSide + xLen) // middle
xIndex = shape::getIndexOffset(i - leftSide, xShape, xLen);
// else // right side
// z[i] = x[len - i];
z[zIndex] = x[xIndex];
}
}
template <typename F, typename I>
static __global__ void mirrorPadKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong outLen, void const* paddings, Nd4jLong* paddingShape, int reflBorder) {
__shared__ F const* x;
__shared__ I const* pads;
__shared__ F* z;
__shared__ Nd4jLong zRank, rank;
__shared__ Nd4jLong* xShapeOf, *xStrideOf, *padsShapeOf, *padsStrideOf;
__shared__ Nd4jLong* zShapeOf, *zStrideOf;
__shared__ Nd4jLong* xIdx;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
xIdx = reinterpret_cast<Nd4jLong*>(shmem);
rank = shape::rank(xShape);
x = reinterpret_cast<F const*>(vx);//
pads = reinterpret_cast<I const*>(paddings);
z = reinterpret_cast<F*>(vz);
xShapeOf = shape::shapeOf(xShape);
xStrideOf = shape::stride(xShape);
zShapeOf = shape::shapeOf(zShape);
zRank = shape::rank(zShape);
zStrideOf = shape::stride(zShape);
padsShapeOf = shape::shapeOf(paddingShape);
padsStrideOf = shape::stride(paddingShape);
}
__syncthreads();
auto start = threadIdx.x + blockIdx.x * blockDim.x;
auto step = blockDim.x * gridDim.x;
for(Nd4jLong i = start; i < outLen; i+= step) {
auto xzCoord = xIdx + threadIdx.x * rank;
//auto zxCoord = xIdx + (threadIdx.x + threadIdx.x % 2 + 1) * rank;
shape::index2coords(rank, zShapeOf, i, xzCoord);
auto outOffset = shape::getOffset(0, zShapeOf, zStrideOf, xzCoord, rank);
// auto intStep = blockDim.y * gridDim.y;
for(int j = 0; j < rank; j++) {
const Nd4jLong inLen = shape::sizeAt(xShape, j);
Nd4jLong coords[2] = {j, 0};
auto padOffset = shape::getOffset(0, padsShapeOf, padsStrideOf, coords, 2); // padding already has rank 2
const auto leftSide = pads[padOffset];
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder;
if(xzCoord[j] < leftSide) // left side
xzCoord[j] = leftSideCorrected - xzCoord[j];
else if(xzCoord[j] >= leftSide && xzCoord[j] < leftSide + inLen) // middle
xzCoord[j] = xzCoord[j] - leftSide;
else if (len > xzCoord[j]) // right side
xzCoord[j] = len - xzCoord[j];
else
xzCoord[j] = xzCoord[j] - len;
}
auto inOffset = shape::getOffset(0, xShapeOf, xStrideOf, xzCoord, rank);
z[outOffset] = x[inOffset];
}
}
template<typename F, typename I>
static void mirrorPad_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
// mode: 0 - REFLECT, else - SYMMETRIC
const int reflBorder = (bool)mode ? 1 : 0;
const int rank = input.rankOf();
const Nd4jLong outLen = output.lengthOf();
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({&output}, {&input, &paddings});
if(rank <= 1) {
const Nd4jLong inLen = input.lengthOf();
const auto leftSide = paddings.e<Nd4jLong>(0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
mirrorPadLinearKernel<F><<<256, 512, 256, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftSide, leftSideCorrected, inLen, len, outLen);
nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadLinearKernel(...) failed");
}
else {
mirrorPadKernel<F, I><<<256, 256, 8192, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), outLen, paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), reflBorder);
nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadKernel(...) failed");
}
NDArray::registerSpecialUse({&output}, {&input, &paddings});
}
void mirrorPad(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
BUILD_DOUBLE_SELECTOR(input.dataType(), paddings.dataType(), mirrorPad_, (context, input, paddings, output, mode), LIBND4J_TYPES, INTEGER_TYPES);
}
BUILD_DOUBLE_TEMPLATE(template void mirrorPad_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES, INTEGER_TYPES);
}
}
}

View File

@ -0,0 +1,79 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename X, typename Y>
static _CUDA_G void scatterSimpleKernel(void *vx, Nd4jLong *xTadShape, Nd4jLong *xTadOffsets, Nd4jLong xLength, Nd4jLong numTads, void *vi, Nd4jLong *iShapeInfo, Nd4jLong iLength, void *vu, Nd4jLong *uShapeInfo, Nd4jLong uLength) {
auto u = reinterpret_cast<X*>(vu);
auto indices = reinterpret_cast<Y*>(vi);
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = tid; i < iLength; i += blockDim.x * gridDim.x) {
auto x = reinterpret_cast<X*>(vx) + xTadOffsets[i];
auto idx = indices[shape::getIndexOffset(i, iShapeInfo, iLength)];
x[shape::getIndexOffset(idx, xTadShape, xLength)] = u[shape::getIndexOffset(i, uShapeInfo, uLength)];
}
}
template <typename X, typename Y>
void scatterSimple_(nd4j::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions) {
auto dims = ShapeUtils::evalDimsToExclude(input.rankOf(), dimensions);
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), dims);
auto xLength = shape::length(packX.primaryShapeInfo());
auto iLength = indices.lengthOf();
auto uLength = updates.lengthOf();
scatterSimpleKernel<X,Y><<<256, 256, 1024, *context->getCudaStream()>>>(input.getSpecialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), xLength, packX.numberOfTads(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), iLength, updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), uLength);
}
