Python updates (#86)
* python updates * fix cyclic deps * konduit updates * konduit updates * fix list * fixes * sync pyvars test * setuprun comments * Version fix, other module test fixes Signed-off-by: Alex Black <blacka101@gmail.com> * bug fix using advanced hacking skillzzmaster
parent
8123d9fa9b
commit
1adc25919c
|
@ -256,11 +256,9 @@ public class ExecutionTest {
|
||||||
|
|
||||||
TransformProcess transformProcess = new TransformProcess.Builder(schema)
|
TransformProcess transformProcess = new TransformProcess.Builder(schema)
|
||||||
.transform(
|
.transform(
|
||||||
new PythonTransform(
|
PythonTransform.builder().code(
|
||||||
"first = np.sin(first)\nsecond = np.cos(second)",
|
"first = np.sin(first)\nsecond = np.cos(second)")
|
||||||
schema
|
.outputSchema(schema).build())
|
||||||
)
|
|
||||||
)
|
|
||||||
.build();
|
.build();
|
||||||
|
|
||||||
List<List<Writable>> functions = new ArrayList<>();
|
List<List<Writable>> functions = new ArrayList<>();
|
||||||
|
|
|
@ -14,35 +14,40 @@
|
||||||
* SPDX-License-Identifier: Apache-2.0
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
******************************************************************************/
|
******************************************************************************/
|
||||||
|
|
||||||
package org.datavec.python;
|
package org.datavec.local.transforms.transform;
|
||||||
|
|
||||||
import org.datavec.api.transform.TransformProcess;
|
import org.datavec.api.transform.TransformProcess;
|
||||||
import org.datavec.api.transform.condition.Condition;
|
import org.datavec.api.transform.condition.Condition;
|
||||||
import org.datavec.api.transform.filter.ConditionFilter;
|
import org.datavec.api.transform.filter.ConditionFilter;
|
||||||
import org.datavec.api.transform.filter.Filter;
|
import org.datavec.api.transform.filter.Filter;
|
||||||
import org.datavec.api.writable.*;
|
|
||||||
import org.datavec.api.transform.schema.Schema;
|
import org.datavec.api.transform.schema.Schema;
|
||||||
import org.junit.Ignore;
|
import org.datavec.local.transforms.LocalTransformExecutor;
|
||||||
|
|
||||||
|
import org.datavec.api.writable.*;
|
||||||
|
import org.datavec.python.PythonCondition;
|
||||||
|
import org.datavec.python.PythonTransform;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
|
|
||||||
|
import javax.annotation.concurrent.NotThreadSafe;
|
||||||
import java.util.ArrayList;
|
import java.util.ArrayList;
|
||||||
import java.util.Arrays;
|
import java.util.Arrays;
|
||||||
import java.util.Collections;
|
import java.util.Collections;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import static org.junit.Assert.assertEquals;
|
|
||||||
import static org.junit.Assert.assertFalse;
|
|
||||||
import static org.junit.Assert.assertTrue;
|
|
||||||
|
|
||||||
@Ignore("AB 2019/05/21 - Fine locally, timeouts on CI - Issue #7657 and #7771")
|
import static junit.framework.TestCase.assertTrue;
|
||||||
|
import static org.datavec.api.transform.schema.Schema.Builder;
|
||||||
|
import static org.junit.Assert.*;
|
||||||
|
|
||||||
|
@NotThreadSafe
|
||||||
public class TestPythonTransformProcess {
|
public class TestPythonTransformProcess {
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
|
||||||
|
@Test()
|
||||||
public void testStringConcat() throws Exception{
|
public void testStringConcat() throws Exception{
|
||||||
Schema.Builder schemaBuilder = new Schema.Builder();
|
Builder schemaBuilder = new Builder();
|
||||||
schemaBuilder
|
schemaBuilder
|
||||||
.addColumnString("col1")
|
.addColumnString("col1")
|
||||||
.addColumnString("col2");
|
.addColumnString("col2");
|
||||||
|
@ -54,10 +59,12 @@ public class TestPythonTransformProcess {
|
||||||
String pythonCode = "col3 = col1 + col2";
|
String pythonCode = "col3 = col1 + col2";
|
||||||
|
|
||||||
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
||||||
new PythonTransform(pythonCode, finalSchema)
|
PythonTransform.builder().code(pythonCode)
|
||||||
|
.outputSchema(finalSchema)
|
||||||
|
.build()
|
||||||
).build();
|
).build();
|
||||||
|
|
||||||
List<Writable> inputs = Arrays.asList((Writable) new Text("Hello "), new Text("World!"));
|
List<Writable> inputs = Arrays.asList((Writable)new Text("Hello "), new Text("World!"));
|
||||||
|
|
||||||
List<Writable> outputs = tp.execute(inputs);
|
List<Writable> outputs = tp.execute(inputs);
|
||||||
assertEquals((outputs.get(0)).toString(), "Hello ");
|
assertEquals((outputs.get(0)).toString(), "Hello ");
|
||||||
|
@ -68,7 +75,7 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test(timeout = 60000L)
|
||||||
public void testMixedTypes() throws Exception{
|
public void testMixedTypes() throws Exception{
|
||||||
Schema.Builder schemaBuilder = new Schema.Builder();
|
Builder schemaBuilder = new Builder();
|
||||||
schemaBuilder
|
schemaBuilder
|
||||||
.addColumnInteger("col1")
|
.addColumnInteger("col1")
|
||||||
.addColumnFloat("col2")
|
.addColumnFloat("col2")
|
||||||
|
@ -83,11 +90,12 @@ public class TestPythonTransformProcess {
|
||||||
String pythonCode = "col5 = (int(col3) + col1 + int(col2)) * int(col4)";
|
String pythonCode = "col5 = (int(col3) + col1 + int(col2)) * int(col4)";
|
||||||
|
|
||||||
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
||||||
new PythonTransform(pythonCode, finalSchema)
|
PythonTransform.builder().code(pythonCode)
|
||||||
).build();
|
.outputSchema(finalSchema)
|
||||||
|
.inputSchema(initialSchema)
|
||||||
|
.build() ).build();
|
||||||
|
|
||||||
List<Writable> inputs = Arrays.asList((Writable)
|
List<Writable> inputs = Arrays.asList((Writable)new IntWritable(10),
|
||||||
new IntWritable(10),
|
|
||||||
new FloatWritable(3.5f),
|
new FloatWritable(3.5f),
|
||||||
new Text("5"),
|
new Text("5"),
|
||||||
new DoubleWritable(2.0)
|
new DoubleWritable(2.0)
|
||||||
|
@ -105,7 +113,7 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
INDArray expectedOutput = arr1.add(arr2);
|
INDArray expectedOutput = arr1.add(arr2);
|
||||||
|
|
||||||
Schema.Builder schemaBuilder = new Schema.Builder();
|
Builder schemaBuilder = new Builder();
|
||||||
schemaBuilder
|
schemaBuilder
|
||||||
.addColumnNDArray("col1", shape)
|
.addColumnNDArray("col1", shape)
|
||||||
.addColumnNDArray("col2", shape);
|
.addColumnNDArray("col2", shape);
|
||||||
|
@ -116,12 +124,14 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
String pythonCode = "col3 = col1 + col2";
|
String pythonCode = "col3 = col1 + col2";
|
||||||
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
||||||
new PythonTransform(pythonCode, finalSchema)
|
PythonTransform.builder().code(pythonCode)
|
||||||
).build();
|
.outputSchema(finalSchema)
|
||||||
|
.build() ).build();
|
||||||
|
|
||||||
List<Writable> inputs = Arrays.asList(
|
List<Writable> inputs = Arrays.asList(
|
||||||
(Writable) new NDArrayWritable(arr1),
|
(Writable)
|
||||||
new NDArrayWritable(arr2)
|
new NDArrayWritable(arr1),
|
||||||
|
new NDArrayWritable(arr2)
|
||||||
);
|
);
|
||||||
|
|
||||||
List<Writable> outputs = tp.execute(inputs);
|
List<Writable> outputs = tp.execute(inputs);
|
||||||
|
@ -139,7 +149,7 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
INDArray expectedOutput = arr1.add(arr2);
|
INDArray expectedOutput = arr1.add(arr2);
|
||||||
|
|
||||||
Schema.Builder schemaBuilder = new Schema.Builder();
|
Builder schemaBuilder = new Builder();
|
||||||
schemaBuilder
|
schemaBuilder
|
||||||
.addColumnNDArray("col1", shape)
|
.addColumnNDArray("col1", shape)
|
||||||
.addColumnNDArray("col2", shape);
|
.addColumnNDArray("col2", shape);
|
||||||
|
@ -150,11 +160,13 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
String pythonCode = "col3 = col1 + col2";
|
String pythonCode = "col3 = col1 + col2";
|
||||||
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
||||||
new PythonTransform(pythonCode, finalSchema)
|
PythonTransform.builder().code(pythonCode)
|
||||||
).build();
|
.outputSchema(finalSchema)
|
||||||
|
.build() ).build();
|
||||||
|
|
||||||
List<Writable> inputs = Arrays.asList(
|
List<Writable> inputs = Arrays.asList(
|
||||||
(Writable) new NDArrayWritable(arr1),
|
(Writable)
|
||||||
|
new NDArrayWritable(arr1),
|
||||||
new NDArrayWritable(arr2)
|
new NDArrayWritable(arr2)
|
||||||
);
|
);
|
||||||
|
|
||||||
|
@ -172,7 +184,7 @@ public class TestPythonTransformProcess {
|
||||||
INDArray arr2 = Nd4j.rand(DataType.DOUBLE, shape);
|
INDArray arr2 = Nd4j.rand(DataType.DOUBLE, shape);
|
||||||
INDArray expectedOutput = arr1.add(arr2.castTo(DataType.DOUBLE));
|
INDArray expectedOutput = arr1.add(arr2.castTo(DataType.DOUBLE));
|
||||||
|
|
||||||
Schema.Builder schemaBuilder = new Schema.Builder();
|
Builder schemaBuilder = new Builder();
|
||||||
schemaBuilder
|
schemaBuilder
|
||||||
.addColumnNDArray("col1", shape)
|
.addColumnNDArray("col1", shape)
|
||||||
.addColumnNDArray("col2", shape);
|
.addColumnNDArray("col2", shape);
|
||||||
|
@ -183,11 +195,14 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
String pythonCode = "col3 = col1 + col2";
|
String pythonCode = "col3 = col1 + col2";
|
||||||
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
||||||
new PythonTransform(pythonCode, finalSchema)
|
PythonTransform.builder().code(pythonCode)
|
||||||
|
.outputSchema(finalSchema)
|
||||||
|
.build()
|
||||||
).build();
|
).build();
|
||||||
|
|
||||||
List<Writable> inputs = Arrays.asList(
|
List<Writable> inputs = Arrays.asList(
|
||||||
(Writable) new NDArrayWritable(arr1),
|
(Writable)
|
||||||
|
new NDArrayWritable(arr1),
|
||||||
new NDArrayWritable(arr2)
|
new NDArrayWritable(arr2)
|
||||||
);
|
);
|
||||||
|
|
||||||
|
@ -199,8 +214,8 @@ public class TestPythonTransformProcess {
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test(timeout = 60000L)
|
||||||
public void testPythonFilter(){
|
public void testPythonFilter() {
|
||||||
Schema schema = new Schema.Builder().addColumnInteger("column").build();
|
Schema schema = new Builder().addColumnInteger("column").build();
|
||||||
|
|
||||||
Condition condition = new PythonCondition(
|
Condition condition = new PythonCondition(
|
||||||
"f = lambda: column < 0"
|
"f = lambda: column < 0"
|
||||||
|
@ -210,17 +225,17 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
Filter filter = new ConditionFilter(condition);
|
Filter filter = new ConditionFilter(condition);
|
||||||
|
|
||||||
assertFalse(filter.removeExample(Collections.singletonList((Writable) new IntWritable(10))));
|
assertFalse(filter.removeExample(Collections.singletonList(new IntWritable(10))));
|
||||||
assertFalse(filter.removeExample(Collections.singletonList((Writable) new IntWritable(1))));
|
assertFalse(filter.removeExample(Collections.singletonList(new IntWritable(1))));
|
||||||
assertFalse(filter.removeExample(Collections.singletonList((Writable) new IntWritable(0))));
|
assertFalse(filter.removeExample(Collections.singletonList(new IntWritable(0))));
|
||||||
assertTrue(filter.removeExample(Collections.singletonList((Writable) new IntWritable(-1))));
|
assertTrue(filter.removeExample(Collections.singletonList(new IntWritable(-1))));
|
||||||
assertTrue(filter.removeExample(Collections.singletonList((Writable) new IntWritable(-10))));
|
assertTrue(filter.removeExample(Collections.singletonList(new IntWritable(-10))));
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test(timeout = 60000L)
|
||||||
public void testPythonFilterAndTransform() throws Exception{
|
public void testPythonFilterAndTransform() throws Exception{
|
||||||
Schema.Builder schemaBuilder = new Schema.Builder();
|
Builder schemaBuilder = new Builder();
|
||||||
schemaBuilder
|
schemaBuilder
|
||||||
.addColumnInteger("col1")
|
.addColumnInteger("col1")
|
||||||
.addColumnFloat("col2")
|
.addColumnFloat("col2")
|
||||||
|
@ -241,33 +256,85 @@ public class TestPythonTransformProcess {
|
||||||
|
|
||||||
String pythonCode = "col6 = str(col1 + col2)";
|
String pythonCode = "col6 = str(col1 + col2)";
|
||||||
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
TransformProcess tp = new TransformProcess.Builder(initialSchema).transform(
|
||||||
new PythonTransform(
|
PythonTransform.builder().code(pythonCode)
|
||||||
pythonCode,
|
.outputSchema(finalSchema)
|
||||||
finalSchema
|
.build()
|
||||||
)
|
|
||||||
).filter(
|
).filter(
|
||||||
filter
|
filter
|
||||||
).build();
|
).build();
|
||||||
|
|
||||||
List<List<Writable>> inputs = new ArrayList<>();
|
List<List<Writable>> inputs = new ArrayList<>();
|
||||||
inputs.add(
|
inputs.add(
|
||||||
Arrays.asList((Writable) new IntWritable(5),
|
Arrays.asList(
|
||||||
|
(Writable)
|
||||||
|
new IntWritable(5),
|
||||||
new FloatWritable(3.0f),
|
new FloatWritable(3.0f),
|
||||||
new Text("abcd"),
|
new Text("abcd"),
|
||||||
new DoubleWritable(2.1))
|
new DoubleWritable(2.1))
|
||||||
);
|
);
|
||||||
inputs.add(
|
inputs.add(
|
||||||
Arrays.asList((Writable) new IntWritable(-3),
|
Arrays.asList(
|
||||||
|
(Writable)
|
||||||
|
new IntWritable(-3),
|
||||||
new FloatWritable(3.0f),
|
new FloatWritable(3.0f),
|
||||||
new Text("abcd"),
|
new Text("abcd"),
|
||||||
new DoubleWritable(2.1))
|
new DoubleWritable(2.1))
|
||||||
);
|
);
|
||||||
inputs.add(
|
inputs.add(
|
||||||
Arrays.asList((Writable) new IntWritable(5),
|
Arrays.asList(
|
||||||
|
(Writable)
|
||||||
|
new IntWritable(5),
|
||||||
new FloatWritable(11.2f),
|
new FloatWritable(11.2f),
|
||||||
new Text("abcd"),
|
new Text("abcd"),
|
||||||
new DoubleWritable(2.1))
|
new DoubleWritable(2.1))
|
||||||
);
|
);
|
||||||
|
|
||||||
|
LocalTransformExecutor.execute(inputs,tp);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testPythonTransformNoOutputSpecified() throws Exception {
|
||||||
|
PythonTransform pythonTransform = PythonTransform.builder()
|
||||||
|
.code("a += 2; b = 'hello world'")
|
||||||
|
.returnAllInputs(true)
|
||||||
|
.build();
|
||||||
|
List<List<Writable>> inputs = new ArrayList<>();
|
||||||
|
inputs.add(Arrays.asList((Writable)new IntWritable(1)));
|
||||||
|
Schema inputSchema = new Builder()
|
||||||
|
.addColumnInteger("a")
|
||||||
|
.build();
|
||||||
|
|
||||||
|
TransformProcess tp = new TransformProcess.Builder(inputSchema)
|
||||||
|
.transform(pythonTransform)
|
||||||
|
.build();
|
||||||
|
List<List<Writable>> execute = LocalTransformExecutor.execute(inputs, tp);
|
||||||
|
assertEquals(3,execute.get(0).get(0).toInt());
|
||||||
|
assertEquals("hello world",execute.get(0).get(1).toString());
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testNumpyTransform() throws Exception {
|
||||||
|
PythonTransform pythonTransform = PythonTransform.builder()
|
||||||
|
.code("a += 2; b = 'hello world'")
|
||||||
|
.returnAllInputs(true)
|
||||||
|
.build();
|
||||||
|
|
||||||
|
