Merge pull request #8949 from KonduitAI/master

Pre-release fixes
master
Alex Black 2020-05-14 00:39:50 +10:00 committed by GitHub
commit 1a6ada0ce9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 700 additions and 26 deletions

View File

@ -0,0 +1,151 @@
/* ******************************************************************************
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.misc;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.TestUtils;
import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.junit.Test;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Adam;
import static org.junit.Assert.assertTrue;
public class CloseNetworkTests extends BaseDL4JTest {
public static MultiLayerNetwork getTestNet() {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.updater(new Adam(1e-3))
.list()
.layer(new ConvolutionLayer.Builder().nOut(5).kernelSize(3, 3).activation(Activation.TANH).build())
.layer(new BatchNormalization.Builder().nOut(5).build())
.layer(new SubsamplingLayer.Builder().build())
.layer(new DenseLayer.Builder().nOut(10).activation(Activation.RELU).build())
.layer(new OutputLayer.Builder().nOut(10).build())
.setInputType(InputType.convolutional(28, 28, 1))
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
return net;
}
@Test
public void testCloseMLN() {
for (boolean train : new boolean[]{false, true}) {
for (boolean test : new boolean[]{false, true}) {
MultiLayerNetwork net = getTestNet();
INDArray f = Nd4j.rand(DataType.FLOAT, 16, 1, 28, 28);
INDArray l = TestUtils.randomOneHot(16, 10);
if (train) {
for (int i = 0; i < 3; i++) {
net.fit(f, l);
}
}
if (test) {
for (int i = 0; i < 3; i++) {
net.output(f);
}
}
net.close();
assertTrue(net.params().wasClosed());
if(train) {
assertTrue(net.getGradientsViewArray().wasClosed());
Updater u = net.getUpdater(false);
assertTrue(u.getStateViewArray().wasClosed());
}
//Make sure we don't get crashes etc when trying to use after closing
try {
net.output(f);
} catch (IllegalStateException e) {
String msg = e.getMessage();
assertTrue(msg, msg.contains("released"));
}
try {
net.fit(f, l);
} catch (IllegalStateException e) {
String msg = e.getMessage();
assertTrue(msg, msg.contains("released"));
}
}
}
}
@Test
public void testCloseCG() {
for (boolean train : new boolean[]{false, true}) {
for (boolean test : new boolean[]{false, true}) {
ComputationGraph net = getTestNet().toComputationGraph();
INDArray f = Nd4j.rand(DataType.FLOAT, 16, 1, 28, 28);
INDArray l = TestUtils.randomOneHot(16, 10);
if (train) {
for (int i = 0; i < 3; i++) {
net.fit(new INDArray[]{f}, new INDArray[]{l});
}
}
if (test) {
for (int i = 0; i < 3; i++) {
net.output(f);
}
}
net.close();
assertTrue(net.params().wasClosed());
if(train) {
assertTrue(net.getGradientsViewArray().wasClosed());
Updater u = net.getUpdater(false);
assertTrue(u.getStateViewArray().wasClosed());
}
//Make sure we don't get crashes etc when trying to use after closing
try {
net.output(f);
} catch (IllegalStateException e) {
String msg = e.getMessage();
assertTrue(msg, msg.contains("released"));
}
try {
net.fit(new INDArray[]{f}, new INDArray[]{l});
} catch (IllegalStateException e) {
String msg = e.getMessage();
assertTrue(msg, msg.contains("released"));
}
}
}
}
}

View File

@ -1035,5 +1035,9 @@ public class TestOptimizers extends BaseDL4JTest {
public boolean updaterDivideByMinibatch(String paramName) { public boolean updaterDivideByMinibatch(String paramName) {
return true; return true;
} }
@Override
public void close(){
}
} }
} }

View File

@ -1055,4 +1055,9 @@ public class BarnesHutTsne implements Model {
} }
@Override
public void close(){
//No-op
}
} }