void scatterSimple(nd4j::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions) {
auto xType = input.dataType();
auto yType = indices.dataType();
if (opId != 6)
throw std::runtime_error("scatterSimple: only copy op is supported");
NDArray::prepareSpecialUse({&input}, {&updates, &indices});
BUILD_DOUBLE_SELECTOR(xType, yType, scatterSimple_, (context, opId, input, updates, indices, dimensions), LIBND4J_TYPES, INTEGER_TYPES);
NDArray::registerSpecialUse({&input}, {&updates, &indices});
}
}
}
}

View File

@ -0,0 +1,133 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void scatterUpdateCuda(const int opCode, const int numOfInd,
void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets,
void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets,
const int* indexes) {
__shared__ T *x, *y;
__shared__ Nd4jLong arrLenX, arrLenY;
for (int e = 0; e < numOfInd; e++ ) {
const auto xIndex = indexes[e];
const bool isOwner = xIndex < gridDim.x ? blockIdx.x == xIndex : blockIdx.x == xIndex % gridDim.x;
if (!isOwner)
continue;
if (threadIdx.x == 0) {
x = reinterpret_cast<T*>(vx) + xOffsets[xIndex];
y = reinterpret_cast<T*>(vy) + yOffsets[e];
arrLenX = shape::length(xShapeInfo);
arrLenY = shape::length(yShapeInfo);
}
__syncthreads();
if (arrLenX != arrLenY)
return;
for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
const auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLenX);
const auto yOffset = shape::getIndexOffset(i, yShapeInfo, arrLenY);
switch (opCode) {
case 0:
x[xOffset] += y[yOffset];
break;
case 1:
x[xOffset] -= y[yOffset];
break;
case 2:
x[xOffset] *= y[yOffset];
break;
case 3:
x[xOffset] /= y[yOffset];
break;
case 4:
x[xOffset] = y[yOffset] - x[xOffset];
break;
case 5:
x[xOffset] = y[yOffset] / x[xOffset];
break;
case 6:
x[xOffset] = y[yOffset];
break;
default:
continue;
}
}
__syncthreads();
}
}
template<typename T>
__host__ static void scatterUpdateCudaLauncher(const cudaStream_t* stream, const int opCode, const int numOfInd, void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets, void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets, const int* indexes) {
scatterUpdateCuda<T><<<512, 256, MAX_NUM_THREADS, *stream>>>(opCode, numOfInd, vx, xShapeInfo, xOffsets, vy, yShapeInfo, yOffsets, indexes);
}
//////////////////////////////////////////////////////////////////////////
void scatterUpdate(nd4j::LaunchContext* context, NDArray& input, NDArray& updates, const std::vector<int>* intArgs) {
const int opCode = (*intArgs)[0];
const int numOfDims = (*intArgs)[1];
const int numOfInd = (*intArgs)[2 + numOfDims];
std::vector<int> tadDimensions(numOfDims);
for (int e = 2; e < 2 + numOfDims; e++)
tadDimensions[e-2] = (*intArgs)[e];
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), tadDimensions);
auto packY = ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), tadDimensions);
NDArray indices(const_cast<int*>(intArgs->data()) + numOfDims + 3, 'c', {numOfInd}, nd4j::DataType::INT32, context);
PointersManager manager(context, "scatterUpdate");
NDArray::prepareSpecialUse({&input}, {&input, &updates, &indices});
BUILD_SINGLE_SELECTOR(input.dataType(), scatterUpdateCudaLauncher, (context->getCudaStream(), opCode, numOfInd, input.specialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), updates.specialBuffer(), packY.platformShapeInfo(), packY.platformOffsets(), reinterpret_cast<int*>(indices.getSpecialBuffer())), LIBND4J_TYPES);
NDArray::registerSpecialUse({&input}, {&input, &updates, &indices});
manager.synchronize();
}
}
}
}

View File

@ -33,163 +33,6 @@ namespace nd4j {
namespace ops { namespace ops {
namespace helpers { namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void concatCuda(const int numOfArrs, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) {
__shared__ int arrIdx, blocksPerArr;
__shared__ T *x, *z;
__shared__ Nd4jLong *zShapeInfo, *xShapeInfo, arrLen, arrLenPerBlock, start, end;
if (threadIdx.x == 0) {
blocksPerArr = (gridDim.x + numOfArrs - 1) / numOfArrs; // ceil
arrIdx = blockIdx.x / blocksPerArr;
x = reinterpret_cast<T*>(reinterpret_cast<void**>(pVx)[arrIdx]);
z = reinterpret_cast<T*>(reinterpret_cast<void**>(pVz)[arrIdx]);
xShapeInfo = reinterpret_cast<Nd4jLong**>(pxShapeInfo)[arrIdx];
zShapeInfo = reinterpret_cast<Nd4jLong**>(pzShapeInfo)[arrIdx];
arrLen = shape::length(xShapeInfo);
arrLenPerBlock = (arrLen + blocksPerArr - 1) / blocksPerArr; // ceil
start = (blockIdx.x % blocksPerArr) * arrLenPerBlock;
end = (start + arrLenPerBlock) > arrLen ? arrLen : (start + arrLenPerBlock);
}
__syncthreads();
for (Nd4jLong i = start + threadIdx.x; i < end; i += blockDim.x)
z[shape::getIndexOffset(i, zShapeInfo, arrLen)] = x[shape::getIndexOffset(i, xShapeInfo, arrLen)];
}
///////////////////////////////////////////////////////////////////
template<typename T>
__host__ static void concatCudaLauncher(const int numOfArrs, const cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) {
concatCuda<T><<<512, 256, 1024, *stream>>>(numOfArrs, pVx, pxShapeInfo, pVz, pzShapeInfo);
}
BUILD_SINGLE_TEMPLATE(template void concatCudaLauncher, (const int numOfArrs, const cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo), LIBND4J_TYPES);