List<List<Writable>> inputs = new ArrayList<>();
|
||||||
|
inputs.add(Arrays.asList((Writable) new NDArrayWritable(Nd4j.scalar(1).reshape(1,1))));
|
||||||
|
Schema inputSchema = new Builder()
|
||||||
|
.addColumnNDArray("a",new long[]{1,1})
|
||||||
|
.build();
|
||||||
|
|
||||||
|
TransformProcess tp = new TransformProcess.Builder(inputSchema)
|
||||||
|
.transform(pythonTransform)
|
||||||
|
.build();
|
||||||
|
List<List<Writable>> execute = LocalTransformExecutor.execute(inputs, tp);
|
||||||
|
assertFalse(execute.isEmpty());
|
||||||
|
assertNotNull(execute.get(0));
|
||||||
|
assertNotNull(execute.get(0).get(0));
|
||||||
|
assertEquals("hello world",execute.get(0).get(0).toString());
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
|
@ -28,15 +28,21 @@
|
||||||
|
|
||||||
<dependencies>
|
<dependencies>
|
||||||
<dependency>
|
<dependency>
|
||||||
<groupId>com.googlecode.json-simple</groupId>
|
<groupId>org.json</groupId>
|
||||||
<artifactId>json-simple</artifactId>
|
<artifactId>json</artifactId>
|
||||||
<version>1.1</version>
|
<version>20190722</version>
|
||||||
</dependency>
|
</dependency>
|
||||||
<dependency>
|
<dependency>
|
||||||
<groupId>org.bytedeco</groupId>
|
<groupId>org.bytedeco</groupId>
|
||||||
<artifactId>cpython-platform</artifactId>
|
<artifactId>cpython-platform</artifactId>
|
||||||
<version>${cpython-platform.version}</version>
|
<version>${cpython-platform.version}</version>
|
||||||
</dependency>
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.bytedeco</groupId>
|
||||||
|
<artifactId>numpy-platform</artifactId>
|
||||||
|
<version>${numpy.javacpp.version}</version>
|
||||||
|
</dependency>
|
||||||
|
|
||||||
<dependency>
|
<dependency>
|
||||||
<groupId>com.google.code.findbugs</groupId>
|
<groupId>com.google.code.findbugs</groupId>
|
||||||
<artifactId>jsr305</artifactId>
|
<artifactId>jsr305</artifactId>
|
||||||
|
|
|
@ -16,10 +16,13 @@
|
||||||
|
|
||||||
package org.datavec.python;
|
package org.datavec.python;
|
||||||
|
|
||||||
|
import lombok.Builder;
|
||||||
import lombok.Getter;
|
import lombok.Getter;
|
||||||
|
import lombok.NoArgsConstructor;
|
||||||
import org.bytedeco.javacpp.Pointer;
|
import org.bytedeco.javacpp.Pointer;
|
||||||
import org.nd4j.linalg.api.buffer.DataBuffer;
|
import org.nd4j.linalg.api.buffer.DataBuffer;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
|
import org.nd4j.linalg.api.shape.Shape;
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
import org.nd4j.nativeblas.NativeOps;
|
import org.nd4j.nativeblas.NativeOps;
|
||||||
import org.nd4j.nativeblas.NativeOpsHolder;
|
import org.nd4j.nativeblas.NativeOpsHolder;
|
||||||
|
@ -33,19 +36,27 @@ import org.nd4j.linalg.api.buffer.DataType;
|
||||||
* @author Fariz Rahman
|
* @author Fariz Rahman
|
||||||
*/
|
*/
|
||||||
@Getter
|
@Getter
|
||||||
|
@NoArgsConstructor
|
||||||
public class NumpyArray {
|
public class NumpyArray {
|
||||||
|
|
||||||
private static NativeOps nativeOps = NativeOpsHolder.getInstance().getDeviceNativeOps();
|
private static NativeOps nativeOps;
|
||||||
private long address;
|
private long address;
|
||||||
private long[] shape;
|
private long[] shape;
|
||||||
private long[] strides;
|
private long[] strides;
|
||||||
private DataType dtype = DataType.FLOAT;
|
private DataType dtype;
|
||||||
private INDArray nd4jArray;
|
private INDArray nd4jArray;
|
||||||
|
static {
|
||||||
|
//initialize
|
||||||
|
Nd4j.scalar(1.0);
|
||||||
|
nativeOps = NativeOpsHolder.getInstance().getDeviceNativeOps();
|
||||||
|
}
|
||||||
|
|
||||||
public NumpyArray(long address, long[] shape, long strides[], boolean copy){
|
@Builder
|
||||||
|
public NumpyArray(long address, long[] shape, long strides[], boolean copy,DataType dtype) {
|
||||||
this.address = address;
|
this.address = address;
|
||||||
this.shape = shape;
|
this.shape = shape;
|
||||||
this.strides = strides;
|
this.strides = strides;
|
||||||
|
this.dtype = dtype;
|
||||||
setND4JArray();
|
setND4JArray();
|
||||||
if (copy){
|
if (copy){
|
||||||
nd4jArray = nd4jArray.dup();
|
nd4jArray = nd4jArray.dup();
|
||||||
|
@ -57,8 +68,9 @@ public class NumpyArray {
|
||||||
public NumpyArray copy(){
|
public NumpyArray copy(){
|
||||||
return new NumpyArray(nd4jArray.dup());
|
return new NumpyArray(nd4jArray.dup());
|
||||||
}
|
}
|
||||||
|
|
||||||
public NumpyArray(long address, long[] shape, long strides[]){
|
public NumpyArray(long address, long[] shape, long strides[]){
|
||||||
this(address, shape, strides, false);
|
this(address, shape, strides, false,DataType.FLOAT);
|
||||||
}
|
}
|
||||||
|
|
||||||
public NumpyArray(long address, long[] shape, long strides[], DataType dtype){
|
public NumpyArray(long address, long[] shape, long strides[], DataType dtype){
|
||||||
|
@ -77,9 +89,9 @@ public class NumpyArray {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private void setND4JArray(){
|
private void setND4JArray() {
|
||||||
long size = 1;
|
long size = 1;
|
||||||
for(long d: shape){
|
for(long d: shape) {
|
||||||
size *= d;
|
size *= d;
|
||||||
}
|
}
|
||||||
Pointer ptr = nativeOps.pointerForAddress(address);
|
Pointer ptr = nativeOps.pointerForAddress(address);
|
||||||
|
@ -88,10 +100,11 @@ public class NumpyArray {
|
||||||
DataBuffer buff = Nd4j.createBuffer(ptr, size, dtype);
|
DataBuffer buff = Nd4j.createBuffer(ptr, size, dtype);
|
||||||
int elemSize = buff.getElementSize();
|
int elemSize = buff.getElementSize();
|
||||||
long[] nd4jStrides = new long[strides.length];
|
long[] nd4jStrides = new long[strides.length];
|
||||||
for (int i=0; i<strides.length; i++){
|
for (int i = 0; i < strides.length; i++) {
|
||||||
nd4jStrides[i] = strides[i] / elemSize;
|
nd4jStrides[i] = strides[i] / elemSize;
|
||||||
}
|
}
|
||||||
this.nd4jArray = Nd4j.create(buff, shape, nd4jStrides, 0, 'c', dtype);
|
|
||||||
|
this.nd4jArray = Nd4j.create(buff, shape, nd4jStrides, 0, Shape.getOrder(shape,nd4jStrides,1), dtype);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -23,6 +23,8 @@ import org.datavec.api.writable.*;
|
||||||
|
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
|
|
||||||
|
import static org.datavec.python.PythonUtils.schemaToPythonVariables;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Lets a condition be defined as a python method f that takes no arguments
|
* Lets a condition be defined as a python method f that takes no arguments
|
||||||
* and returns a boolean indicating whether or not to filter a row.
|
* and returns a boolean indicating whether or not to filter a row.
|
||||||
|
@ -38,81 +40,28 @@ public class PythonCondition implements Condition {
|
||||||
private String code;
|
private String code;
|
||||||
|
|
||||||
|
|
||||||
public PythonCondition(String pythonCode){
|
public PythonCondition(String pythonCode) {
|
||||||
|
org.nd4j.base.Preconditions.checkNotNull("Python code must not be null!",pythonCode);
|
||||||
|
org.nd4j.base.Preconditions.checkState(pythonCode.length() >= 1,"Python code must not be empty!");
|
||||||
code = pythonCode;
|
code = pythonCode;
|
||||||
}
|
}
|
||||||
|
|
||||||
private PythonVariables schemaToPythonVariables(Schema schema) throws Exception{
|
|
||||||
PythonVariables pyVars = new PythonVariables();
|
|
||||||
int numCols = schema.numColumns();
|
|
||||||
for (int i=0; i<numCols; i++){
|
|
||||||
String colName = schema.getName(i);
|
|
||||||
ColumnType colType = schema.getType(i);
|
|
||||||
switch (colType){
|
|
||||||
case Long:
|
|
||||||
case Integer:
|
|
||||||
pyVars.addInt(colName);
|
|
||||||
break;
|
|
||||||
case Double:
|
|
||||||
case Float:
|
|
||||||
pyVars.addFloat(colName);
|
|
||||||
break;
|
|
||||||
case String:
|
|
||||||
pyVars.addStr(colName);
|
|
||||||
break;
|
|
||||||
case NDArray:
|
|
||||||
pyVars.addNDArray(colName);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
throw new Exception("Unsupported python input type: " + colType.toString());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return pyVars;
|
|
||||||
}
|
|
||||||
private PythonVariables getPyInputsFromWritables(List<Writable> writables){
|
|
||||||
|
|
||||||
PythonVariables ret = new PythonVariables();
|
|
||||||
|
|
||||||
for (String name: pyInputs.getVariables()){
|
|
||||||
int colIdx = inputSchema.getIndexOfColumn(name);
|
|
||||||
Writable w = writables.get(colIdx);
|
|
||||||
PythonVariables.Type pyType = pyInputs.getType(name);
|
|
||||||
switch (pyType){
|
|
||||||
case INT:
|
|
||||||
if (w instanceof LongWritable){
|
|
||||||
ret.addInt(name, ((LongWritable)w).get());
|
|
||||||
}
|
|
||||||
else{
|
|
||||||
ret.addInt(name, ((IntWritable)w).get());
|
|
||||||
}
|
|
||||||
|
|
||||||
break;
|
|
||||||
case FLOAT:
|
|
||||||
ret.addFloat(name, ((DoubleWritable)w).get());
|
|
||||||
break;
|
|
||||||
case STR:
|
|
||||||
ret.addStr(name, ((Text)w).toString());
|
|
||||||
break;
|
|
||||||
case NDARRAY:
|
|
||||||
ret.addNDArray(name,((NDArrayWritable)w).get());
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
@Override
|
@Override
|
||||||
public void setInputSchema(Schema inputSchema){
|
public void setInputSchema(Schema inputSchema) {
|
||||||
this.inputSchema = inputSchema;
|
this.inputSchema = inputSchema;
|
||||||
try{
|
try{
|
||||||
pyInputs = schemaToPythonVariables(inputSchema);
|
pyInputs = schemaToPythonVariables(inputSchema);
|
||||||
PythonVariables pyOuts = new PythonVariables();
|
PythonVariables pyOuts = new PythonVariables();
|
||||||
pyOuts.addInt("out");
|
pyOuts.addInt("out");
|
||||||
pythonTransform = new PythonTransform(
|
pythonTransform = PythonTransform.builder()
|
||||||
code + "\n\nout=f()\nout=0 if out is None else int(out)", // TODO: remove int conversion after boolean support is covered
|
.code(code + "\n\nout=f()\nout=0 if out is None else int(out)")
|
||||||
pyInputs,
|
.inputs(pyInputs)
|
||||||
pyOuts
|
.outputs(pyOuts)
|
||||||
);
|
.build();
|
||||||
|
|
||||||
}
|
}
|
||||||
catch (Exception e){
|
catch (Exception e){
|
||||||
throw new RuntimeException(e);
|
throw new RuntimeException(e);
|
||||||
|
@ -127,41 +76,47 @@ public class PythonCondition implements Condition {
|
||||||
return inputSchema;
|
return inputSchema;
|
||||||
}
|
}
|
||||||
|
|
||||||
public String[] outputColumnNames(){
|
@Override
|
||||||
|
public String[] outputColumnNames() {
|
||||||
String[] columnNames = new String[inputSchema.numColumns()];
|
String[] columnNames = new String[inputSchema.numColumns()];
|
||||||
inputSchema.getColumnNames().toArray(columnNames);
|
inputSchema.getColumnNames().toArray(columnNames);
|
||||||
return columnNames;
|
return columnNames;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
public String outputColumnName(){
|
public String outputColumnName(){
|
||||||
return outputColumnNames()[0];
|
return outputColumnNames()[0];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
public String[] columnNames(){
|
public String[] columnNames(){
|
||||||
return outputColumnNames();
|
return outputColumnNames();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
public String columnName(){
|
public String columnName(){
|
||||||
return outputColumnName();
|
return outputColumnName();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
public Schema transform(Schema inputSchema){
|
public Schema transform(Schema inputSchema){
|
||||||
return inputSchema;
|
return inputSchema;
|
||||||
}
|
}
|
||||||
|
|
||||||
public boolean condition(List<Writable> list){
|
@Override
|
||||||
|
public boolean condition(List<Writable> list) {
|
||||||
PythonVariables inputs = getPyInputsFromWritables(list);
|
PythonVariables inputs = getPyInputsFromWritables(list);
|
||||||
try{
|
try{
|
||||||
PythonExecutioner.exec(pythonTransform.getCode(), inputs, pythonTransform.getOutputs());
|
PythonExecutioner.exec(pythonTransform.getCode(), inputs, pythonTransform.getOutputs());
|
||||||
boolean ret = pythonTransform.getOutputs().getIntValue("out") != 0;
|
boolean ret = pythonTransform.getOutputs().getIntValue("out") != 0;
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
catch (Exception e){
|
catch (Exception e) {
|
||||||
throw new RuntimeException(e);
|
throw new RuntimeException(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
public boolean condition(Object input){
|
public boolean condition(Object input){
|
||||||
return condition(input);
|
return condition(input);
|
||||||
}
|
}
|
||||||
|
@ -177,5 +132,37 @@ public class PythonCondition implements Condition {
|
||||||
throw new UnsupportedOperationException("not supported");
|
throw new UnsupportedOperationException("not supported");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private PythonVariables getPyInputsFromWritables(List<Writable> writables) {
|
||||||
|
PythonVariables ret = new PythonVariables();
|
||||||
|
|
||||||
|
for (int i = 0; i < inputSchema.numColumns(); i++){
|
||||||
|
String name = inputSchema.getName(i);
|
||||||
|
Writable w = writables.get(i);
|
||||||
|
PythonVariables.Type pyType = pyInputs.getType(inputSchema.getName(i));
|
||||||
|
switch (pyType){
|
||||||
|
case INT:
|
||||||
|
if (w instanceof LongWritable) {
|
||||||
|
ret.addInt(name, ((LongWritable)w).get());
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
ret.addInt(name, ((IntWritable)w).get());
|
||||||
|
}
|
||||||
|
|
||||||
|
break;
|
||||||
|
case FLOAT:
|
||||||
|
ret.addFloat(name, ((DoubleWritable)w).get());
|
||||||
|
break;
|
||||||
|
case STR:
|
||||||
|
ret.addStr(name, w.toString());
|
||||||
|
break;
|
||||||
|
case NDARRAY:
|
||||||
|
ret.addNDArray(name,((NDArrayWritable)w).get());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -16,16 +16,29 @@
|
||||||
|
|
||||||
package org.datavec.python;
|
package org.datavec.python;
|
||||||
|
|
||||||
|
import lombok.Builder;
|
||||||
import lombok.Data;
|
import lombok.Data;
|
||||||
import lombok.NoArgsConstructor;
|
import lombok.NoArgsConstructor;
|
||||||
|
import org.apache.commons.io.IOUtils;
|
||||||
import org.datavec.api.transform.ColumnType;
|
import org.datavec.api.transform.ColumnType;
|
||||||
import org.datavec.api.transform.Transform;
|
import org.datavec.api.transform.Transform;
|
||||||
import org.datavec.api.transform.schema.Schema;
|
import org.datavec.api.transform.schema.Schema;
|
||||||
import org.datavec.api.writable.*;
|
import org.datavec.api.writable.*;
|
||||||
|
import org.nd4j.base.Preconditions;
|
||||||
|
import org.nd4j.jackson.objectmapper.holder.ObjectMapperHolder;
|
||||||
|
import org.nd4j.linalg.io.ClassPathResource;
|
||||||
|
import org.nd4j.shade.jackson.core.JsonProcessingException;
|
||||||
|
|
||||||
|
import java.io.IOException;
|
||||||
|
import java.io.InputStream;
|
||||||
|
import java.nio.charset.Charset;
|
||||||
import java.util.ArrayList;
|