View File

@ -128,8 +128,6 @@ public class KerasInput extends KerasLayer {
break; break;
case 2: case 2:
if(this.dimOrder != null) { if(this.dimOrder != null) {
System.out.println("Dim order: " + this.dimOrder);
System.out.println("Input shape: " + ArrayUtils.toString(this.inputShape));
switch (this.dimOrder) { switch (this.dimOrder) {
case TENSORFLOW: //NWC == channels_last case TENSORFLOW: //NWC == channels_last
myInputType = new InputType.InputTypeRecurrent(this.inputShape[1], this.inputShape[0], RNNFormat.NWC); myInputType = new InputType.InputTypeRecurrent(this.inputShape[1], this.inputShape[0], RNNFormat.NWC);

View File

@ -103,7 +103,7 @@ public class TFOpLayerImpl extends AbstractLayer<TFOpLayer> {
String dtype = inputDataTypes.get(inpName); String dtype = inputDataTypes.get(inpName);
graph = "node{\nname: \"" + inpName + "\"\nop: \"Placeholder\"\nattr{\nkey: \"dtype\"\n value {\n type: " + dtype + "}\n}\n}\n" + graph; graph = "node{\nname: \"" + inpName + "\"\nop: \"Placeholder\"\nattr{\nkey: \"dtype\"\n value {\n type: " + dtype + "}\n}\n}\n" + graph;
} }
log.info(graph); //log.info(graph);
GraphDef.Builder graphDefBuilder = GraphDef.newBuilder(); GraphDef.Builder graphDefBuilder = GraphDef.newBuilder();
TextFormat.getParser().merge(graph, graphDefBuilder); TextFormat.getParser().merge(graph, graphDefBuilder);
GraphDef graphDef = graphDefBuilder.build(); GraphDef graphDef = graphDefBuilder.build();

View File

@ -63,10 +63,10 @@ public class KerasReLU extends KerasLayer {
double negativeSlope = 0.0; double negativeSlope = 0.0;
double threshold = 0.0; double threshold = 0.0;
if (innerConfig.containsKey("negative_slope")) { if (innerConfig.containsKey("negative_slope")) {
negativeSlope = (double) innerConfig.get("negative_slope"); negativeSlope = ((Number)innerConfig.get("negative_slope")).doubleValue();
} }
if (innerConfig.containsKey("threshold")) { if (innerConfig.containsKey("threshold")) {
threshold = (double) innerConfig.get("threshold"); threshold = ((Number)innerConfig.get("threshold")).doubleValue();
} }
this.layer = new ActivationLayer.Builder().name(this.layerName) this.layer = new ActivationLayer.Builder().name(this.layerName)

View File

@ -95,7 +95,6 @@ public class KerasConvolution2D extends KerasConvolution {
LayerConstraint weightConstraint = KerasConstraintUtils.getConstraintsFromConfig( LayerConstraint weightConstraint = KerasConstraintUtils.getConstraintsFromConfig(
layerConfig, conf.getLAYER_FIELD_W_CONSTRAINT(), conf, kerasMajorVersion); layerConfig, conf.getLAYER_FIELD_W_CONSTRAINT(), conf, kerasMajorVersion);
System.out.println("----" + dimOrder);
ConvolutionLayer.Builder builder = new ConvolutionLayer.Builder().name(this.layerName) ConvolutionLayer.Builder builder = new ConvolutionLayer.Builder().name(this.layerName)
.nOut(getNOutFromConfig(layerConfig, conf)).dropOut(this.dropout) .nOut(getNOutFromConfig(layerConfig, conf)).dropOut(this.dropout)
.activation(getIActivationFromConfig(layerConfig, conf)) .activation(getIActivationFromConfig(layerConfig, conf))

View File

@ -32,6 +32,7 @@ import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j; import org.nd4j.linalg.factory.Nd4j;
import java.util.HashMap; import java.util.HashMap;
import java.util.List;
import java.util.Map; import java.util.Map;
import java.util.Set; import java.util.Set;
@ -351,6 +352,10 @@ public class KerasBatchNormalization extends KerasLayer {
private int getBatchNormAxis(Map<String, Object> layerConfig) private int getBatchNormAxis(Map<String, Object> layerConfig)
throws InvalidKerasConfigurationException { throws InvalidKerasConfigurationException {
Map<String, Object> innerConfig = KerasLayerUtils.getInnerLayerConfigFromConfig(layerConfig, conf); Map<String, Object> innerConfig = KerasLayerUtils.getInnerLayerConfigFromConfig(layerConfig, conf);
return (int) innerConfig.get(LAYER_FIELD_AXIS); Object batchNormAxis = innerConfig.get(LAYER_FIELD_AXIS);
if (batchNormAxis instanceof List){
return ((Number)((List)batchNormAxis).get(0)).intValue();
}
return ((Number)innerConfig.get(LAYER_FIELD_AXIS)).intValue();
} }
} }