///////////////////////////////////////////////////////////////////
// x - input, y - paddings, z - output
template<typename X, typename Y>
__global__ static void padCuda(const int mode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo,
const void *vPadVal) {
const X padVal = *reinterpret_cast<const X*>(vPadVal);
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<X*>(vz);
__shared__ int rank, rankMinusOne;
__shared__ Nd4jLong zLen, yLen, totalThreads, *coords, *xShape, *zShape, *xStride, *zStride, shift1, shift2, yStride0;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
coords = reinterpret_cast<Nd4jLong*>(shmem);
zLen = shape::length(zShapeInfo);
xShape = shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo));
zShape = shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo));
xStride = shape::stride(const_cast<Nd4jLong*>(xShapeInfo));
zStride = shape::stride(const_cast<Nd4jLong*>(zShapeInfo));
yStride0 = shape::stride(const_cast<Nd4jLong*>(yShapeInfo))[0];
rank = shape::rank(xShapeInfo);
zLen = shape::length(zShapeInfo);
yLen = 2 * rank;
rankMinusOne = rank - 1;
totalThreads = gridDim.x * blockDim.x;
shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC
shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC
}
__syncthreads();
auto xzCoord = coords + threadIdx.x * rank; // we use xzCoord storage both for x and z arrays
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if(mode == 0) { // CONSTANT case
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(rank, zShape, i, zLen, xzCoord);
const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank);
bool within = true;
for(int j = rankMinusOne; j >= 0; --j) {
if(xShape[j] == zShape[j]) continue;
const auto left = y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)];
if(xzCoord[j] < left || xzCoord[j] >= left + xShape[j]) {within = false; break;}
else {xzCoord[j] = xzCoord[j] - left;}
}
if(within)
z[zOffset] = x[shape::getOffset(0, xShape, xStride, xzCoord, rank)];
else
z[zOffset] = padVal;
}
}
else { // REFLECT and SYMMETRIC cases
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(rank, zShape, i, zLen, xzCoord);
const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank);
for(int j = rankMinusOne; j >= 0; --j) {
if(xShape[j] == zShape[j]) continue;
xzCoord[j] = xzCoord[j] - y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)]; // are ready to fill middle (within input dimension range)
if(xzCoord[j] < 0) xzCoord[j] = -xzCoord[j] - shift1; // means fill from left
else if(xzCoord[j] >= xShape[j]) xzCoord[j] = 2 * xShape[j] - xzCoord[j] - shift2; // means fill from right
}
const auto xOffset = shape::getOffset(0, xShape, xStride, xzCoord, rank);
z[zOffset] = x[xOffset];
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void padCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int mode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo,
const void* padVal) {
padCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(mode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, padVal);
}
BUILD_DOUBLE_TEMPLATE(template void padCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int mode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const void* vPadVal), LIBND4J_TYPES, INTEGER_TYPES);
///////////////////////////////////////////////////////////////////
void pad(nd4j::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) {
PointersManager manager(context, "pad");
NDArray::prepareSpecialUse({&output}, {&input, &paddings, &padValue});
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = 8 * threadsPerBlock * output.rankOf() + 128;
const auto xType = input.dataType();
const auto yType = paddings.dataType();
BUILD_DOUBLE_SELECTOR(xType, yType, padCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), mode, input.getSpecialBuffer(), input.getSpecialShapeInfo(), paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), padValue.getSpecialBuffer()), LIBND4J_TYPES, INTEGER_TYPES);
NDArray::registerSpecialUse({&output}, {&input, &paddings, &padValue});
manager.synchronize();
}
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
template<typename T> template<typename T>
__global__ static void invertPermutationCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo) { __global__ static void invertPermutationCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo) {
@ -458,214 +301,6 @@ void tileBP(nd4j::LaunchContext * context, const NDArray& gradO /*input*/, NDArr
manager.synchronize(); manager.synchronize();
} }
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void scatterUpdateCuda(const int opCode, const int numOfInd,
void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets,
void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets,
const int* indexes) {
__shared__ T *x, *y;
__shared__ Nd4jLong arrLenX, arrLenY;
for (int e = 0; e < numOfInd; e++ ) {
const auto xIndex = indexes[e];
const bool isOwner = xIndex < gridDim.x ? blockIdx.x == xIndex : blockIdx.x == xIndex % gridDim.x;
if (!isOwner)
continue;
if (threadIdx.x == 0) {