import java.util.ArrayList;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
|
import java.util.Map;
|
||||||
import java.util.UUID;
|
import java.util.UUID;
|
||||||
|
|
||||||
|
import static org.datavec.python.PythonUtils.schemaToPythonVariables;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Row-wise Transform that applies arbitrary python code on each row
|
* Row-wise Transform that applies arbitrary python code on each row
|
||||||
*
|
*
|
||||||
|
@ -34,31 +47,87 @@ import java.util.UUID;
|
||||||
|
|
||||||
@NoArgsConstructor
|
@NoArgsConstructor
|
||||||
@Data
|
@Data
|
||||||
public class PythonTransform implements Transform{
|
public class PythonTransform implements Transform {
|
||||||
|
|
||||||
private String code;
|
private String code;
|
||||||
private PythonVariables pyInputs;
|
private PythonVariables inputs;
|
||||||
private PythonVariables pyOutputs;
|
private PythonVariables outputs;
|
||||||
private String name;
|
private String name = UUID.randomUUID().toString();
|
||||||
private Schema inputSchema;
|
private Schema inputSchema;
|
||||||
private Schema outputSchema;
|
private Schema outputSchema;
|
||||||
|
private String outputDict;
|
||||||
|
private boolean returnAllVariables;
|
||||||
|
private boolean setupAndRun = false;
|
||||||
|
|
||||||
|
|
||||||
public PythonTransform(String code, PythonVariables pyInputs, PythonVariables pyOutputs) throws Exception{
|
@Builder
|
||||||
|
public PythonTransform(String code,
|
||||||
|
PythonVariables inputs,
|
||||||
|
PythonVariables outputs,
|
||||||
|
String name,
|
||||||
|
Schema inputSchema,
|
||||||
|
Schema outputSchema,
|
||||||
|
String outputDict,
|
||||||
|
boolean returnAllInputs,
|
||||||
|
boolean setupAndRun) {
|
||||||
|
Preconditions.checkNotNull(code,"No code found to run!");
|
||||||
this.code = code;
|
this.code = code;
|
||||||
this.pyInputs = pyInputs;
|
this.returnAllVariables = returnAllInputs;
|
||||||
this.pyOutputs = pyOutputs;
|
this.setupAndRun = setupAndRun;
|
||||||
this.name = UUID.randomUUID().toString();
|
if(inputs != null)
|
||||||
|
this.inputs = inputs;
|
||||||
|
if(outputs != null)
|
||||||
|
this.outputs = outputs;
|
||||||
|
|
||||||
|
if(name != null)
|
||||||
|
this.name = name;
|
||||||
|
if (outputDict != null) {
|
||||||
|
this.outputDict = outputDict;
|
||||||
|
this.outputs = new PythonVariables();
|
||||||
|
this.outputs.addDict(outputDict);
|
||||||
|
|
||||||
|
String helpers;
|
||||||
|
try(InputStream is = new ClassPathResource("pythonexec/serialize_array.py").getInputStream()) {
|
||||||
|
helpers = IOUtils.toString(is, Charset.defaultCharset());
|
||||||
|
|
||||||
|
}catch (IOException e){
|
||||||
|
throw new RuntimeException("Error reading python code");
|
||||||
|
}
|
||||||
|
this.code += "\n\n" + helpers;
|
||||||
|
this.code += "\n" + outputDict + " = __recursive_serialize_dict(" + outputDict + ")";
|
||||||
|
}
|
||||||
|
|
||||||
|
try {
|
||||||
|
if(inputSchema != null) {
|
||||||
|
this.inputSchema = inputSchema;
|
||||||
|
if(inputs == null || inputs.isEmpty()) {
|
||||||
|
this.inputs = schemaToPythonVariables(inputSchema);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(outputSchema != null) {
|
||||||
|
this.outputSchema = outputSchema;
|
||||||
|
if(outputs == null || outputs.isEmpty()) {
|
||||||
|
this.outputs = schemaToPythonVariables(outputSchema);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}catch(Exception e) {
|
||||||
|
throw new IllegalStateException(e);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public void setInputSchema(Schema inputSchema){
|
public void setInputSchema(Schema inputSchema) {
|
||||||
|
Preconditions.checkNotNull(inputSchema,"No input schema found!");
|
||||||
this.inputSchema = inputSchema;
|
this.inputSchema = inputSchema;
|
||||||
try{
|
try{
|
||||||
pyInputs = schemaToPythonVariables(inputSchema);
|
inputs = schemaToPythonVariables(inputSchema);
|
||||||
}catch (Exception e){
|
}catch (Exception e){
|
||||||
throw new RuntimeException(e);
|
throw new RuntimeException(e);
|
||||||
}
|
}
|
||||||
if (outputSchema == null){
|
if (outputSchema == null && outputDict == null){
|
||||||
outputSchema = inputSchema;
|
outputSchema = inputSchema;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -88,12 +157,42 @@ public class PythonTransform implements Transform{
|
||||||
throw new UnsupportedOperationException("Not yet implemented");
|
throw new UnsupportedOperationException("Not yet implemented");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public List<Writable> map(List<Writable> writables){
|
public List<Writable> map(List<Writable> writables) {
|
||||||
PythonVariables pyInputs = getPyInputsFromWritables(writables);
|
PythonVariables pyInputs = getPyInputsFromWritables(writables);
|
||||||
|
Preconditions.checkNotNull(pyInputs,"Inputs must not be null!");
|
||||||
|
|
||||||
|
|
||||||
try{
|
try{
|
||||||
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
if (returnAllVariables) {
|
||||||
return getWritablesFromPyOutputs(pyOutputs);
|
if (setupAndRun){
|
||||||
|
return getWritablesFromPyOutputs(PythonExecutioner.execWithSetupRunAndReturnAllVariables(code, pyInputs));
|
||||||
|
}
|
||||||
|
return getWritablesFromPyOutputs(PythonExecutioner.execAndReturnAllVariables(code, pyInputs));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (outputDict != null) {
|
||||||
|
if (setupAndRun) {
|
||||||
|
PythonExecutioner.execWithSetupAndRun(this, pyInputs);
|
||||||
|
}else{
|
||||||
|
PythonExecutioner.exec(this, pyInputs);
|
||||||
|
}
|
||||||
|
PythonVariables out = PythonUtils.expandInnerDict(outputs, outputDict);
|
||||||
|
return getWritablesFromPyOutputs(out);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (setupAndRun) {
|
||||||
|
PythonExecutioner.execWithSetupAndRun(code, pyInputs, outputs);
|
||||||
|
}else{
|
||||||
|
PythonExecutioner.exec(code, pyInputs, outputs);
|
||||||
|
}
|
||||||
|
|
||||||
|
return getWritablesFromPyOutputs(outputs);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
catch (Exception e){
|
catch (Exception e){
|
||||||
throw new RuntimeException(e);
|
throw new RuntimeException(e);
|
||||||
|
@ -102,7 +201,7 @@ public class PythonTransform implements Transform{
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public String[] outputColumnNames(){
|
public String[] outputColumnNames(){
|
||||||
return pyOutputs.getVariables();
|
return outputs.getVariables();
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -111,7 +210,7 @@ public class PythonTransform implements Transform{
|
||||||
}
|
}
|
||||||
@Override
|
@Override
|
||||||
public String[] columnNames(){
|
public String[] columnNames(){
|
||||||
return pyOutputs.getVariables();
|
return outputs.getVariables();
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -124,14 +223,13 @@ public class PythonTransform implements Transform{
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
private PythonVariables getPyInputsFromWritables(List<Writable> writables){
|
private PythonVariables getPyInputsFromWritables(List<Writable> writables) {
|
||||||
|
|
||||||
PythonVariables ret = new PythonVariables();
|
PythonVariables ret = new PythonVariables();
|
||||||
|
|
||||||
for (String name: pyInputs.getVariables()){
|
for (String name: inputs.getVariables()) {
|
||||||
int colIdx = inputSchema.getIndexOfColumn(name);
|
int colIdx = inputSchema.getIndexOfColumn(name);
|
||||||
Writable w = writables.get(colIdx);
|
Writable w = writables.get(colIdx);
|
||||||
PythonVariables.Type pyType = pyInputs.getType(name);
|
PythonVariables.Type pyType = inputs.getType(name);
|
||||||
switch (pyType){
|
switch (pyType){
|
||||||
case INT:
|
case INT:
|
||||||
if (w instanceof LongWritable){
|
if (w instanceof LongWritable){
|
||||||
|
@ -143,7 +241,7 @@ public class PythonTransform implements Transform{
|
||||||
|
|
||||||
break;
|
break;
|
||||||
case FLOAT:
|
case FLOAT:
|
||||||
if (w instanceof DoubleWritable){
|
if (w instanceof DoubleWritable) {
|
||||||
ret.addFloat(name, ((DoubleWritable)w).get());
|
ret.addFloat(name, ((DoubleWritable)w).get());
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
|
@ -151,96 +249,99 @@ public class PythonTransform implements Transform{
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case STR:
|
case STR:
|
||||||
ret.addStr(name, ((Text)w).toString());
|
ret.addStr(name, w.toString());
|
||||||
break;
|
break;
|
||||||
case NDARRAY:
|
case NDARRAY:
|
||||||
ret.addNDArray(name,((NDArrayWritable)w).get());
|
ret.addNDArray(name,((NDArrayWritable)w).get());
|
||||||
break;
|
break;
|
||||||
|
default:
|
||||||
|
throw new RuntimeException("Unsupported input type:" + pyType);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
private List<Writable> getWritablesFromPyOutputs(PythonVariables pyOuts){
|
private List<Writable> getWritablesFromPyOutputs(PythonVariables pyOuts) {
|
||||||
List<Writable> out = new ArrayList<>();
|
List<Writable> out = new ArrayList<>();
|
||||||
for (int i=0; i<outputSchema.numColumns(); i++){
|
String[] varNames;
|
||||||
String name = outputSchema.getName(i);
|
varNames = pyOuts.getVariables();
|
||||||
PythonVariables.Type pyType = pyOutputs.getType(name);
|
Schema.Builder schemaBuilder = new Schema.Builder();
|
||||||
|
for (int i = 0; i < varNames.length; i++) {
|
||||||
|
String name = varNames[i];
|
||||||
|
PythonVariables.Type pyType = pyOuts.getType(name);
|
||||||
switch (pyType){
|
switch (pyType){
|
||||||
case INT:
|
case INT:
|
||||||
out.add((Writable) new LongWritable(pyOuts.getIntValue(name)));
|
schemaBuilder.addColumnLong(name);
|
||||||
break;
|
break;
|
||||||
case FLOAT:
|
case FLOAT:
|
||||||
out.add((Writable) new DoubleWritable(pyOuts.getFloatValue(name)));
|
schemaBuilder.addColumnDouble(name);
|
||||||
break;
|
break;
|
||||||
case STR:
|
case STR:
|
||||||
out.add((Writable) new Text(pyOuts.getStrValue(name)));
|
case DICT:
|
||||||
|
case LIST:
|
||||||
|
schemaBuilder.addColumnString(name);
|
||||||
break;
|
break;
|
||||||
case NDARRAY:
|
case NDARRAY:
|
||||||
out.add((Writable) new NDArrayWritable(pyOuts.getNDArrayValue(name).getNd4jArray()));
|
NumpyArray arr = pyOuts.getNDArrayValue(name);
|
||||||
|
schemaBuilder.addColumnNDArray(name, arr.getShape());
|
||||||
break;
|
break;
|
||||||
|
default:
|
||||||
|
throw new IllegalStateException("Unable to support type " + pyType.name());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
this.outputSchema = schemaBuilder.build();
|
||||||
|
|
||||||
|
|
||||||
|
for (int i = 0; i < varNames.length; i++) {
|
||||||
|
String name = varNames[i];
|
||||||
|
PythonVariables.Type pyType = pyOuts.getType(name);
|
||||||
|
|
||||||
|
switch (pyType){
|
||||||
|
case INT:
|
||||||
|
out.add(new LongWritable(pyOuts.getIntValue(name)));
|
||||||
|
break;
|
||||||
|
case FLOAT:
|
||||||
|
out.add(new DoubleWritable(pyOuts.getFloatValue(name)));
|
||||||
|
break;
|
||||||
|
case STR:
|
||||||
|
out.add(new Text(pyOuts.getStrValue(name)));
|
||||||
|
break;
|
||||||
|
case NDARRAY:
|
||||||
|
NumpyArray arr = pyOuts.getNDArrayValue(name);
|
||||||
|
out.add(new NDArrayWritable(arr.getNd4jArray()));
|
||||||
|
break;
|
||||||
|
case DICT:
|
||||||
|
Map<?, ?> dictValue = pyOuts.getDictValue(name);
|
||||||
|
Map noNullValues = new java.util.HashMap<>();
|
||||||
|
for(Map.Entry entry : dictValue.entrySet()) {
|
||||||
|
if(entry.getValue() != org.json.JSONObject.NULL) {
|
||||||
|
noNullValues.put(entry.getKey(), entry.getValue());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
try {
|
||||||
|
out.add(new Text(ObjectMapperHolder.getJsonMapper().writeValueAsString(noNullValues)));
|
||||||
|
} catch (JsonProcessingException e) {
|
||||||
|
throw new IllegalStateException("Unable to serialize dictionary " + name + " to json!");
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case LIST:
|
||||||
|
Object[] listValue = pyOuts.getListValue(name);
|
||||||
|
try {
|
||||||
|
out.add(new Text(ObjectMapperHolder.getJsonMapper().writeValueAsString(listValue)));
|
||||||
|
} catch (JsonProcessingException e) {
|
||||||
|
throw new IllegalStateException("Unable to serialize list vlaue " + name + " to json!");
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
throw new IllegalStateException("Unable to support type " + pyType.name());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
public PythonTransform(String code) throws Exception{
|
|
||||||
this.code = code;
|
|
||||||
this.name = UUID.randomUUID().toString();
|
|
||||||
}
|
|
||||||
private PythonVariables schemaToPythonVariables(Schema schema) throws Exception{
|
|
||||||
PythonVariables pyVars = new PythonVariables();
|
|
||||||
int numCols = schema.numColumns();
|
|
||||||
for (int i=0; i<numCols; i++){
|
|
||||||
String colName = schema.getName(i);
|
|
||||||
ColumnType colType = schema.getType(i);
|
|
||||||
switch (colType){
|
|
||||||
case Long:
|
|
||||||
case Integer:
|
|
||||||
pyVars.addInt(colName);
|
|
||||||
break;
|
|
||||||
case Double:
|
|
||||||
case Float:
|
|
||||||
pyVars.addFloat(colName);
|
|
||||||
break;
|
|
||||||
case String:
|
|
||||||
pyVars.addStr(colName);
|
|
||||||
break;
|
|
||||||
case NDArray:
|
|
||||||
pyVars.addNDArray(colName);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
throw new Exception("Unsupported python input type: " + colType.toString());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return pyVars;
|
|
||||||
}
|
|
||||||
|
|
||||||
public PythonTransform(String code, Schema outputSchema) throws Exception{
|
|
||||||
this.code = code;
|
|
||||||
this.name = UUID.randomUUID().toString();
|
|
||||||
this.outputSchema = outputSchema;
|
|
||||||
this.pyOutputs = schemaToPythonVariables(outputSchema);
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
public String getName() {
|
|
||||||
return name;
|
|
||||||
}
|
|
||||||
|
|
||||||
public String getCode(){
|
|
||||||
return code;
|
|
||||||
}
|
|
||||||
|
|
||||||
public PythonVariables getInputs() {
|
|
||||||
return pyInputs;
|
|
||||||
}
|
|
||||||
|
|
||||||
public PythonVariables getOutputs() {
|
|
||||||
return pyOutputs;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
|
@ -0,0 +1,306 @@
|
||||||
|
package org.datavec.python;
|
||||||
|
|
||||||
|
import org.datavec.api.transform.ColumnType;
|
||||||
|
import org.datavec.api.transform.metadata.BooleanMetaData;
|
||||||
|
import org.datavec.api.transform.schema.Schema;
|
||||||
|
import org.json.JSONArray;
|
||||||
|
import org.json.JSONObject;
|
||||||
|
import org.nd4j.base.Preconditions;
|
||||||
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.HashMap;
|
||||||
|
import java.util.List;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* List of utilities for executing python transforms.