View File

@ -0,0 +1,4 @@
package org.deeplearning4j.nn.modelimport.keras;
public class Temp {
}

View File

@ -233,4 +233,7 @@ public interface Model {
* Apply any constraints to the model * Apply any constraints to the model
*/ */
void applyConstraints(int iteration, int epoch); void applyConstraints(int iteration, int epoch);
void close();
} }

View File

@ -4824,4 +4824,28 @@ public class ComputationGraph implements Serializable, Model, NeuralNetwork {
if (cg.getUpdater() != null && cg.getUpdater(false).getStateViewArray() != null) if (cg.getUpdater() != null && cg.getUpdater(false).getStateViewArray() != null)
this.getUpdater(true).getStateViewArray().assign(cg.getUpdater(false).getStateViewArray()); this.getUpdater(true).getStateViewArray().assign(cg.getUpdater(false).getStateViewArray());
} }
/**
* Close the network and deallocate all native memory, including: parameters, gradients, updater memory and workspaces
* Note that the network should not be used again for any purpose after it has been closed
*/
@Override
public void close(){
//Close the INDArray and dealloc
if(flattenedParams.closeable())
flattenedParams.close();
if(flattenedGradients != null && flattenedGradients.closeable())
flattenedGradients.close();
Updater u = getUpdater(false);
if(u != null && u.getStateViewArray() != null) {
INDArray state = u.getStateViewArray();
if(state.closeable())
state.close();
}
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
System.gc();
}
} }

View File

@ -428,4 +428,9 @@ public abstract class AbstractLayer<LayerConfT extends org.deeplearning4j.nn.con
//Majority of params's gradients should be... Exception: batch norm mean/variance estimate //Majority of params's gradients should be... Exception: batch norm mean/variance estimate
return true; return true;
} }
@Override
public void close(){
//No-op for individual layers
}
} }

View File

@ -599,4 +599,9 @@ public class BidirectionalLayer implements RecurrentLayer {
return ret; return ret;
} }
} }
@Override
public void close(){
//No-op for individual layers
}
} }

View File

@ -1144,4 +1144,9 @@ public class VariationalAutoencoder implements Layer {
} }
} }
} }
@Override
public void close(){
//No-op for individual layers
}
} }

View File

@ -329,4 +329,9 @@ public abstract class BaseWrapperLayer implements Layer {
public boolean updaterDivideByMinibatch(String paramName) { public boolean updaterDivideByMinibatch(String paramName) {
return underlying.updaterDivideByMinibatch(paramName); return underlying.updaterDivideByMinibatch(paramName);
} }
@Override
public void close(){
//No-op for individual layers
}
} }

View File

@ -4085,4 +4085,27 @@ public class MultiLayerNetwork implements Serializable, Classifier, Layer, Neura
this.getUpdater(true).getStateViewArray().assign(mln.getUpdater(false).getStateViewArray()); this.getUpdater(true).getStateViewArray().assign(mln.getUpdater(false).getStateViewArray());
} }
/**
* Close the network and deallocate all native memory, including: parameters, gradients, updater memory and workspaces
* Note that the network should not be used again for any purpose after it has been closed
*/
@Override
public void close(){
//Close the INDArray and dealloc
if(flattenedParams.closeable())
flattenedParams.close();
if(flattenedGradients != null && flattenedGradients.closeable())
flattenedGradients.close();
Updater u = getUpdater(false);
if(u != null && u.getStateViewArray() != null) {
INDArray state = u.getStateViewArray();
if(state.closeable())
state.close();
}
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
System.gc();
}
} }