x = reinterpret_cast<T*>(vx) + xOffsets[xIndex];
y = reinterpret_cast<T*>(vy) + yOffsets[e];
arrLenX = shape::length(xShapeInfo);
arrLenY = shape::length(yShapeInfo);
}
__syncthreads();
if (arrLenX != arrLenY)
return;
for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
const auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLenX);
const auto yOffset = shape::getIndexOffset(i, yShapeInfo, arrLenY);
switch (opCode) {
case 0:
x[xOffset] += y[yOffset];
break;
case 1:
x[xOffset] -= y[yOffset];
break;
case 2:
x[xOffset] *= y[yOffset];
break;
case 3:
x[xOffset] /= y[yOffset];
break;
case 4:
x[xOffset] = y[yOffset] - x[xOffset];
break;
case 5:
x[xOffset] = y[yOffset] / x[xOffset];
break;
case 6:
x[xOffset] = y[yOffset];
break;
default:
continue;
}
}
__syncthreads();
}
}
template<typename T>
__host__ static void scatterUpdateCudaLauncher(const cudaStream_t* stream, const int opCode, const int numOfInd, void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets, void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets, const int* indexes) {
scatterUpdateCuda<T><<<512, 256, MAX_NUM_THREADS, *stream>>>(opCode, numOfInd, vx, xShapeInfo, xOffsets, vy, yShapeInfo, yOffsets, indexes);
}
//////////////////////////////////////////////////////////////////////////
void scatterUpdate(nd4j::LaunchContext* context, NDArray& input, NDArray& updates, const std::vector<int>* intArgs) {
const int opCode = (*intArgs)[0];
const int numOfDims = (*intArgs)[1];
const int numOfInd = (*intArgs)[2 + numOfDims];
std::vector<int> tadDimensions(numOfDims);
for (int e = 2; e < 2 + numOfDims; e++)
tadDimensions[e-2] = (*intArgs)[e];
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), tadDimensions);
auto packY = ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), tadDimensions);
NDArray indices(const_cast<int*>(intArgs->data()) + numOfDims + 3, 'c', {numOfInd}, nd4j::DataType::INT32, context);
PointersManager manager(context, "scatterUpdate");
NDArray::prepareSpecialUse({&input}, {&input, &updates, &indices});
BUILD_SINGLE_SELECTOR(input.dataType(), scatterUpdateCudaLauncher, (context->getCudaStream(), opCode, numOfInd, input.specialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), updates.specialBuffer(), packY.platformShapeInfo(), packY.platformOffsets(), reinterpret_cast<int*>(indices.getSpecialBuffer())), LIBND4J_TYPES);
NDArray::registerSpecialUse({&input}, {&input, &updates, &indices});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
// x - input, y - indices, z - output
template<typename X, typename Y>
__global__ static void gatherNDCuda(const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<X*>(vz);
__shared__ int xRank, yRank, zRank, maxRank, yLastDim;
__shared__ Nd4jLong zLen, totalThreads, *sharedMem;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
maxRank = nd4j::math::nd4j_max<int>(yRank, nd4j::math::nd4j_max<int>(xRank, zRank));
zLen = shape::length(zShapeInfo);
yLastDim = yShapeInfo[yRank];
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
auto coord = sharedMem + threadIdx.x * maxRank;
Nd4jLong *zCoordStart, *xCoordStart;
if(yLastDim == xRank) {
zCoordStart = coord;
xCoordStart = coord;
}
if(zRank >= xRank) {
zCoordStart = coord;
xCoordStart = coord + zRank - xRank;
}
else {
zCoordStart = coord + xRank - zRank;
xCoordStart = coord;
}
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(zRank, zShapeInfo + 1, i, zLen, zCoordStart);
const auto zOffset = shape::getOffset(0, zShapeInfo + 1, zShapeInfo + zRank + 1, zCoordStart, zRank);
// last y coordinate
int coordToRestore;
if(yLastDim != xRank)
coordToRestore = static_cast<int>(zCoordStart[yRank - 1]);
zCoordStart[yRank - 1] = 0; // last y coordinate
const auto yOffset = shape::getOffset(0, yShapeInfo + 1, yShapeInfo + yRank + 1, zCoordStart, yRank);
//restore z coordinate
if(yLastDim != xRank)
zCoordStart[yRank - 1] = coordToRestore;
// construct coordinates for x
for(uint j = 0; j < yLastDim; ++j)
xCoordStart[j] = y[yOffset + j * yShapeInfo[2 * yRank]]; // last stride
const auto xOffset = shape::getOffset(0, xShapeInfo + 1, xShapeInfo + xRank + 1, xCoordStart, xRank);
z[zOffset] = x[xOffset];
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void gatherNDCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
gatherNDCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
}
BUILD_DOUBLE_TEMPLATE(template void gatherNDCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo), LIBND4J_TYPES, INTEGER_TYPES);
///////////////////////////////////////////////////////////////////
void gatherND(nd4j::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) {
const int maxRank = nd4j::math::nd4j_max<int>(indices.rankOf(), nd4j::math::nd4j_max<int>(input.rankOf(), output.rankOf()));
const int threadsPerBlock = MAX_NUM_THREADS;
const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = 8 * threadsPerBlock * maxRank + 128;
const auto xType = input.dataType();
const auto yType = indices.dataType();
PointersManager manager(context, "gatherND");
NDArray::prepareSpecialUse({&output}, {&input, &indices});