|
||||||
|
*
|
||||||
|
* @author Adam Gibson
|
||||||
|
*/
|
||||||
|
public class PythonUtils {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a {@link Schema}
|
||||||
|
* from {@link PythonVariables}.
|
||||||
|
* Types are mapped to types of the same name.
|
||||||
|
* @param input the input {@link PythonVariables}
|
||||||
|
* @return the output {@link Schema}
|
||||||
|
*/
|
||||||
|
public static Schema fromPythonVariables(PythonVariables input) {
|
||||||
|
Schema.Builder schemaBuilder = new Schema.Builder();
|
||||||
|
Preconditions.checkState(input.getVariables() != null && input.getVariables().length > 0,"Input must have variables. Found none.");
|
||||||
|
for(Map.Entry<String,PythonVariables.Type> entry : input.getVars().entrySet()) {
|
||||||
|
switch(entry.getValue()) {
|
||||||
|
case INT:
|
||||||
|
schemaBuilder.addColumnInteger(entry.getKey());
|
||||||
|
break;
|
||||||
|
case STR:
|
||||||
|
schemaBuilder.addColumnString(entry.getKey());
|
||||||
|
break;
|
||||||
|
case FLOAT:
|
||||||
|
schemaBuilder.addColumnFloat(entry.getKey());
|
||||||
|
break;
|
||||||
|
case NDARRAY:
|
||||||
|
schemaBuilder.addColumnNDArray(entry.getKey(),null);
|
||||||
|
break;
|
||||||
|
case BOOL:
|
||||||
|
schemaBuilder.addColumn(new BooleanMetaData(entry.getKey()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return schemaBuilder.build();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a {@link Schema} from an input
|
||||||
|
* {@link PythonVariables}
|
||||||
|
* Types are mapped to types of the same name
|
||||||
|
* @param input the input schema
|
||||||
|
* @return the output python variables.
|
||||||
|
*/
|
||||||
|
public static PythonVariables fromSchema(Schema input) {
|
||||||
|
PythonVariables ret = new PythonVariables();
|
||||||
|
for(int i = 0; i < input.numColumns(); i++) {
|
||||||
|
String currColumnName = input.getName(i);
|
||||||
|
ColumnType columnType = input.getType(i);
|
||||||
|
switch(columnType) {
|
||||||
|
case NDArray:
|
||||||
|
ret.add(currColumnName, PythonVariables.Type.NDARRAY);
|
||||||
|
break;
|
||||||
|
case Boolean:
|
||||||
|
ret.add(currColumnName, PythonVariables.Type.BOOL);
|
||||||
|
break;
|
||||||
|
case Categorical:
|
||||||
|
case String:
|
||||||
|
ret.add(currColumnName, PythonVariables.Type.STR);
|
||||||
|
break;
|
||||||
|
case Double:
|
||||||
|
case Float:
|
||||||
|
ret.add(currColumnName, PythonVariables.Type.FLOAT);
|
||||||
|
break;
|
||||||
|
case Integer:
|
||||||
|
case Long:
|
||||||
|
ret.add(currColumnName, PythonVariables.Type.INT);
|
||||||
|
break;
|
||||||
|
case Bytes:
|
||||||
|
break;
|
||||||
|
case Time:
|
||||||
|
throw new UnsupportedOperationException("Unable to process dates with python yet.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
/**
|
||||||
|
* Convert a {@link Schema}
|
||||||
|
* to {@link PythonVariables}
|
||||||
|
* @param schema the input schema
|
||||||
|
* @return the output {@link PythonVariables} where each
|
||||||
|
* name in the map is associated with a column name in the schema.
|
||||||
|
* A proper type is also chosen based on the schema
|
||||||
|
* @throws Exception
|
||||||
|
*/
|
||||||
|
public static PythonVariables schemaToPythonVariables(Schema schema) throws Exception {
|
||||||
|
PythonVariables pyVars = new PythonVariables();
|
||||||
|
int numCols = schema.numColumns();
|
||||||
|
for (int i = 0; i < numCols; i++) {
|
||||||
|
String colName = schema.getName(i);
|
||||||
|
ColumnType colType = schema.getType(i);
|
||||||
|
switch (colType){
|
||||||
|
case Long:
|
||||||
|
case Integer:
|
||||||
|
pyVars.addInt(colName);
|
||||||
|
break;
|
||||||
|
case Double:
|
||||||
|
case Float:
|
||||||
|
pyVars.addFloat(colName);
|
||||||
|
break;
|
||||||
|
case String:
|
||||||
|
pyVars.addStr(colName);
|
||||||
|
break;
|
||||||
|
case NDArray:
|
||||||
|
pyVars.addNDArray(colName);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
throw new Exception("Unsupported python input type: " + colType.toString());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return pyVars;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
public static NumpyArray mapToNumpyArray(Map map){
|
||||||
|
String dtypeName = (String)map.get("dtype");
|
||||||
|
DataType dtype;
|
||||||
|
if (dtypeName.equals("float64")){
|
||||||
|
dtype = DataType.DOUBLE;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("float32")){
|
||||||
|
dtype = DataType.FLOAT;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("int16")){
|
||||||
|
dtype = DataType.SHORT;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("int32")){
|
||||||
|
dtype = DataType.INT;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("int64")){
|
||||||
|
dtype = DataType.LONG;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
throw new RuntimeException("Unsupported array type " + dtypeName + ".");
|
||||||
|
}
|
||||||
|
List shapeList = (List)map.get("shape");
|
||||||
|
long[] shape = new long[shapeList.size()];
|
||||||
|
for (int i = 0; i < shape.length; i++) {
|
||||||
|
shape[i] = (Long)shapeList.get(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
List strideList = (List)map.get("shape");
|
||||||
|
long[] stride = new long[strideList.size()];
|
||||||
|
for (int i = 0; i < stride.length; i++) {
|
||||||
|
stride[i] = (Long)strideList.get(i);
|
||||||
|
}
|
||||||
|
long address = (Long)map.get("address");
|
||||||
|
NumpyArray numpyArray = new NumpyArray(address, shape, stride, true,dtype);
|
||||||
|
return numpyArray;
|
||||||
|
}
|
||||||
|
|
||||||
|
public static PythonVariables expandInnerDict(PythonVariables pyvars, String key){
|
||||||
|
Map dict = pyvars.getDictValue(key);
|
||||||
|
String[] keys = (String[])dict.keySet().toArray(new String[dict.keySet().size()]);
|
||||||
|
PythonVariables pyvars2 = new PythonVariables();
|
||||||
|
for (String subkey: keys){
|
||||||
|
Object value = dict.get(subkey);
|
||||||
|
if (value instanceof Map){
|
||||||
|
Map map = (Map)value;
|
||||||
|
if (map.containsKey("_is_numpy_array")){
|
||||||
|
pyvars2.addNDArray(subkey, mapToNumpyArray(map));
|
||||||
|
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
pyvars2.addDict(subkey, (Map)value);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
else if (value instanceof List){
|
||||||
|
pyvars2.addList(subkey, ((List) value).toArray());
|
||||||
|
}
|
||||||
|
else if (value instanceof String){
|
||||||
|
System.out.println((String)value);
|
||||||
|
pyvars2.addStr(subkey, (String) value);
|
||||||
|
}
|
||||||
|
else if (value instanceof Integer || value instanceof Long) {
|
||||||
|
Number number = (Number) value;
|
||||||
|
pyvars2.addInt(subkey, number.intValue());
|
||||||
|
}
|
||||||
|
else if (value instanceof Float || value instanceof Double) {
|
||||||
|
Number number = (Number) value;
|
||||||
|
pyvars2.addFloat(subkey, number.doubleValue());
|
||||||
|
}
|
||||||
|
else if (value instanceof NumpyArray){
|
||||||
|
pyvars2.addNDArray(subkey, (NumpyArray)value);
|
||||||
|
}
|
||||||
|
else if (value == null){
|
||||||
|
pyvars2.addStr(subkey, "None"); // FixMe
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
throw new RuntimeException("Unsupported type!" + value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return pyvars2;
|
||||||
|
}
|
||||||
|
|
||||||
|
public static long[] jsonArrayToLongArray(JSONArray jsonArray){
|
||||||
|
long[] longs = new long[jsonArray.length()];
|
||||||
|
for (int i=0; i<longs.length; i++){
|
||||||
|
|
||||||
|
longs[i] = jsonArray.getLong(i);
|
||||||
|
}
|
||||||
|
return longs;
|
||||||
|
}
|
||||||
|
|
||||||
|
public static Map<String, Object> toMap(JSONObject jsonobj) {
|
||||||
|
Map<String, Object> map = new HashMap<>();
|
||||||
|
String[] keys = (String[])jsonobj.keySet().toArray(new String[jsonobj.keySet().size()]);
|
||||||
|
for (String key: keys){
|
||||||
|
Object value = jsonobj.get(key);
|
||||||
|
if (value instanceof JSONArray) {
|
||||||
|
value = toList((JSONArray) value);
|
||||||
|
} else if (value instanceof JSONObject) {
|
||||||
|
JSONObject jsonobj2 = (JSONObject)value;
|
||||||
|
if (jsonobj2.has("_is_numpy_array")){
|
||||||
|
value = jsonToNumpyArray(jsonobj2);
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
value = toMap(jsonobj2);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
map.put(key, value);
|
||||||
|
} return map;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
public static List<Object> toList(JSONArray array) {
|
||||||
|
List<Object> list = new ArrayList<>();
|
||||||
|
for (int i = 0; i < array.length(); i++) {
|
||||||
|
Object value = array.get(i);
|
||||||
|
if (value instanceof JSONArray) {
|
||||||
|
value = toList((JSONArray) value);
|
||||||
|
} else if (value instanceof JSONObject) {
|
||||||
|
JSONObject jsonobj2 = (JSONObject) value;
|
||||||
|
if (jsonobj2.has("_is_numpy_array")) {
|
||||||
|
value = jsonToNumpyArray(jsonobj2);
|
||||||
|
} else {
|
||||||
|
value = toMap(jsonobj2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
list.add(value);
|
||||||
|
}
|
||||||
|
return list;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
private static NumpyArray jsonToNumpyArray(JSONObject map){
|
||||||
|
String dtypeName = (String)map.get("dtype");
|
||||||
|
DataType dtype;
|
||||||
|
if (dtypeName.equals("float64")){
|
||||||
|
dtype = DataType.DOUBLE;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("float32")){
|
||||||
|
dtype = DataType.FLOAT;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("int16")){
|
||||||
|
dtype = DataType.SHORT;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("int32")){
|
||||||
|
dtype = DataType.INT;
|
||||||
|
}
|
||||||
|
else if (dtypeName.equals("int64")){
|
||||||
|
dtype = DataType.LONG;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
throw new RuntimeException("Unsupported array type " + dtypeName + ".");
|
||||||
|
}
|
||||||
|
List shapeList = (List)map.get("shape");
|
||||||
|
long[] shape = new long[shapeList.size()];
|
||||||
|
for (int i = 0; i < shape.length; i++) {
|
||||||
|
shape[i] = (Long)shapeList.get(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
List strideList = (List)map.get("shape");
|
||||||
|
long[] stride = new long[strideList.size()];
|
||||||
|
for (int i = 0; i < stride.length; i++) {
|
||||||
|
stride[i] = (Long)strideList.get(i);
|
||||||
|
}
|
||||||
|
long address = (Long)map.get("address");
|
||||||
|
NumpyArray numpyArray = new NumpyArray(address, shape, stride, true,dtype);
|
||||||
|
return numpyArray;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
|
@ -17,8 +17,8 @@
|
||||||
package org.datavec.python;
|
package org.datavec.python;
|
||||||
|
|
||||||
import lombok.Data;
|
import lombok.Data;
|
||||||
import org.json.simple.JSONArray;
|
import org.json.JSONObject;
|
||||||
import org.json.simple.JSONObject;
|
import org.json.JSONArray;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
|
|
||||||
import java.io.Serializable;
|
import java.io.Serializable;
|
||||||
|
@ -31,8 +31,8 @@ import java.util.*;
|
||||||
* @author Fariz Rahman
|
* @author Fariz Rahman
|
||||||
*/
|
*/
|
||||||
|
|
||||||
@Data
|
@lombok.Data
|
||||||
public class PythonVariables implements Serializable{
|
public class PythonVariables implements java.io.Serializable {
|
||||||
|
|
||||||
public enum Type{
|
public enum Type{
|
||||||
BOOL,
|
BOOL,
|
||||||
|
@ -41,23 +41,29 @@ public class PythonVariables implements Serializable{
|
||||||
FLOAT,
|
FLOAT,
|
||||||
NDARRAY,
|
NDARRAY,
|
||||||
LIST,
|
LIST,
|
||||||
FILE
|
FILE,
|
||||||
|
DICT
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
private Map<String, String> strVars = new HashMap<String, String>();
|
private java.util.Map<String, String> strVariables = new java.util.LinkedHashMap<>();
|
||||||
private Map<String, Long> intVars = new HashMap<String, Long>();
|
private java.util.Map<String, Long> intVariables = new java.util.LinkedHashMap<>();
|
||||||
private Map<String, Double> floatVars = new HashMap<String, Double>();
|
private java.util.Map<String, Double> floatVariables = new java.util.LinkedHashMap<>();
|
||||||
private Map<String, Boolean> boolVars = new HashMap<String, Boolean>();
|
private java.util.Map<String, Boolean> boolVariables = new java.util.LinkedHashMap<>();
|
||||||
private Map<String, NumpyArray> ndVars = new HashMap<String, NumpyArray>();
|
private java.util.Map<String, NumpyArray> ndVars = new java.util.LinkedHashMap<>();
|
||||||
private Map<String, Object[]> listVars = new HashMap<String, Object[]>();
|
private java.util.Map<String, Object[]> listVariables = new java.util.LinkedHashMap<>();
|
||||||
private Map<String, String> fileVars = new HashMap<String, String>();
|
private java.util.Map<String, String> fileVariables = new java.util.LinkedHashMap<>();
|
||||||
|
private java.util.Map<String, java.util.Map<?,?>> dictVariables = new java.util.LinkedHashMap<>();
|
||||||
private Map<String, Type> vars = new HashMap<String, Type>();
|
private java.util.Map<String, Type> vars = new java.util.LinkedHashMap<>();
|
||||||
|
private java.util.Map<Type, java.util.Map> maps = new java.util.LinkedHashMap<>();
|
||||||
private Map<Type, Map> maps = new HashMap<Type, Map>();
|
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns a copy of the variable
|
||||||
|
* schema in this array without the values
|
||||||
|
* @return an empty variables clone
|
||||||
|
* with no values
|
||||||
|
*/
|
||||||
public PythonVariables copySchema(){
|
public PythonVariables copySchema(){
|
||||||
PythonVariables ret = new PythonVariables();
|
PythonVariables ret = new PythonVariables();
|
||||||
for (String varName: getVariables()){
|
for (String varName: getVariables()){
|
||||||
|
@ -66,15 +72,30 @@ public class PythonVariables implements Serializable{
|
||||||
}
|
}
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
public PythonVariables(){
|
|
||||||
maps.put(Type.BOOL, boolVars);
|
|
||||||
maps.put(Type.STR, strVars);
|
|
||||||
maps.put(Type.INT, intVars);
|
|
||||||
maps.put(Type.FLOAT, floatVars);
|
|
||||||
maps.put(Type.NDARRAY, ndVars);
|
|
||||||
maps.put(Type.LIST, listVars);
|
|
||||||
maps.put(Type.FILE, fileVars);
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
public PythonVariables() {
|
||||||
|
maps.put(PythonVariables.Type.BOOL, boolVariables);
|
||||||
|
maps.put(PythonVariables.Type.STR, strVariables);
|
||||||
|
maps.put(PythonVariables.Type.INT, intVariables);
|
||||||
|
maps.put(PythonVariables.Type.FLOAT, floatVariables);
|
||||||
|
maps.put(PythonVariables.Type.NDARRAY, ndVars);
|
||||||
|
maps.put(PythonVariables.Type.LIST, listVariables);
|
||||||
|
maps.put(PythonVariables.Type.FILE, fileVariables);
|
||||||
|
maps.put(PythonVariables.Type.DICT, dictVariables);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @return true if there are no variables.