View File

@ -20,6 +20,8 @@ import lombok.*;
import lombok.extern.slf4j.Slf4j; import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.core.storage.StatsStorageRouter; import org.deeplearning4j.core.storage.StatsStorageRouter;
import org.deeplearning4j.core.storage.listener.RoutingIterationListener; import org.deeplearning4j.core.storage.listener.RoutingIterationListener;
import org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler;
import org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm;
import org.nd4j.linalg.dataset.AsyncDataSetIterator;; import org.nd4j.linalg.dataset.AsyncDataSetIterator;;
import org.nd4j.linalg.dataset.AsyncMultiDataSetIterator; import org.nd4j.linalg.dataset.AsyncMultiDataSetIterator;
import org.deeplearning4j.datasets.iterator.DummyBlockDataSetIterator; import org.deeplearning4j.datasets.iterator.DummyBlockDataSetIterator;
@ -688,6 +690,7 @@ public class ParallelWrapper implements AutoCloseable {
protected Supplier<INDArray> updaterParamsSupplier; protected Supplier<INDArray> updaterParamsSupplier;
protected ThresholdAlgorithm thresholdAlgorithm; protected ThresholdAlgorithm thresholdAlgorithm;
protected ResidualPostProcessor residualPostProcessor; protected ResidualPostProcessor residualPostProcessor;
protected Long encoderMemory = -1L;
protected GradientsAccumulator accumulator; protected GradientsAccumulator accumulator;
@ -872,6 +875,19 @@ public class ParallelWrapper implements AutoCloseable {
return this; return this;
} }
/**
* This method allows to define amount of temporary memory that will be used for gradients sharing.
* Typically it's safe to keep default value.
*
* Default value: -1, amount of temporary memory will be calculated automatically
* @param numBytes number of bytes to be used
* @return
*/
public Builder temporaryMemory(@NonNull Long numBytes) {
this.encoderMemory = numBytes;
return this;
}
/** /**
* Set the residual post processor algorithm. Not used for single machine training (only for PW used in a * Set the residual post processor algorithm. Not used for single machine training (only for PW used in a
* distributed setting), and should not be set by users in most cases. * distributed setting), and should not be set by users in most cases.
@ -907,11 +923,23 @@ public class ParallelWrapper implements AutoCloseable {
} }
break; break;
case SHARED_GRADIENTS: { case SHARED_GRADIENTS: {
Preconditions.checkState(thresholdAlgorithm != null, "Cannot use SHARED_GRADIENTS training mode without setting a threshold algorithm"); if (thresholdAlgorithm == null)
thresholdAlgorithm = new AdaptiveThresholdAlgorithm();
this.trainerContext = new SymmetricTrainerContext(); this.trainerContext = new SymmetricTrainerContext();
if (this.accumulator == null) { if (this.accumulator == null) {
log.info("Creating new GradientsAccumulator instance with default threshold of [5e-4]"); log.info("Creating new GradientsAccumulator instance with default threshold of [5e-4]");
this.accumulator = new EncodedGradientsAccumulator(workers, thresholdAlgorithm, residualPostProcessor, false); val numParams = model.numParams();
// we're limiting max size of updates for Sparse encoding to the size of bitmap encoded message
val maxUpdate = (int) (numParams / 16 + 5);
// memory sie in number of bytes
long memorySize = encoderMemory == null || encoderMemory < 0
? maxUpdate * 4 * (workers + 3)
: encoderMemory;
this.accumulator = new EncodedGradientsAccumulator(workers, new EncodingHandler(thresholdAlgorithm, residualPostProcessor, maxUpdate, false), memorySize, workers + 2, Integer.MAX_VALUE, false);
} }
} }
break; break;

View File

@ -450,6 +450,14 @@ public class DefaultTrainer extends Thread implements Trainer {
} finally { } finally {
log.debug("Terminating all workspaces for trainer_{}", threadId); log.debug("Terminating all workspaces for trainer_{}", threadId);
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread(); Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
if (!onRootModel) {
replicatedModel.close();
}
// let's try to enforce GC to actually clean all references now
replicatedModel.clear();
System.gc();
isStopped.set(true); isStopped.set(true);
} }
} }

View File

@ -58,7 +58,7 @@ public class ParallelWrapperTest extends BaseDL4JTest {
// for GPU you usually want to have higher batchSize // for GPU you usually want to have higher batchSize
int batchSize = 128; int batchSize = 128;
int nEpochs = 2; int nEpochs = 5;
int seed = 123; int seed = 123;
log.info("Load data...."); log.info("Load data....");