BUILD_DOUBLE_SELECTOR(xType, yType, gatherNDCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo()), LIBND4J_TYPES, INTEGER_TYPES);
NDArray::registerSpecialUse({&output}, {&input, &indices});
manager.synchronize();
}
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
// x - input, y - gradO, z - gradI // x - input, y - gradO, z - gradI
template<typename X, typename Z> template<typename X, typename Z>
@ -929,43 +564,6 @@ void clipByNormBP(nd4j::LaunchContext* context, const NDArray& input, const NDAr
manager.synchronize(); manager.synchronize();
} }
template <typename T> template <typename T>
static __global__ void swapShuffleKernel(T* input, Nd4jLong* shape, Nd4jLong firstDim, Nd4jLong len, nd4j::graph::RandomGenerator* rng) { static __global__ void swapShuffleKernel(T* input, Nd4jLong* shape, Nd4jLong firstDim, Nd4jLong len, nd4j::graph::RandomGenerator* rng) {
auto tid = blockIdx.x * blockDim.x; auto tid = blockIdx.x * blockDim.x;
@ -1091,209 +689,11 @@ void clipByNormBP(nd4j::LaunchContext* context, const NDArray& input, const NDAr
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
void eye(nd4j::LaunchContext * context, NDArray& output) { void eye(nd4j::LaunchContext * context, NDArray& output) {
output.setIdentity(); output.setIdentity();
}
//////////////////////////////////////////////////////////////////////////
template <typename T, typename Z>
static __global__ void global_mergeMaxIndex_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<Z*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
Z mIdx(0);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape, length)];;
if (mVal < val)
mIdx = static_cast<Z>(e);
}
__syncthreads();
output[shape::getIndexOffset(e, outputShape, length)] = mIdx;
}
} }
template <typename T, typename Z>
static void mergeMaxIndex_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeMaxIndex");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeMaxIndex_<T,Z><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
void mergeMaxIndex(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (context, inArrs, output), LIBND4J_TYPES, INTEGER_TYPES);
}
BUILD_DOUBLE_TEMPLATE(template void mergeMaxIndex_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES, INTEGER_TYPES);
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeMax_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape, length)];;
if (mVal < val)
mVal = val;
}
__syncthreads();
output[shape::getIndexOffset(e, outputShape, length)] = mVal;
}
}
template<typename T>
static void mergeMax_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeMax");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeMax_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeMax_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
void mergeMax(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (context, inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeAvg_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T sum(0.0f);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
sum += x[shape::getIndexOffset(e, xShape, length)];
}
output[shape::getIndexOffset(e, outputShape, length)] = sum / numArrays;
}
}
template<typename T>
static void mergeAvg_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAvg");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeAvg_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeAvg_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
void mergeAvg(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (context, inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeAdd_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T sum(0.0f);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
sum += x[shape::getIndexOffset(e, xShape, length)];
}
output[shape::getIndexOffset(e, outputShape, length)] = sum;
}
}
template<typename T>
static void mergeAdd_(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAdd");
auto pInBuffers = reinterpret_cast<void **>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *)));
auto pInShapes = reinterpret_cast<void **>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *)));
auto length = output.lengthOf();
global_mergeAdd_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), LIBND4J_TYPES);
void mergeAdd(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (context, inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T> template <typename T>
@ -1546,232 +946,6 @@ void eye(nd4j::LaunchContext * context, NDArray& output) {
BUILD_SINGLE_TEMPLATE(template void clipByValue_, (nd4j::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES); BUILD_SINGLE_TEMPLATE(template void clipByValue_, (nd4j::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mirrorPadLinearKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong leftSide, Nd4jLong leftSideCorrected, Nd4jLong xLen, Nd4jLong len, Nd4jLong zLen) {
__shared__ T const* x;
__shared__ T* z;
if (threadIdx.x == 0) {
x = reinterpret_cast<T const*>(vx);
z = reinterpret_cast<T*>(vz);
}
__syncthreads();
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = blockDim.x * gridDim.x;
for(int i = start; i < zLen; i+= step) {
auto zIndex = shape::getIndexOffset(i, zShape, zLen);