|
||||||
|
*/
|
||||||
|
public boolean isEmpty() {
|
||||||
|
return getVariables().length < 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -105,6 +126,9 @@ public class PythonVariables implements Serializable{
|
||||||
break;
|
break;
|
||||||
case FILE:
|
case FILE:
|
||||||
addFile(name);
|
addFile(name);
|
||||||
|
break;
|
||||||
|
case DICT:
|
||||||
|
addDict(name);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -113,248 +137,459 @@ public class PythonVariables implements Serializable{
|
||||||
* @param name name of the variable
|
* @param name name of the variable
|
||||||
* @param type type of the variable
|
* @param type type of the variable
|
||||||
* @param value value of the variable (must be instance of expected type)
|
* @param value value of the variable (must be instance of expected type)
|
||||||
* @throws Exception
|
|
||||||
*/
|
*/
|
||||||
public void add (String name, Type type, Object value) throws Exception{
|
public void add(String name, Type type, Object value) {
|
||||||
add(name, type);
|
add(name, type);
|
||||||
setValue(name, value);
|
setValue(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
|
public void addDict(String name) {
|
||||||
|
vars.put(name, PythonVariables.Type.DICT);
|
||||||
|
dictVariables.put(name,null);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
public void addBool(String name){
|
public void addBool(String name){
|
||||||
vars.put(name, Type.BOOL);
|
vars.put(name, PythonVariables.Type.BOOL);
|
||||||
boolVars.put(name, null);
|
boolVariables.put(name, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
public void addStr(String name){
|
public void addStr(String name){
|
||||||
vars.put(name, Type.STR);
|
vars.put(name, PythonVariables.Type.STR);
|
||||||
strVars.put(name, null);
|
strVariables.put(name, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
public void addInt(String name){
|
public void addInt(String name){
|
||||||
vars.put(name, Type.INT);
|
vars.put(name, PythonVariables.Type.INT);
|
||||||
intVars.put(name, null);
|
intVariables.put(name, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
public void addFloat(String name){
|
public void addFloat(String name){
|
||||||
vars.put(name, Type.FLOAT);
|
vars.put(name, PythonVariables.Type.FLOAT);
|
||||||
floatVars.put(name, null);
|
floatVariables.put(name, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
public void addNDArray(String name){
|
public void addNDArray(String name){
|
||||||
vars.put(name, Type.NDARRAY);
|
vars.put(name, PythonVariables.Type.NDARRAY);
|
||||||
ndVars.put(name, null);
|
ndVars.put(name, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
public void addList(String name){
|
public void addList(String name){
|
||||||
vars.put(name, Type.LIST);
|
vars.put(name, PythonVariables.Type.LIST);
|
||||||
listVars.put(name, null);
|
listVariables.put(name, null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
*/
|
||||||
public void addFile(String name){
|
public void addFile(String name){
|
||||||
vars.put(name, Type.FILE);
|
vars.put(name, PythonVariables.Type.FILE);
|
||||||
fileVars.put(name, null);
|
fileVariables.put(name, null);
|
||||||
}
|
|
||||||
public void addBool(String name, boolean value){
|
|
||||||
vars.put(name, Type.BOOL);
|
|
||||||
boolVars.put(name, value);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addStr(String name, String value){
|
/**
|
||||||
vars.put(name, Type.STR);
|
* Add a boolean variable to
|
||||||
strVars.put(name, value);
|
* the set of variables
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addBool(String name, boolean value) {
|
||||||
|
vars.put(name, PythonVariables.Type.BOOL);
|
||||||
|
boolVariables.put(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addInt(String name, int value){
|
/**
|
||||||
vars.put(name, Type.INT);
|
* Add a string variable to
|
||||||
intVars.put(name, (long)value);
|
* the set of variables
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addStr(String name, String value) {
|
||||||
|
vars.put(name, PythonVariables.Type.STR);
|
||||||
|
strVariables.put(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addInt(String name, long value){
|
/**
|
||||||
vars.put(name, Type.INT);
|
* Add an int variable to
|
||||||
intVars.put(name, value);
|
* the set of variables
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addInt(String name, int value) {
|
||||||
|
vars.put(name, PythonVariables.Type.INT);
|
||||||
|
intVariables.put(name, (long)value);
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addFloat(String name, double value){
|
/**
|
||||||
vars.put(name, Type.FLOAT);
|
* Add a long variable to
|
||||||
floatVars.put(name, value);
|
* the set of variables
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addInt(String name, long value) {
|
||||||
|
vars.put(name, PythonVariables.Type.INT);
|
||||||
|
intVariables.put(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addFloat(String name, float value){
|
/**
|
||||||
vars.put(name, Type.FLOAT);
|
* Add a double variable to
|
||||||
floatVars.put(name, (double)value);
|
* the set of variables
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addFloat(String name, double value) {
|
||||||
|
vars.put(name, PythonVariables.Type.FLOAT);
|
||||||
|
floatVariables.put(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addNDArray(String name, NumpyArray value){
|
/**
|
||||||
vars.put(name, Type.NDARRAY);
|
* Add a float variable to
|
||||||
|
* the set of variables
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addFloat(String name, float value) {
|
||||||
|
vars.put(name, PythonVariables.Type.FLOAT);
|
||||||
|
floatVariables.put(name, (double)value);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addNDArray(String name, NumpyArray value) {
|
||||||
|
vars.put(name, PythonVariables.Type.NDARRAY);
|
||||||
ndVars.put(name, value);
|
ndVars.put(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addNDArray(String name, INDArray value){
|
/**
|
||||||
vars.put(name, Type.NDARRAY);
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addNDArray(String name, org.nd4j.linalg.api.ndarray.INDArray value) {
|
||||||
|
vars.put(name, PythonVariables.Type.NDARRAY);
|
||||||
ndVars.put(name, new NumpyArray(value));
|
ndVars.put(name, new NumpyArray(value));
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addList(String name, Object[] value){
|
/**
|
||||||
vars.put(name, Type.LIST);
|
* Add a null variable to
|
||||||
listVars.put(name, value);
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addList(String name, Object[] value) {
|
||||||
|
vars.put(name, PythonVariables.Type.LIST);
|
||||||
|
listVariables.put(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
public void addFile(String name, String value){
|
/**
|
||||||
vars.put(name, Type.FILE);
|
* Add a null variable to
|
||||||
fileVars.put(name, value);
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addFile(String name, String value) {
|
||||||
|
vars.put(name, PythonVariables.Type.FILE);
|
||||||
|
fileVariables.put(name, value);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a null variable to
|
||||||
|
* the set of variables
|
||||||
|
* to describe the type but no value
|
||||||
|
* @param name the field to add
|
||||||
|
* @param value the value to add
|
||||||
|
*/
|
||||||
|
public void addDict(String name, java.util.Map value) {
|
||||||
|
vars.put(name, PythonVariables.Type.DICT);
|
||||||
|
dictVariables.put(name, value);
|
||||||
|
}
|
||||||
/**
|
/**
|
||||||
*
|
*
|
||||||
* @param name name of the variable
|
* @param name name of the variable
|
||||||
* @param value new value for the variable
|
* @param value new value for the variable
|
||||||
* @throws Exception
|
|
||||||
*/
|
*/
|
||||||
public void setValue(String name, Object value) {
|
public void setValue(String name, Object value) {
|
||||||
Type type = vars.get(name);
|
Type type = vars.get(name);
|
||||||
if (type == Type.BOOL){
|
if (type == PythonVariables.Type.BOOL){
|
||||||
boolVars.put(name, (Boolean)value);
|
boolVariables.put(name, (Boolean)value);
|
||||||
}
|
}
|
||||||
else if (type == Type.INT){
|
else if (type == PythonVariables.Type.INT){
|
||||||
if (value instanceof Long){
|
Number number = (Number) value;
|
||||||
intVars.put(name, ((Long)value));
|
intVariables.put(name, number.longValue());
|
||||||
}
|
|
||||||
else if (value instanceof Integer){
|
|
||||||
intVars.put(name, ((Integer)value).longValue());
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
else if (type == Type.FLOAT){
|
else if (type == PythonVariables.Type.FLOAT){
|
||||||
floatVars.put(name, (Double)value);
|
Number number = (Number) value;
|
||||||
|
floatVariables.put(name, number.doubleValue());
|
||||||
}
|
}
|
||||||
else if (type == Type.NDARRAY){
|
else if (type == PythonVariables.Type.NDARRAY){
|
||||||
if (value instanceof NumpyArray){
|
if (value instanceof NumpyArray){
|
||||||
ndVars.put(name, (NumpyArray)value);
|
ndVars.put(name, (NumpyArray)value);
|
||||||
}
|
}
|
||||||
else if (value instanceof INDArray){
|
else if (value instanceof org.nd4j.linalg.api.ndarray.INDArray) {
|
||||||
ndVars.put(name, new NumpyArray((INDArray) value));
|
ndVars.put(name, new NumpyArray((org.nd4j.linalg.api.ndarray.INDArray) value));
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
throw new RuntimeException("Unsupported type: " + value.getClass().toString());
|
throw new RuntimeException("Unsupported type: " + value.getClass().toString());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else if (type == Type.LIST){
|
else if (type == PythonVariables.Type.LIST) {
|
||||||
listVars.put(name, (Object[]) value);
|
if (value instanceof java.util.List) {
|
||||||
|
value = ((java.util.List) value).toArray();
|
||||||
|
listVariables.put(name, (Object[]) value);
|
||||||
|
}
|
||||||
|
else if(value instanceof org.json.JSONArray) {
|
||||||
|
org.json.JSONArray jsonArray = (org.json.JSONArray) value;
|
||||||
|
Object[] copyArr = new Object[jsonArray.length()];
|
||||||
|
for(int i = 0; i < copyArr.length; i++) {
|
||||||
|
copyArr[i] = jsonArray.get(i);
|
||||||
|
}
|
||||||
|
listVariables.put(name, copyArr);
|
||||||
|
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
listVariables.put(name, (Object[]) value);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
else if (type == Type.FILE){
|
else if(type == PythonVariables.Type.DICT) {
|
||||||
fileVars.put(name, (String)value);
|
dictVariables.put(name,(java.util.Map<?,?>) value);
|
||||||
|
}
|
||||||
|
else if (type == PythonVariables.Type.FILE){
|
||||||
|
fileVariables.put(name, (String)value);
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
strVars.put(name, (String)value);
|
strVariables.put(name, (String)value);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public Object getValue(String name){
|
/**
|
||||||
|
* Do a general object lookup.
|
||||||
|
* The look up will happen relative to the {@link Type}
|
||||||
|
* of variable is described in the
|
||||||
|
* @param name the name of the variable to get
|
||||||
|
* @return teh value for the variable with the given name
|
||||||
|
*/
|
||||||
|
public Object getValue(String name) {
|
||||||
Type type = vars.get(name);
|
Type type = vars.get(name);
|
||||||
Map map = maps.get(type);
|
java.util.Map map = maps.get(type);
|
||||||
return map.get(name);
|
return map.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns a boolean variable with the given name.