auto xIndex = shape::getIndexOffset(len - i, xShape, xLen);
if (i < leftSide) // left side
xIndex = shape::getIndexOffset(leftSideCorrected - i, xShape, xLen);
else if(i >= leftSide && i < leftSide + xLen) // middle
xIndex = shape::getIndexOffset(i - leftSide, xShape, xLen);
// else // right side
// z[i] = x[len - i];
z[zIndex] = x[xIndex];
}
}
template <typename F, typename I>
static __global__ void mirrorPadKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong outLen, void const* paddings, Nd4jLong* paddingShape, int reflBorder) {
__shared__ F const* x;
__shared__ I const* pads;
__shared__ F* z;
__shared__ Nd4jLong zRank, rank;
__shared__ Nd4jLong* xShapeOf, *xStrideOf, *padsShapeOf, *padsStrideOf;
__shared__ Nd4jLong* zShapeOf, *zStrideOf;
__shared__ Nd4jLong* xIdx;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
xIdx = reinterpret_cast<Nd4jLong*>(shmem);
rank = shape::rank(xShape);
x = reinterpret_cast<F const*>(vx);//
pads = reinterpret_cast<I const*>(paddings);
z = reinterpret_cast<F*>(vz);
xShapeOf = shape::shapeOf(xShape);
xStrideOf = shape::stride(xShape);
zShapeOf = shape::shapeOf(zShape);
zRank = shape::rank(zShape);
zStrideOf = shape::stride(zShape);
padsShapeOf = shape::shapeOf(paddingShape);
padsStrideOf = shape::stride(paddingShape);
}
__syncthreads();
auto start = threadIdx.x + blockIdx.x * blockDim.x;
auto step = blockDim.x * gridDim.x;
for(Nd4jLong i = start; i < outLen; i+= step) {
auto xzCoord = xIdx + threadIdx.x * rank;
//auto zxCoord = xIdx + (threadIdx.x + threadIdx.x % 2 + 1) * rank;
shape::index2coords(rank, zShapeOf, i, xzCoord);
auto outOffset = shape::getOffset(0, zShapeOf, zStrideOf, xzCoord, rank);
// auto intStep = blockDim.y * gridDim.y;
for(int j = 0; j < rank; j++) {
const Nd4jLong inLen = shape::sizeAt(xShape, j);
Nd4jLong coords[2] = {j, 0};
auto padOffset = shape::getOffset(0, padsShapeOf, padsStrideOf, coords, 2); // padding already has rank 2
const auto leftSide = pads[padOffset];
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder;
if(xzCoord[j] < leftSide) // left side
xzCoord[j] = leftSideCorrected - xzCoord[j];
else if(xzCoord[j] >= leftSide && xzCoord[j] < leftSide + inLen) // middle
xzCoord[j] = xzCoord[j] - leftSide;
else if (len > xzCoord[j]) // right side
xzCoord[j] = len - xzCoord[j];
else
xzCoord[j] = xzCoord[j] - len;
}
auto inOffset = shape::getOffset(0, xShapeOf, xStrideOf, xzCoord, rank);
z[outOffset] = x[inOffset];
}
}
template<typename F, typename I>
static void mirrorPad_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
// mode: 0 - REFLECT, else - SYMMETRIC
const int reflBorder = (bool)mode ? 1 : 0;
const int rank = input.rankOf();
const Nd4jLong outLen = output.lengthOf();
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({&output}, {&input, &paddings});
if(rank <= 1) {
const Nd4jLong inLen = input.lengthOf();
const auto leftSide = paddings.e<Nd4jLong>(0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
mirrorPadLinearKernel<F><<<256, 512, 256, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftSide, leftSideCorrected, inLen, len, outLen);
nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadLinearKernel(...) failed");
}
else {
mirrorPadKernel<F, I><<<256, 256, 8192, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), outLen, paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), reflBorder);
nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadKernel(...) failed");
}
NDArray::registerSpecialUse({&output}, {&input, &paddings});
}
void mirrorPad(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
BUILD_DOUBLE_SELECTOR(input.dataType(), paddings.dataType(), mirrorPad_, (context, input, paddings, output, mode), LIBND4J_TYPES, INTEGER_TYPES);
}
BUILD_DOUBLE_TEMPLATE(template void mirrorPad_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES, INTEGER_TYPES);
//////////////////////////////////////////////////////////////////////////
void concat(nd4j::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output, const int axis) {
const int numOfArrs = inArrs.size();
for(int i = 0; i < numOfArrs; ++i)
if(!inArrs[i]->isActualOnDeviceSide()) inArrs[i]->syncToDevice();
const int rank = inArrs[0]->rankOf();
const int rank2 = 2*rank;
std::vector<std::vector<Nd4jLong>> indices(numOfArrs, std::vector<Nd4jLong>(rank2,0));
// take into account indices for first array
indices[0][2 * axis + 1] = inArrs[0]->sizeAt(axis);
// loop through the rest of input arrays
for(int i = 1; i < numOfArrs; ++i) {
indices[i][2 * axis] = indices[i-1][2 * axis + 1]; // index start from
indices[i][2 * axis + 1] = indices[i-1][2 * axis + 1] + inArrs[i]->sizeAt(axis); // index end with (excluding)
}
std::vector<NDArray*> outSubArrs(numOfArrs);
for(int i = 0; i < numOfArrs; ++i)
outSubArrs[i] = new NDArray(output(indices[i], true));
// prepare arrays of pointers on buffers and shapes
std::vector<void*> hOutBuffers(numOfArrs), hInBuffers(numOfArrs);
std::vector<Nd4jLong*> hOutShapeInfo(numOfArrs), hInShapeInfo(numOfArrs);
for(int i = 0; i < numOfArrs; ++i) {
hOutBuffers[i] = outSubArrs[i]->getSpecialBuffer();
hInBuffers[i] = inArrs[i]->getSpecialBuffer();
hOutShapeInfo[i] = outSubArrs[i]->getSpecialShapeInfo();
hInShapeInfo[i] = inArrs[i]->getSpecialShapeInfo();
}
// allocate and copy all buffers and shapes arrays to global memory
PointersManager manager(context, "helpers::concat");
void* dOutBuffers = manager.replicatePointer(hOutBuffers.data(), hOutBuffers.size() * sizeof(void*));
void* dInBuffers = manager.replicatePointer(hInBuffers.data(), hInBuffers.size() * sizeof(void*));
void* dInShapeInfo = manager.replicatePointer(hInShapeInfo.data(), hInShapeInfo.size() * sizeof(Nd4jLong*));
void* dOutShapeInfo = manager.replicatePointer(hOutShapeInfo.data(), hOutShapeInfo.size() * sizeof(Nd4jLong*));
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), concatCudaLauncher, (numOfArrs, context->getCudaStream(), dInBuffers, dInShapeInfo, dOutBuffers, dOutShapeInfo), LIBND4J_TYPES);
manager.synchronize();
for(int i = 0; i < numOfArrs; ++i)
delete outSubArrs[i];
for(int i = 0; i < numOfArrs; ++i)
inArrs[i]->tickReadHost();
output.tickWriteDevice();
}
template <typename X, typename Y>
static _CUDA_G void scatterSimpleKernel(void *vx, Nd4jLong *xTadShape, Nd4jLong *xTadOffsets, Nd4jLong xLength, Nd4jLong numTads, void *vi, Nd4jLong *iShapeInfo, Nd4jLong iLength, void *vu, Nd4jLong *uShapeInfo, Nd4jLong uLength) {
auto u = reinterpret_cast<X*>(vu);
auto indices = reinterpret_cast<Y*>(vi);
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = tid; i < iLength; i += blockDim.x * gridDim.x) {
auto x = reinterpret_cast<X*>(vx) + xTadOffsets[i];
auto idx = indices[shape::getIndexOffset(i, iShapeInfo, iLength)];
x[shape::getIndexOffset(idx, xTadShape, xLength)] = u[shape::getIndexOffset(i, uShapeInfo, uLength)];
}
}
template <typename X, typename Y>
void scatterSimple_(nd4j::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions) {
auto dims = ShapeUtils::evalDimsToExclude(input.rankOf(), dimensions);
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), dims);
auto xLength = shape::length(packX.primaryShapeInfo());
auto iLength = indices.lengthOf();
auto uLength = updates.lengthOf();
scatterSimpleKernel<X,Y><<<256, 256, 1024, *context->getCudaStream()>>>(input.getSpecialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), xLength, packX.numberOfTads(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), iLength, updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), uLength);
}
void scatterSimple(nd4j::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions) {
auto xType = input.dataType();
auto yType = indices.dataType();
if (opId != 6)
throw std::runtime_error("scatterSimple: only copy op is supported");
NDArray::prepareSpecialUse({&input}, {&updates, &indices});
BUILD_DOUBLE_SELECTOR(xType, yType, scatterSimple_, (context, opId, input, updates, indices, dimensions), LIBND4J_TYPES, INTEGER_TYPES);
NDArray::registerSpecialUse({&input}, {&updates, &indices});
}
} }
} }
} }

View File

@ -29,11 +29,15 @@ if (CUDA_BLAS)
if(WIN32) if(WIN32)
message("CUDA on Windows: enabling /EHsc") message("CUDA on Windows: enabling /EHsc")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /EHsc /FS") SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /EHsc /FS /w")
SET_TARGET_PROPERTIES(${LIBND4J_NAME} PROPERTIES COMPILER_FLAGS "/EHsc") SET_TARGET_PROPERTIES(${LIBND4J_NAME} PROPERTIES COMPILER_FLAGS "/EHsc")
endif() endif()
if ("${COMPUTE}" STREQUAL "all")
list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w --cudart=static -O3 --expt-extended-lambda -gencode arch=compute_35,code=sm_35 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70)
else()
list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w -G -g --cudart=static --expt-extended-lambda -arch=compute_${COMPUTE} -code=sm_${COMPUTE}) list(APPEND CUDA_NVCC_FLAGS -DCUDA_10 ${EXPM} -w -G -g --cudart=static --expt-extended-lambda -arch=compute_${COMPUTE} -code=sm_${COMPUTE})
endif()
endif() endif()
# -fsanitize=address # -fsanitize=address

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -229,22 +229,22 @@ TEST_F(DeclarableOpsTests14, test_empty_fill_1) {
} }
TEST_F(DeclarableOpsTests14, test_lstmBlockCell_1) { TEST_F(DeclarableOpsTests14, test_lstmBlockCell_1) {
auto a = NDArrayFactory::create<float>('c', {1, 5}, {0.7787856f, 0.80119777f, 0.72437465f, 0.23089433f, 0.72714126f}); auto a = NDArrayFactory::create<double>('c', {1, 5}, {0.7787856f, 0.80119777f, 0.72437465f, 0.23089433f, 0.72714126f});
auto b = NDArrayFactory::create<float>('c', {1, 3}); auto b = NDArrayFactory::create<double>('c', {1, 3});
auto c = NDArrayFactory::create<float>('c', {1, 3}); auto c = NDArrayFactory::create<double>('c', {1, 3});