|
||||||
|
* @param name the variable name to get the value for
|
||||||
|
* @return the retrieved boolean value
|
||||||
|
*/
|
||||||
|
public boolean getBooleanValue(String name) {
|
||||||
|
return boolVariables.get(name);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @param name the variable name
|
||||||
|
* @return the dictionary value
|
||||||
|
*/
|
||||||
|
public java.util.Map<?,?> getDictValue(String name) {
|
||||||
|
return dictVariables.get(name);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @param name the variable name
|
||||||
|
* @return the string value
|
||||||
|
*/
|
||||||
public String getStrValue(String name){
|
public String getStrValue(String name){
|
||||||
return strVars.get(name);
|
return strVariables.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
public long getIntValue(String name){
|
/**
|
||||||
return intVars.get(name);
|
*
|
||||||
|
* @param name the variable name
|
||||||
|
* @return the long value
|
||||||
|
*/
|
||||||
|
public Long getIntValue(String name){
|
||||||
|
return intVariables.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
public double getFloatValue(String name){
|
/**
|
||||||
return floatVars.get(name);
|
*
|
||||||
|
* @param name the variable name
|
||||||
|
* @return the float value
|
||||||
|
*/
|
||||||
|
public Double getFloatValue(String name){
|
||||||
|
return floatVariables.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @param name the variable name
|
||||||
|
* @return the numpy array value
|
||||||
|
*/
|
||||||
public NumpyArray getNDArrayValue(String name){
|
public NumpyArray getNDArrayValue(String name){
|
||||||
return ndVars.get(name);
|
return ndVars.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @param name the variable name
|
||||||
|
* @return the list value as an object array
|
||||||
|
*/
|
||||||
public Object[] getListValue(String name){
|
public Object[] getListValue(String name){
|
||||||
return listVars.get(name);
|
return listVariables.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
* @param name the variable name
|
||||||
|
* @return the value of the given file name
|
||||||
|
*/
|
||||||
public String getFileValue(String name){
|
public String getFileValue(String name){
|
||||||
return fileVars.get(name);
|
return fileVariables.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the type for the given variable name
|
||||||
|
* @param name the name of the variable to get the type for
|
||||||
|
* @return the type for the given variable
|
||||||
|
*/
|
||||||
public Type getType(String name){
|
public Type getType(String name){
|
||||||
return vars.get(name);
|
return vars.get(name);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get all the variables present as a string array
|
||||||
|
* @return the variable names for this variable sset
|
||||||
|
*/
|
||||||
public String[] getVariables() {
|
public String[] getVariables() {
|
||||||
String[] strArr = new String[vars.size()];
|
String[] strArr = new String[vars.size()];
|
||||||
return vars.keySet().toArray(strArr);
|
return vars.keySet().toArray(strArr);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
public Map<String, Boolean> getBoolVariables(){
|
/**
|
||||||
return boolVars;
|
* This variables set as its json representation (an array of json objects)
|
||||||
}
|
* @return the json array output
|
||||||
public Map<String, String> getStrVariables(){
|
*/
|
||||||
return strVars;
|
public org.json.JSONArray toJSON(){
|
||||||
}
|
org.json.JSONArray arr = new org.json.JSONArray();
|
||||||
|
|
||||||
public Map<String, Long> getIntVariables(){
|
|
||||||
return intVars;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Map<String, Double> getFloatVariables(){
|
|
||||||
return floatVars;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Map<String, NumpyArray> getNDArrayVariables(){
|
|
||||||
return ndVars;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Map<String, Object[]> getListVariables(){
|
|
||||||
return listVars;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Map<String, String> getFileVariables(){
|
|
||||||
return fileVars;
|
|
||||||
}
|
|
||||||
|
|
||||||
public JSONArray toJSON(){
|
|
||||||
JSONArray arr = new JSONArray();
|
|
||||||
for (String varName: getVariables()){
|
for (String varName: getVariables()){
|
||||||
JSONObject var = new JSONObject();
|
org.json.JSONObject var = new org.json.JSONObject();
|
||||||
var.put("name", varName);
|
var.put("name", varName);
|
||||||
String varType = getType(varName).toString();
|
String varType = getType(varName).toString();
|
||||||
var.put("type", varType);
|
var.put("type", varType);
|
||||||
arr.add(var);
|
arr.put(var);
|
||||||
}
|
}
|
||||||
return arr;
|
return arr;
|
||||||
}
|
}
|
||||||
|
|
||||||
public static PythonVariables fromJSON(JSONArray jsonArray){
|
/**
|
||||||
|
* Create a schema from a map.
|
||||||
|
* This is an empty PythonVariables
|
||||||
|
* that just contains names and types with no values
|
||||||
|
* @param inputTypes the input types to convert
|
||||||
|
* @return the schema from the given map
|
||||||
|
*/
|
||||||
|
public static PythonVariables schemaFromMap(java.util.Map<String,String> inputTypes) {
|
||||||
|
PythonVariables ret = new PythonVariables();
|
||||||
|
for(java.util.Map.Entry<String,String> entry : inputTypes.entrySet()) {
|
||||||
|
ret.add(entry.getKey(), PythonVariables.Type.valueOf(entry.getValue()));
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get the python variable state relative to the
|
||||||
|
* input json array
|
||||||
|
* @param jsonArray the input json array
|
||||||
|
* @return the python variables based on the input json array
|
||||||
|
*/
|
||||||
|
public static PythonVariables fromJSON(org.json.JSONArray jsonArray){
|
||||||
PythonVariables pyvars = new PythonVariables();
|
PythonVariables pyvars = new PythonVariables();
|
||||||
for (int i=0; i<jsonArray.size(); i++){
|
for (int i = 0; i < jsonArray.length(); i++) {
|
||||||
JSONObject input = (JSONObject) jsonArray.get(i);
|
org.json.JSONObject input = (org.json.JSONObject) jsonArray.get(i);
|
||||||
String varName = (String)input.get("name");
|
String varName = (String)input.get("name");
|
||||||
String varType = (String)input.get("type");
|
String varType = (String)input.get("type");
|
||||||
if (varType.equals("BOOL")){
|
if (varType.equals("BOOL")) {
|
||||||
pyvars.addBool(varName);
|
pyvars.addBool(varName);
|
||||||
}
|
}
|
||||||
else if (varType.equals("INT")){
|
else if (varType.equals("INT")) {
|
||||||
pyvars.addInt(varName);
|
pyvars.addInt(varName);
|
||||||
}
|
}
|
||||||
else if (varType.equals("FlOAT")){
|
else if (varType.equals("FlOAT")){
|
||||||
pyvars.addFloat(varName);
|
pyvars.addFloat(varName);
|
||||||
}
|
}
|
||||||
else if (varType.equals("STR")){
|
else if (varType.equals("STR")) {
|
||||||
pyvars.addStr(varName);
|
pyvars.addStr(varName);
|
||||||
}
|
}
|
||||||
else if (varType.equals("LIST")){
|
else if (varType.equals("LIST")) {
|
||||||
pyvars.addList(varName);
|
pyvars.addList(varName);
|
||||||
}
|
}
|
||||||
else if (varType.equals("FILE")){
|
else if (varType.equals("FILE")){
|
||||||
pyvars.addFile(varName);
|
pyvars.addFile(varName);
|
||||||
}
|
}
|
||||||
else if (varType.equals("NDARRAY")){
|
else if (varType.equals("NDARRAY")) {
|
||||||
pyvars.addNDArray(varName);
|
pyvars.addNDArray(varName);
|
||||||
}
|
}
|
||||||
|
else if(varType.equals("DICT")) {
|
||||||
|
pyvars.addDict(varName);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return pyvars;
|
return pyvars;
|
||||||
|
|
|
@ -0,0 +1,5 @@
|
||||||
|
#See: https://stackoverflow.com/questions/3543833/how-do-i-clear-all-variables-in-the-middle-of-a-python-script
|
||||||
|
import sys
|
||||||
|
this = sys.modules[__name__]
|
||||||
|
for n in dir():
|
||||||
|
if n[0]!='_': delattr(this, n)
|
|
@ -0,0 +1 @@
|
||||||
|
loc = {}
|
|
@ -0,0 +1,20 @@
|
||||||
|
|
||||||
|
def __is_numpy_array(x):
|
||||||
|
return str(type(x))== "<class 'numpy.ndarray'>"
|
||||||
|
|
||||||
|
def maybe_serialize_ndarray_metadata(x):
|
||||||
|
return serialize_ndarray_metadata(x) if __is_numpy_array(x) else x
|
||||||
|
|
||||||
|
|
||||||
|
def serialize_ndarray_metadata(x):
|
||||||
|
return {"address": x.__array_interface__['data'][0],
|
||||||
|
"shape": x.shape,
|
||||||
|
"strides": x.strides,
|
||||||
|
"dtype": str(x.dtype),
|
||||||
|
"_is_numpy_array": True} if __is_numpy_array(x) else x
|
||||||
|
|
||||||
|
|
||||||
|
def is_json_ready(key, value):
|
||||||
|
return key is not 'f2' and not inspect.ismodule(value) \
|
||||||
|
and not hasattr(value, '__call__')
|
||||||
|
|
|
@ -0,0 +1,202 @@
|
||||||
|
#patch
|
||||||
|
|
||||||
|
"""Implementation of __array_function__ overrides from NEP-18."""
|
||||||
|
import collections
|
||||||
|
import functools
|
||||||
|
import os
|
||||||
|
|
||||||
|
from numpy.core._multiarray_umath import (
|
||||||
|
add_docstring, implement_array_function, _get_implementing_args)
|
||||||
|
from numpy.compat._inspect import getargspec
|
||||||
|
|
||||||
|
|
||||||
|
ENABLE_ARRAY_FUNCTION = bool(
|
||||||
|
int(os.environ.get('NUMPY_EXPERIMENTAL_ARRAY_FUNCTION', 0)))
|
||||||
|
|
||||||
|
|
||||||
|
ARRAY_FUNCTION_ENABLED = ENABLE_ARRAY_FUNCTION # backward compat
|
||||||
|
|
||||||
|
|
||||||
|
_add_docstring = add_docstring
|
||||||
|
|
||||||
|
|
||||||
|
def add_docstring(*args):
|
||||||
|
try:
|
||||||
|
_add_docstring(*args)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
add_docstring(
|
||||||
|
implement_array_function,
|
||||||
|
"""
|
||||||
|
Implement a function with checks for __array_function__ overrides.
|
||||||
|
|
||||||
|
All arguments are required, and can only be passed by position.
|
||||||
|
|
||||||
|
Arguments
|
||||||
|
---------
|
||||||
|
implementation : function
|
||||||
|
Function that implements the operation on NumPy array without
|
||||||
|
overrides when called like ``implementation(*args, **kwargs)``.
|
||||||
|
public_api : function
|
||||||
|
Function exposed by NumPy's public API originally called like
|
||||||
|
``public_api(*args, **kwargs)`` on which arguments are now being
|
||||||
|
checked.
|
||||||
|
relevant_args : iterable
|
||||||
|
Iterable of arguments to check for __array_function__ methods.
|
||||||
|
args : tuple
|
||||||
|
Arbitrary positional arguments originally passed into ``public_api``.
|
||||||
|
kwargs : dict
|
||||||
|
Arbitrary keyword arguments originally passed into ``public_api``.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
Result from calling ``implementation()`` or an ``__array_function__``
|
||||||
|
method, as appropriate.
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
TypeError : if no implementation is found.
|
||||||
|
""")
|
||||||
|
|
||||||
|
|
||||||
|
# exposed for testing purposes; used internally by implement_array_function
|
||||||
|
add_docstring(
|
||||||
|
_get_implementing_args,
|
||||||
|
"""
|
||||||
|
Collect arguments on which to call __array_function__.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
relevant_args : iterable of array-like
|
||||||
|
Iterable of possibly array-like arguments to check for
|
||||||
|
__array_function__ methods.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
Sequence of arguments with __array_function__ methods, in the order in
|
||||||
|
which they should be called.
|
||||||
|
""")
|
||||||
|
|
||||||
|
|
||||||
|
ArgSpec = collections.namedtuple('ArgSpec', 'args varargs keywords defaults')
|
||||||
|
|
||||||
|
|
||||||
|
def verify_matching_signatures(implementation, dispatcher):
|
||||||
|
"""Verify that a dispatcher function has the right signature."""
|
||||||
|
implementation_spec = ArgSpec(*getargspec(implementation))
|
||||||
|
dispatcher_spec = ArgSpec(*getargspec(dispatcher))
|
||||||
|
|
||||||
|
if (implementation_spec.args != dispatcher_spec.args or
|
||||||
|
implementation_spec.varargs != dispatcher_spec.varargs or
|
||||||
|
implementation_spec.keywords != dispatcher_spec.keywords or
|
||||||
|
(bool(implementation_spec.defaults) !=
|
||||||
|
bool(dispatcher_spec.defaults)) or
|
||||||
|
(implementation_spec.defaults is not None and
|
||||||
|
len(implementation_spec.defaults) !=
|
||||||
|
len(dispatcher_spec.defaults))):
|
||||||
|
raise RuntimeError('implementation and dispatcher for %s have '
|
||||||
|
'different function signatures' % implementation)
|
||||||
|
|
||||||
|
if implementation_spec.defaults is not None:
|
||||||
|
if dispatcher_spec.defaults != (None,) * len(dispatcher_spec.defaults):
|
||||||
|
raise RuntimeError('dispatcher functions can only use None for '
|
||||||
|
'default argument values')
|
||||||
|
|
||||||
|
|
||||||
|
def set_module(module):
|
||||||
|
"""Decorator for overriding __module__ on a function or class.
|
||||||
|
|
||||||
|
Example usage::
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
def example():
|
||||||
|
pass
|
||||||
|
|
||||||
|
assert example.__module__ == 'numpy'
|
||||||
|
"""
|
||||||
|
def decorator(func):
|
||||||
|
if module is not None:
|
||||||
|
func.__module__ = module
|
||||||
|
return func
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
|
||||||
|
def array_function_dispatch(dispatcher, module=None, verify=True,
|
||||||
|
docs_from_dispatcher=False):
|
||||||
|
"""Decorator for adding dispatch with the __array_function__ protocol.
|
||||||
|
|
||||||
|
See NEP-18 for example usage.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
dispatcher : callable
|
||||||
|
Function that when called like ``dispatcher(*args, **kwargs)`` with
|
||||||
|
arguments from the NumPy function call returns an iterable of
|
||||||
|
array-like arguments to check for ``__array_function__``.
|
||||||
|
module : str, optional
|
||||||
|
__module__ attribute to set on new function, e.g., ``module='numpy'``.
|
||||||
|
By default, module is copied from the decorated function.
|
||||||
|
verify : bool, optional
|
||||||
|
If True, verify the that the signature of the dispatcher and decorated
|
||||||
|
function signatures match exactly: all required and optional arguments
|
||||||
|
should appear in order with the same names, but the default values for
|
||||||
|
all optional arguments should be ``None``. Only disable verification
|
||||||
|
if the dispatcher's signature needs to deviate for some particular
|
||||||
|
reason, e.g., because the function has a signature like
|
||||||
|
``func(*args, **kwargs)``.