auto d = NDArrayFactory::create<float>('c', {8, 12}, {-0.15320599,-0.120416045,0.33126968,0.13921785,-0.32313538,-0.43956736,0.4756174,0.4335605,-0.5450856,-0.3943429,-0.28687626,0.068032146,-0.2793799,0.17298919,-0.36553562,-0.097853184,-0.2544747,-0.39872527,-0.14556861,-0.31479517,0.2559092,0.47166896,-0.31330687,0.47313118,0.5134543,-0.4678212,-0.12853557,0.26142156,0.43472284,-0.42842552,-0.1895876,0.538689,0.508651,-0.020272732,0.112327516,0.2704304,-0.046546757,0.32570732,-0.15148133,-0.19145513,0.18631572,-0.024152994,0.41603214,-0.3421499,0.0106860995,-0.2966229,-0.36713937,0.25841123,0.0843398,0.49082482,0.10800403,0.1874243,-0.26379472,-0.22531849,0.24924624,0.23119557,0.49940765,-0.051413506,0.20315129,-0.41888732,0.44097036,0.40453392,0.013338983,0.23434466,0.23942488,0.47894,-0.19898453,0.09253675,-0.032358468,-0.15213022,-0.3441009,-0.15600958,-0.08235118,0.12165731,-0.4481289,-0.4842423,-0.45797008,-0.4606034,0.08163166,-0.2981107,0.50207126,0.44195646,0.13850057,0.072246075,-0.34388685,0.030900061,0.35821778,0.47900867,0.5094063,0.23683065,0.18020362,-0.1369732,0.015235603,0.2786904,0.07954317,0.12543976}); auto d = NDArrayFactory::create<double>('c', {8, 12}, {-0.15320599,-0.120416045,0.33126968,0.13921785,-0.32313538,-0.43956736,0.4756174,0.4335605,-0.5450856,-0.3943429,-0.28687626,0.068032146,-0.2793799,0.17298919,-0.36553562,-0.097853184,-0.2544747,-0.39872527,-0.14556861,-0.31479517,0.2559092,0.47166896,-0.31330687,0.47313118,0.5134543,-0.4678212,-0.12853557,0.26142156,0.43472284,-0.42842552,-0.1895876,0.538689,0.508651,-0.020272732,0.112327516,0.2704304,-0.046546757,0.32570732,-0.15148133,-0.19145513,0.18631572,-0.024152994,0.41603214,-0.3421499,0.0106860995,-0.2966229,-0.36713937,0.25841123,0.0843398,0.49082482,0.10800403,0.1874243,-0.26379472,-0.22531849,0.24924624,0.23119557,0.49940765,-0.051413506,0.20315129,-0.41888732,0.44097036,0.40453392,0.013338983,0.23434466,0.23942488,0.47894,-0.19898453,0.09253675,-0.032358468,-0.15213022,-0.3441009,-0.15600958,-0.08235118,0.12165731,-0.4481289,-0.4842423,-0.45797008,-0.4606034,0.08163166,-0.2981107,0.50207126,0.44195646,0.13850057,0.072246075,-0.34388685,0.030900061,0.35821778,0.47900867,0.5094063,0.23683065,0.18020362,-0.1369732,0.015235603,0.2786904,0.07954317,0.12543976});
auto e = NDArrayFactory::create<float>('c', {3}); auto e = NDArrayFactory::create<double>('c', {3});
auto f = NDArrayFactory::create<float>('c', {3}); auto f = NDArrayFactory::create<double>('c', {3});
auto g = NDArrayFactory::create<float>('c', {3}); auto g = NDArrayFactory::create<double>('c', {3});
auto h = NDArrayFactory::create<float>('c', {12}); auto h = NDArrayFactory::create<double>('c', {12});
auto z0 = NDArrayFactory::create<float>('c', {1, 3}); auto z0 = NDArrayFactory::create<double>('c', {1, 3});
auto z1 = NDArrayFactory::create<float>('c', {1, 3}); auto z1 = NDArrayFactory::create<double>('c', {1, 3});
auto z2 = NDArrayFactory::create<float>('c', {1, 3}); auto z2 = NDArrayFactory::create<double>('c', {1, 3});
auto z3 = NDArrayFactory::create<float>('c', {1, 3}); auto z3 = NDArrayFactory::create<double>('c', {1, 3});
auto z4 = NDArrayFactory::create<float>('c', {1, 3}); auto z4 = NDArrayFactory::create<double>('c', {1, 3});
auto z5 = NDArrayFactory::create<float>('c', {1, 3}); auto z5 = NDArrayFactory::create<double>('c', {1, 3});
auto z6 = NDArrayFactory::create<float>('c', {1, 3}); auto z6 = NDArrayFactory::create<double>('c', {1, 3});
nd4j::ops::lstmBlockCell op; nd4j::ops::lstmBlockCell op;
auto result = op.execute({&a, &b, &c, &d, &e, &f, &g, &h}, {&z0, &z1, &z2, &z3, &z4, &z5, &z6}, {1.0, -1.0}, {0}, {}); auto result = op.execute({&a, &b, &c, &d, &e, &f, &g, &h}, {&z0, &z1, &z2, &z3, &z4, &z5, &z6}, {1.0, -1.0}, {0}, {});

View File

@ -1049,7 +1049,8 @@ TEST_F(NativeOpsTests, ConcatTest_1) {
//y.assign(2.); //y.assign(2.);
x.syncToDevice(); x.syncToDevice();
z.syncToDevice(); z.syncToDevice();
auto dimension = NDArrayFactory::create<int>('c', {1}, {(int)0}); int d = 0;
auto dimension = NDArrayFactory::create<int>('c', {1}, {d});
auto dimensions = reinterpret_cast<int*>(dimension.buffer()); auto dimensions = reinterpret_cast<int*>(dimension.buffer());
//auto tadPackX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.shapeInfo(), dimensions, dimension.lengthOf()); //auto tadPackX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.shapeInfo(), dimensions, dimension.lengthOf());
auto tadPackZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(z.shapeInfo(), dimensions, dimension.lengthOf()); auto tadPackZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(z.shapeInfo(), dimensions, dimension.lengthOf());
@ -1087,7 +1088,8 @@ TEST_F(NativeOpsTests, ConcatTest_2) {
//y.assign(2.); //y.assign(2.);
x.syncToDevice(); x.syncToDevice();
z.syncToDevice(); z.syncToDevice();
auto dimension = NDArrayFactory::create<int>('c', {1}, {(int)0}); int d = 0;
auto dimension = NDArrayFactory::create<int>('c', {1}, {d});
auto dimensions = reinterpret_cast<int*>(dimension.buffer()); auto dimensions = reinterpret_cast<int*>(dimension.buffer());
//auto tadPackX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.shapeInfo(), dimensions, dimension.lengthOf()); //auto tadPackX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.shapeInfo(), dimensions, dimension.lengthOf());
auto tadPackZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(z.shapeInfo(), dimensions, dimension.lengthOf()); auto tadPackZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(z.shapeInfo(), dimensions, dimension.lengthOf());