|
||||||
|
docs_from_dispatcher : bool, optional
|
||||||
|
If True, copy docs from the dispatcher function onto the dispatched
|
||||||
|
function, rather than from the implementation. This is useful for
|
||||||
|
functions defined in C, which otherwise don't have docstrings.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
Function suitable for decorating the implementation of a NumPy function.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not ENABLE_ARRAY_FUNCTION:
|
||||||
|
# __array_function__ requires an explicit opt-in for now
|
||||||
|
def decorator(implementation):
|
||||||
|
if module is not None:
|
||||||
|
implementation.__module__ = module
|
||||||
|
if docs_from_dispatcher:
|
||||||
|
add_docstring(implementation, dispatcher.__doc__)
|
||||||
|
return implementation
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
def decorator(implementation):
|
||||||
|
if verify:
|
||||||
|
verify_matching_signatures(implementation, dispatcher)
|
||||||
|
|
||||||
|
if docs_from_dispatcher:
|
||||||
|
add_docstring(implementation, dispatcher.__doc__)
|
||||||
|
|
||||||
|
@functools.wraps(implementation)
|
||||||
|
def public_api(*args, **kwargs):
|
||||||
|
relevant_args = dispatcher(*args, **kwargs)
|
||||||
|
return implement_array_function(
|
||||||
|
implementation, public_api, relevant_args, args, kwargs)
|
||||||
|
|
||||||
|
if module is not None:
|
||||||
|
public_api.__module__ = module
|
||||||
|
|
||||||
|
# TODO: remove this when we drop Python 2 support (functools.wraps)
|
||||||
|
# adds __wrapped__ automatically in later versions)
|
||||||
|
public_api.__wrapped__ = implementation
|
||||||
|
|
||||||
|
return public_api
|
||||||
|
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
|
||||||
|
def array_function_from_dispatcher(
|
||||||
|
implementation, module=None, verify=True, docs_from_dispatcher=True):
|
||||||
|
"""Like array_function_dispatcher, but with function arguments flipped."""
|
||||||
|
|
||||||
|
def decorator(dispatcher):
|
||||||
|
return array_function_dispatch(
|
||||||
|
dispatcher, module, verify=verify,
|
||||||
|
docs_from_dispatcher=docs_from_dispatcher)(implementation)
|
||||||
|
return decorator
|
|
@ -0,0 +1,172 @@
|
||||||
|
#patch 1
|
||||||
|
|
||||||
|
"""
|
||||||
|
========================
|
||||||
|
Random Number Generation
|
||||||
|
========================
|
||||||
|
|
||||||
|
==================== =========================================================
|
||||||
|
Utility functions
|
||||||
|
==============================================================================
|
||||||
|
random_sample Uniformly distributed floats over ``[0, 1)``.
|
||||||
|
random Alias for `random_sample`.
|
||||||
|
bytes Uniformly distributed random bytes.
|
||||||
|
random_integers Uniformly distributed integers in a given range.
|
||||||
|
permutation Randomly permute a sequence / generate a random sequence.
|
||||||
|
shuffle Randomly permute a sequence in place.
|
||||||
|
seed Seed the random number generator.
|
||||||
|
choice Random sample from 1-D array.
|
||||||
|
|
||||||
|
==================== =========================================================
|
||||||
|
|
||||||
|
==================== =========================================================
|
||||||
|
Compatibility functions
|
||||||
|
==============================================================================
|
||||||
|
rand Uniformly distributed values.
|
||||||
|
randn Normally distributed values.
|
||||||
|
ranf Uniformly distributed floating point numbers.
|
||||||
|
randint Uniformly distributed integers in a given range.
|
||||||
|
==================== =========================================================
|
||||||
|
|
||||||
|
==================== =========================================================
|
||||||
|
Univariate distributions
|
||||||
|
==============================================================================
|
||||||
|
beta Beta distribution over ``[0, 1]``.
|
||||||
|
binomial Binomial distribution.
|
||||||
|
chisquare :math:`\\chi^2` distribution.
|
||||||
|
exponential Exponential distribution.
|
||||||
|
f F (Fisher-Snedecor) distribution.
|
||||||
|
gamma Gamma distribution.
|
||||||
|
geometric Geometric distribution.
|
||||||
|
gumbel Gumbel distribution.
|
||||||
|
hypergeometric Hypergeometric distribution.
|
||||||
|
laplace Laplace distribution.
|
||||||
|
logistic Logistic distribution.
|
||||||
|
lognormal Log-normal distribution.
|
||||||
|
logseries Logarithmic series distribution.
|
||||||
|
negative_binomial Negative binomial distribution.
|
||||||
|
noncentral_chisquare Non-central chi-square distribution.
|
||||||
|
noncentral_f Non-central F distribution.
|
||||||
|
normal Normal / Gaussian distribution.
|
||||||
|
pareto Pareto distribution.
|
||||||
|
poisson Poisson distribution.
|
||||||
|
power Power distribution.
|
||||||
|
rayleigh Rayleigh distribution.
|
||||||
|
triangular Triangular distribution.
|
||||||
|
uniform Uniform distribution.
|
||||||
|
vonmises Von Mises circular distribution.
|
||||||
|
wald Wald (inverse Gaussian) distribution.
|
||||||
|
weibull Weibull distribution.
|
||||||
|
zipf Zipf's distribution over ranked data.
|
||||||
|
==================== =========================================================
|
||||||
|
|
||||||
|
==================== =========================================================
|
||||||
|
Multivariate distributions
|
||||||
|
==============================================================================
|
||||||
|
dirichlet Multivariate generalization of Beta distribution.
|
||||||
|
multinomial Multivariate generalization of the binomial distribution.
|
||||||
|
multivariate_normal Multivariate generalization of the normal distribution.
|
||||||
|
==================== =========================================================
|
||||||
|
|
||||||
|
==================== =========================================================
|
||||||
|
Standard distributions
|
||||||
|
==============================================================================
|
||||||
|
standard_cauchy Standard Cauchy-Lorentz distribution.
|
||||||
|
standard_exponential Standard exponential distribution.
|
||||||
|
standard_gamma Standard Gamma distribution.
|
||||||
|
standard_normal Standard normal distribution.
|
||||||
|
standard_t Standard Student's t-distribution.
|
||||||
|
==================== =========================================================
|
||||||
|
|
||||||
|
==================== =========================================================
|
||||||
|
Internal functions
|
||||||
|
==============================================================================
|
||||||
|
get_state Get tuple representing internal state of generator.
|
||||||
|
set_state Set state of generator.
|
||||||
|
==================== =========================================================
|
||||||
|
|
||||||
|
"""
|
||||||
|
from __future__ import division, absolute_import, print_function
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'beta',
|
||||||
|
'binomial',
|
||||||
|
'bytes',
|
||||||
|
'chisquare',
|
||||||
|
'choice',
|
||||||
|
'dirichlet',
|
||||||
|
'exponential',
|
||||||
|
'f',
|
||||||
|
'gamma',
|
||||||
|
'geometric',
|
||||||
|
'get_state',
|
||||||
|
'gumbel',
|
||||||
|
'hypergeometric',
|
||||||
|
'laplace',
|
||||||
|
'logistic',
|
||||||
|
'lognormal',
|
||||||
|
'logseries',
|
||||||
|
'multinomial',
|
||||||
|
'multivariate_normal',
|
||||||
|
'negative_binomial',
|
||||||
|
'noncentral_chisquare',
|
||||||
|
'noncentral_f',
|
||||||
|
'normal',
|
||||||
|
'pareto',
|
||||||
|
'permutation',
|
||||||
|
'poisson',
|
||||||
|
'power',
|
||||||
|
'rand',
|
||||||
|
'randint',
|
||||||
|
'randn',
|
||||||
|
'random_integers',
|
||||||
|
'random_sample',
|
||||||
|
'rayleigh',
|
||||||
|
'seed',
|
||||||
|
'set_state',
|
||||||
|
'shuffle',
|
||||||
|
'standard_cauchy',
|
||||||
|
'standard_exponential',
|
||||||
|
'standard_gamma',
|
||||||
|
'standard_normal',
|
||||||
|
'standard_t',
|
||||||
|
'triangular',
|
||||||
|
'uniform',
|
||||||
|
'vonmises',
|
||||||
|
'wald',
|
||||||
|
'weibull',
|
||||||
|
'zipf'
|
||||||
|
]
|
||||||
|
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
||||||
|
try:
|
||||||
|
from .mtrand import *
|
||||||
|
# Some aliases:
|
||||||
|
ranf = random = sample = random_sample
|
||||||
|
__all__.extend(['ranf', 'random', 'sample'])
|
||||||
|
except:
|
||||||
|
warnings.warn("numpy.random is not available when using multiple interpreters!")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def __RandomState_ctor():
|
||||||
|
"""Return a RandomState instance.
|
||||||
|
|
||||||
|
This function exists solely to assist (un)pickling.
|
||||||
|
|
||||||
|
Note that the state of the RandomState returned here is irrelevant, as this function's
|
||||||
|
entire purpose is to return a newly allocated RandomState whose state pickle can set.
|
||||||
|
Consequently the RandomState returned by this function is a freshly allocated copy
|
||||||
|
with a seed=0.
|
||||||
|
|
||||||
|
See https://github.com/numpy/numpy/issues/4763 for a detailed discussion
|
||||||
|
|
||||||
|
"""
|
||||||
|
return RandomState(seed=0)
|
||||||
|
|
||||||
|
from numpy._pytesttester import PytestTester
|
||||||
|
test = PytestTester(__name__)
|
||||||
|
del PytestTester
|
|
@ -0,0 +1,20 @@
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
import json
|
||||||
|
import inspect
|
||||||
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
|
||||||
|
pass
|
||||||
|
sys.stdout.flush()
|
||||||
|
sys.stderr.flush()
|
||||||
|
except Exception as ex:
|
||||||
|
try:
|
||||||
|
exc_info = sys.exc_info()
|
||||||
|
finally:
|
||||||
|
print(ex)
|
||||||
|
traceback.print_exception(*exc_info)
|
||||||
|
sys.stdout.flush()
|
||||||
|
sys.stderr.flush()
|
||||||
|
|
|
@ -0,0 +1,50 @@
|
||||||
|
def __is_numpy_array(x):
|
||||||
|
return str(type(x))== "<class 'numpy.ndarray'>"
|
||||||
|
|
||||||
|
def __maybe_serialize_ndarray_metadata(x):
|
||||||
|
return __serialize_ndarray_metadata(x) if __is_numpy_array(x) else x
|
||||||
|
|
||||||
|
|
||||||
|
def __serialize_ndarray_metadata(x):
|
||||||
|
return {"address": x.__array_interface__['data'][0],
|
||||||
|
"shape": x.shape,
|
||||||
|
"strides": x.strides,
|
||||||
|
"dtype": str(x.dtype),
|
||||||
|
"_is_numpy_array": True} if __is_numpy_array(x) else x
|
||||||
|
|
||||||
|
|
||||||
|
def __serialize_list(x):
|
||||||
|
import json
|
||||||
|
return json.dumps(__recursive_serialize_list(x))
|
||||||
|
|
||||||
|
|
||||||
|
def __serialize_dict(x):
|
||||||
|
import json
|
||||||
|
return json.dumps(__recursive_serialize_dict(x))
|
||||||
|
|
||||||
|
def __recursive_serialize_list(x):
|
||||||
|
out = []
|
||||||
|
for i in x:
|
||||||
|
if __is_numpy_array(i):
|
||||||
|
out.append(__serialize_ndarray_metadata(i))
|
||||||
|
elif isinstance(i, (list, tuple)):
|
||||||
|
out.append(__recursive_serialize_list(i))
|
||||||
|
elif isinstance(i, dict):
|
||||||
|
out.append(__recursive_serialize_dict(i))
|
||||||
|
else:
|
||||||
|
out.append(i)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def __recursive_serialize_dict(x):
|
||||||
|
out = {}
|
||||||
|
for k in x:
|
||||||
|
v = x[k]
|
||||||
|
if __is_numpy_array(v):
|
||||||
|
out[k] = __serialize_ndarray_metadata(v)
|
||||||
|
elif isinstance(v, (list, tuple)):
|
||||||
|
out[k] = __recursive_serialize_list(v)
|
||||||
|
elif isinstance(v, dict):
|
||||||
|
out[k] = __recursive_serialize_dict(v)
|
||||||
|
else:
|
||||||
|
out[k] = v
|
||||||
|
return out
|
|
@ -0,0 +1,75 @@
|
||||||
|
/*******************************************************************************
|
||||||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||||||
|
*
|
||||||
|
* This program and the accompanying materials are made available under the
|
||||||
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
* License for the specific language governing permissions and limitations
|
||||||
|
* under the License.
|
||||||
|
*
|
||||||
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
package org.datavec.python;
|
||||||
|
|
||||||
|
|
||||||
|
import org.junit.Assert;
|
||||||
|
import org.junit.Test;
|
||||||
|
|
||||||
|
@javax.annotation.concurrent.NotThreadSafe
|
||||||
|
public class TestPythonExecutionSandbox {
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testInt(){
|
||||||
|
PythonExecutioner.setInterpreter("interp1");
|
||||||
|
PythonExecutioner.exec("a = 1");
|
||||||
|
PythonExecutioner.setInterpreter("interp2");
|
||||||
|
PythonExecutioner.exec("a = 2");
|
||||||
|
PythonExecutioner.setInterpreter("interp3");
|
||||||
|
PythonExecutioner.exec("a = 3");
|
||||||
|
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("interp1");
|
||||||
|
Assert.assertEquals(1, PythonExecutioner.evalInteger("a"));
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("interp2");
|
||||||
|
Assert.assertEquals(2, PythonExecutioner.evalInteger("a"));
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("interp3");
|
||||||
|
Assert.assertEquals(3, PythonExecutioner.evalInteger("a"));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testNDArray(){
|
||||||
|
PythonExecutioner.setInterpreter("main");
|
||||||
|
PythonExecutioner.exec("import numpy as np");
|
||||||
|
PythonExecutioner.exec("a = np.zeros(5)");
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("main");
|
||||||
|
//PythonExecutioner.exec("import numpy as np");
|
||||||
|
PythonExecutioner.exec("a = np.zeros(5)");
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("main");
|
||||||
|
PythonExecutioner.exec("a += 2");
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("main");
|
||||||
|
PythonExecutioner.exec("a += 3");
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("main");
|
||||||
|
//PythonExecutioner.exec("import numpy as np");
|
||||||
|
// PythonExecutioner.exec("a = np.zeros(5)");
|
||||||
|
|
||||||
|
PythonExecutioner.setInterpreter("main");
|
||||||
|
Assert.assertEquals(25, PythonExecutioner.evalNdArray("a").getNd4jArray().sum().getDouble(), 1e-5);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testNumpyRandom(){
|
||||||
|
PythonExecutioner.setInterpreter("main");
|
||||||
|
PythonExecutioner.exec("import numpy as np; print(np.random.randint(5))");
|
||||||
|
}
|
||||||
|
}
|
|
@ -15,17 +15,25 @@
|
||||||
******************************************************************************/
|
******************************************************************************/
|
||||||
|
|
||||||
package org.datavec.python;
|
package org.datavec.python;
|
||||||
import org.junit.Ignore;
|
import org.junit.Assert;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
import org.nd4j.linalg.factory.Nd4j;
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
|
|
||||||
import static org.junit.Assert.assertEquals;
|
import static org.junit.Assert.assertEquals;
|
||||||
|
|
||||||
@Ignore("AB 2019/05/21 - Fine locally, timeouts on CI - Issue #7657 and #7771")
|
|
||||||
|
@javax.annotation.concurrent.NotThreadSafe
|
||||||
public class TestPythonExecutioner {
|
public class TestPythonExecutioner {
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
|
||||||
|
@org.junit.Test
|
||||||
|
public void testPythonSysVersion() {
|
||||||
|
PythonExecutioner.exec("import sys; print(sys.version)");
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
public void testStr() throws Exception{
|
public void testStr() throws Exception{
|
||||||
|
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
|
@ -47,7 +55,7 @@ public class TestPythonExecutioner {
|
||||||
assertEquals("Hello World", z);
|
assertEquals("Hello World", z);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test
|
||||||
public void testInt()throws Exception{
|
public void testInt()throws Exception{
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
PythonVariables pyOutputs = new PythonVariables();
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
@ -55,7 +63,7 @@ public class TestPythonExecutioner {
|
||||||
pyInputs.addInt("x", 10);
|
pyInputs.addInt("x", 10);
|
||||||
pyInputs.addInt("y", 20);
|
pyInputs.addInt("y", 20);
|
||||||
|
|
||||||
String code = "z = x + y";
|
String code = "z = x + y";
|
||||||
|
|
||||||
pyOutputs.addInt("z");
|
pyOutputs.addInt("z");
|
||||||
|
|
||||||
|
@ -64,11 +72,11 @@ public class TestPythonExecutioner {
|
||||||
|
|
||||||
long z = pyOutputs.getIntValue("z");
|
long z = pyOutputs.getIntValue("z");
|
||||||
|
|
||||||
assertEquals(30, z);
|
Assert.assertEquals(30, z);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test
|
||||||
public void testList() throws Exception{
|
public void testList() throws Exception{
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
PythonVariables pyOutputs = new PythonVariables();
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
@ -88,18 +96,35 @@ public class TestPythonExecutioner {
|
||||||
|
|
||||||
Object[] z = pyOutputs.getListValue("z");
|
Object[] z = pyOutputs.getListValue("z");
|
||||||
|
|
||||||
assertEquals(z.length, x.length + y.length);
|
Assert.assertEquals(z.length, x.length + y.length);
|
||||||
|
|
||||||
|
for (int i = 0; i < x.length; i++) {
|
||||||
|
if(x[i] instanceof Number) {
|
||||||
|
Number xNum = (Number) x[i];
|
||||||
|
Number zNum = (Number) z[i];
|
||||||
|
Assert.assertEquals(xNum.intValue(), zNum.intValue());
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
Assert.assertEquals(x[i], z[i]);
|
||||||
|
}
|
||||||
|
|
||||||
for (int i=0; i < x.length; i++){
|
|
||||||
assertEquals(x[i], z[i]);
|
|
||||||
}
|
}
|
||||||
for (int i=0; i<y.length; i++){
|
for (int i = 0; i < y.length; i++){
|
||||||
assertEquals(y[i], z[x.length + i]);
|
if(y[i] instanceof Number) {
|
||||||
|
Number yNum = (Number) y[i];
|
||||||
|
Number zNum = (Number) z[x.length + i];
|
||||||
|
Assert.assertEquals(yNum.intValue(), zNum.intValue());
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
Assert.assertEquals(y[i], z[x.length + i]);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test
|
||||||
public void testNDArrayFloat()throws Exception{
|
public void testNDArrayFloat()throws Exception{
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
PythonVariables pyOutputs = new PythonVariables();
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
@ -113,12 +138,17 @@ public class TestPythonExecutioner {
|
||||||
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
||||||
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
||||||
|
|
||||||
assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
Assert.assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test
|
||||||
|
public void testTensorflowCustomAnaconda() {
|
||||||
|
PythonExecutioner.exec("import tensorflow as tf");
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
public void testNDArrayDouble()throws Exception {
|
public void testNDArrayDouble()throws Exception {
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
PythonVariables pyOutputs = new PythonVariables();
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
@ -132,10 +162,10 @@ public class TestPythonExecutioner {
|
||||||
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
||||||
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
||||||
|
|
||||||
assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
Assert.assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test
|
||||||
public void testNDArrayShort()throws Exception{
|
public void testNDArrayShort()throws Exception{
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
PythonVariables pyOutputs = new PythonVariables();
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
@ -149,11 +179,11 @@ public class TestPythonExecutioner {
|
||||||
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
||||||
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
||||||
|
|
||||||
assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
Assert.assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test
|
||||||
public void testNDArrayInt()throws Exception{
|
public void testNDArrayInt()throws Exception{
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
PythonVariables pyOutputs = new PythonVariables();
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
@ -167,11 +197,11 @@ public class TestPythonExecutioner {
|
||||||
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
||||||
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
||||||
|
|
||||||
assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
Assert.assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test
|
||||||
public void testNDArrayLong()throws Exception{
|
public void testNDArrayLong()throws Exception{
|
||||||
PythonVariables pyInputs = new PythonVariables();
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
PythonVariables pyOutputs = new PythonVariables();
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
@ -185,7 +215,7 @@ public class TestPythonExecutioner {
|
||||||
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
PythonExecutioner.exec(code, pyInputs, pyOutputs);
|
||||||
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
INDArray z = pyOutputs.getNDArrayValue("z").getNd4jArray();
|
||||||
|
|
||||||
assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
Assert.assertEquals(6.0, z.sum().getDouble(0), 1e-5);
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,27 @@
|
||||||
|
package org.datavec.python;
|
||||||
|
|
||||||
|
import org.junit.Test;
|
||||||
|
|
||||||
|
import static org.junit.Assert.assertEquals;
|
||||||
|
|
||||||
|
@javax.annotation.concurrent.NotThreadSafe
|
||||||
|
public class TestPythonSetupAndRun {
|
||||||
|
@Test
|
||||||
|
public void testPythonWithSetupAndRun() throws Exception{
|
||||||
|
String code = "def setup():" +
|
||||||
|
"global counter;counter=0\n" +
|
||||||
|
"def run(step):" +
|
||||||
|
"global counter;" +
|
||||||
|
"counter+=step;" +
|
||||||
|
"return {\"counter\":counter}";
|
||||||
|
PythonVariables pyInputs = new PythonVariables();
|
||||||
|
pyInputs.addInt("step", 2);
|
||||||
|
PythonVariables pyOutputs = new PythonVariables();
|
||||||
|
pyOutputs.addInt("counter");
|
||||||
|
PythonExecutioner.execWithSetupAndRun(code, pyInputs, pyOutputs);
|
||||||
|
assertEquals((long)pyOutputs.getIntValue("counter"), 2L);
|
||||||
|
pyInputs.addInt("step", 3);
|
||||||
|
PythonExecutioner.execWithSetupAndRun(code, pyInputs, pyOutputs);
|
||||||
|
assertEquals((long)pyOutputs.getIntValue("counter"), 5L);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,102 @@
|
||||||
|
/*
|
||||||
|
*
|
||||||
|
* * ******************************************************************************
|
||||||
|
* * * Copyright (c) 2015-2019 Skymind Inc.
|
||||||
|
* * * Copyright (c) 2019 Konduit AI.
|
||||||
|
* * *
|
||||||
|
* * * This program and the accompanying materials are made available under the
|
||||||
|
* * * terms of the Apache License, Version 2.0 which is available at
|
||||||
|
* * * https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
* * *
|
||||||
|
* * * Unless required by applicable law or agreed to in writing, software
|
||||||
|
* * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
* * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
* * * License for the specific language governing permissions and limitations
|
||||||
|
* * * under the License.
|
||||||
|
* * *
|
||||||
|
* * * SPDX-License-Identifier: Apache-2.0
|
||||||
|
* * *****************************************************************************
|
||||||
|
*
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.datavec.python;
|
||||||
|
|
||||||
|
import org.junit.Test;
|
||||||
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
|
|
||||||
|
import java.util.Arrays;
|
||||||
|
import java.util.Collections;
|
||||||
|
|
||||||
|
import static junit.framework.TestCase.assertNotNull;
|
||||||
|
import static junit.framework.TestCase.assertNull;
|
||||||
|
import static org.junit.Assert.assertArrayEquals;
|
||||||
|
import static org.junit.Assert.assertEquals;
|
||||||
|
import static org.junit.Assert.assertTrue;
|
||||||
|
|
||||||
|
public class TestPythonVariables {
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testImportNumpy(){
|
||||||
|
Nd4j.scalar(1.0);
|
||||||
|
System.out.println(System.getProperty("org.bytedeco.openblas.load"));
|
||||||
|
PythonExecutioner.exec("import numpy as np");
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testDataAssociations() {
|
||||||
|
PythonVariables pythonVariables = new PythonVariables();
|
||||||
|
PythonVariables.Type[] types = {
|
||||||
|
PythonVariables.Type.INT,
|
||||||
|
PythonVariables.Type.FLOAT,
|
||||||
|
PythonVariables.Type.STR,
|
||||||
|
PythonVariables.Type.BOOL,
|
||||||
|
PythonVariables.Type.DICT,
|
||||||
|
PythonVariables.Type.LIST,
|
||||||
|
PythonVariables.Type.LIST,
|
||||||
|
PythonVariables.Type.FILE,
|
||||||
|
PythonVariables.Type.NDARRAY
|
||||||
|
};
|
||||||
|
|
||||||
|
NumpyArray npArr = new NumpyArray(Nd4j.scalar(1.0));
|
||||||
|
Object[] values = {
|
||||||
|
1L,1.0,"1",true, Collections.singletonMap("1",1),
|
||||||
|
new Object[]{1}, Arrays.asList(1),"type", npArr
|
||||||
|
};
|
||||||
|
|
||||||
|
Object[] expectedValues = {
|
||||||
|
1L,1.0,"1",true, Collections.singletonMap("1",1),
|
||||||
|
new Object[]{1}, new Object[]{1},"type", npArr
|
||||||
|
};
|
||||||
|
|
||||||
|
for(int i = 0; i < types.length; i++) {
|
||||||
|
testInsertGet(pythonVariables,types[i].name() + i,values[i],types[i],expectedValues[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
assertEquals(types.length,pythonVariables.getVariables().length);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
private void testInsertGet(PythonVariables pythonVariables,String key,Object value,PythonVariables.Type type,Object expectedValue) {
|
||||||
|
pythonVariables.add(key, type);
|
||||||
|
assertNull(pythonVariables.getValue(key));
|
||||||
|
pythonVariables.setValue(key,value);
|
||||||
|
assertNotNull(pythonVariables.getValue(key));
|
||||||
|
Object actualValue = pythonVariables.getValue(key);
|
||||||
|
if (expectedValue instanceof Object[]){
|
||||||
|
assertTrue(actualValue instanceof Object[]);
|
||||||
|
Object[] actualArr = (Object[])actualValue;
|
||||||
|
Object[] expectedArr = (Object[])expectedValue;
|
||||||
|
assertArrayEquals(expectedArr, actualArr);
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
assertEquals(expectedValue,pythonVariables.getValue(key));
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
|
@ -29,7 +29,7 @@ public class TestSerde {
|
||||||
public static JsonSerializer j = new JsonSerializer();
|
public static JsonSerializer j = new JsonSerializer();
|
||||||
|
|
||||||
@Test(timeout = 60000L)
|
@Test(timeout = 60000L)
|
||||||
public void testBasicSerde() throws Exception{
|
public void testBasicSerde(){
|
||||||
Schema schema = new Schema.Builder()
|
Schema schema = new Schema.Builder()
|
||||||
.addColumnInteger("col1")
|
.addColumnInteger("col1")
|
||||||
.addColumnFloat("col2")
|
.addColumnFloat("col2")
|
||||||
|
@ -37,10 +37,9 @@ public class TestSerde {
|
||||||
.addColumnDouble("col4")
|
.addColumnDouble("col4")
|
||||||
.build();
|
.build();
|
||||||
|
|
||||||
Transform t = new PythonTransform(
|
Transform t = PythonTransform.builder().code(
|
||||||
"col1+=3\ncol2+=2\ncol3+='a'\ncol4+=2.0",
|
"col1+=3\ncol2+=2\ncol3+='a'\ncol4+=2.0"
|
||||||
schema
|
).inputSchema(schema).outputSchema(schema).build();
|
||||||
);
|
|
||||||
|
|
||||||
String yaml = y.serialize(t);
|
String yaml = y.serialize(t);
|
||||||
String json = j.serialize(t);
|
String json = j.serialize(t);
|
||||||
|
|
|
@ -247,10 +247,9 @@ public class ExecutionTest extends BaseSparkTest {
|
||||||
.addColumnInteger("col1").addColumnDouble("col2").build();
|
.addColumnInteger("col1").addColumnDouble("col2").build();
|
||||||
String pythonCode = "col1 = ['state0', 'state1', 'state2'].index(col1)\ncol2 += 10.0";
|
String pythonCode = "col1 = ['state0', 'state1', 'state2'].index(col1)\ncol2 += 10.0";
|
||||||
TransformProcess tp = new TransformProcess.Builder(schema).transform(
|
TransformProcess tp = new TransformProcess.Builder(schema).transform(
|
||||||
new PythonTransform(
|
PythonTransform.builder().code(
|
||||||
pythonCode,
|
"first = np.sin(first)\nsecond = np.cos(second)")
|
||||||
finalSchema
|
.outputSchema(finalSchema).build()
|
||||||
)
|
|
||||||
).build();
|
).build();
|
||||||
List<List<Writable>> inputData = new ArrayList<>();
|
List<List<Writable>> inputData = new ArrayList<>();
|
||||||
inputData.add(Arrays.<Writable>asList(new IntWritable(0), new Text("state2"), new DoubleWritable(0.1)));
|
inputData.add(Arrays.<Writable>asList(new IntWritable(0), new Text("state2"), new DoubleWritable(0.1)));
|
||||||
|
@ -288,10 +287,9 @@ public class ExecutionTest extends BaseSparkTest {
|
||||||
|
|
||||||
String pythonCode = "col3 = col1 + col2";
|
String pythonCode = "col3 = col1 + col2";
|
||||||
TransformProcess tp = new TransformProcess.Builder(schema).transform(
|
TransformProcess tp = new TransformProcess.Builder(schema).transform(
|
||||||
new PythonTransform(
|
PythonTransform.builder().code(
|
||||||
pythonCode,
|
"first = np.sin(first)\nsecond = np.cos(second)")
|
||||||
finalSchema
|
.outputSchema(schema).build()
|
||||||
)
|
|
||||||
).build();
|
).build();
|
||||||
|
|
||||||
INDArray zeros = Nd4j.zeros(shape);
|
INDArray zeros = Nd4j.zeros(shape);
|
||||||
|
|
2
pom.xml
2
pom.xml
|
@ -294,6 +294,8 @@
|
||||||
|
|
||||||
<python.version>3.7.5</python.version>
|
<python.version>3.7.5</python.version>
|
||||||
<cpython-platform.version>${python.version}-${javacpp-presets.version}</cpython-platform.version>
|
<cpython-platform.version>${python.version}-${javacpp-presets.version}</cpython-platform.version>
|
||||||
|
<numpy.version>1.17.3</numpy.version>
|
||||||
|
<numpy.javacpp.version>${numpy.version}-${javacpp-presets.version}</numpy.javacpp.version>
|
||||||
|
|
||||||
<openblas.version>0.3.7</openblas.version>
|
<openblas.version>0.3.7</openblas.version>
|
||||||
<mkl.version>2019.5</mkl.version>
|
<mkl.version>2019.5</mkl.version>
|
||||||
|
|
Loading…
Reference in New Issue