View File

@ -163,14 +163,13 @@ namespace sd {
// here we just calculate number of sumBlock arrays // here we just calculate number of sumBlock arrays
do { do {
int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads))); int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads)));
if (numBlocks > 1) { if (numPrefixBlocks > 1) {
level++; level++;
} }
numElts = numPrefixBlocks; numElts = numPrefixBlocks;
} while (numElts > 1); } while (numElts > 1);
std::vector<NDArray> tempArrays(level); std::vector<NDArray> tempArrays(level);
std::vector<Nd4jPointer> pointers(level); std::vector<Nd4jPointer> pointers(level);
@ -181,13 +180,13 @@ namespace sd {
int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads))); int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads)));
if (numPrefixBlocks > 1) { if (numPrefixBlocks > 1) {
tempArrays[level] = std::move(NDArrayFactory::create<int>('c', {numPrefixBlocks})); tempArrays[level] = std::move(NDArrayFactory::create<int>('c', {numPrefixBlocks}));
pointers[level] = tempArrays[level++].specialBuffer(); pointers[level] = tempArrays[level].specialBuffer();;
level++;
} }
numElts = numPrefixBlocks; numElts = numPrefixBlocks;
} while (numElts > 1); } while (numElts > 1);
PointersManager pm(LaunchContext::defaultContext(), "thresholdEncode"); PointersManager pm(LaunchContext::defaultContext(), "thresholdEncode");
auto dptr = pm.replicatePointer(pointers.data(), pointers.size() * 8);
auto offsets = NDArrayFactory::create<int>('c', {numBlocks}); auto offsets = NDArrayFactory::create<int>('c', {numBlocks});
// we want to check, if we're hiting external limit on number of encoded elements // we want to check, if we're hiting external limit on number of encoded elements
@ -200,7 +199,7 @@ namespace sd {
NDArray::prepareSpecialUse({}, {&encoded, &updates}); NDArray::prepareSpecialUse({}, {&encoded, &updates});
// filling offsets // filling offsets
encodeThresholdP2Int_(reinterpret_cast<void **>(dptr), encodeThresholdP2Int_(reinterpret_cast<void **>(pointers.data()),
reinterpret_cast<int*>(blocks.specialBuffer()), reinterpret_cast<int*>(blocks.specialBuffer()),
numBlocks, numBlocks,
reinterpret_cast<int*>(offsets.specialBuffer())); reinterpret_cast<int*>(offsets.specialBuffer()));

View File

@ -228,6 +228,53 @@ TEST_F(DeclarableOpsTests19, test_threshold_encode_decode) {
ASSERT_EQ(exp, initial); ASSERT_EQ(exp, initial);
} }
TEST_F(DeclarableOpsTests19, test_threshold_encode_decode_2) {
// [2,1,135079944,1,1,8192,1,99]
auto initial = NDArrayFactory::create<float>('c', {1, 135079944});
initial = 1.0f;
auto exp = initial.dup();
auto neg = initial.like();
neg = 0.5f;
sd::ops::encode_threshold enc;
auto enc_result = enc.evaluate({&initial}, {0.5f});
auto encoded = enc_result.at(1);
ASSERT_EQ(135079944 + 4, encoded->lengthOf());
ASSERT_NE(exp, initial);
/*
for (int e = 0; e < initial.lengthOf(); e++) {
auto f = initial.e<float>(e);
if (f != 0.5f) {
nd4j_printf("initial[%i] = %f\n", e, f);
throw std::runtime_error("");
}
}
*/
ASSERT_EQ(neg, initial);
// checking equality of all encoded bits
//for (int e = 5; e < encoded->lengthOf() - 1; e++) {
//if (encoded->e<int>(e) != encoded->e<int>(e - 1) + 1)
//nd4j_printf("Non equal encoded values at E[%i]: %i;\n", e, encoded->e<int>(e));
//}
sd::ops::decode_threshold dec;
auto status = dec.execute({&initial, encoded}, {&initial});
ASSERT_EQ(Status::OK(), status);
// checking equality of all dedoded bits
/*
for (int e = 0; e < initial.lengthOf(); e++) {
auto f = initial.e<float>(e);
if (f != 1.0f)
nd4j_printf("initial[%i] = %f\n", e, f);
}
*/
ASSERT_EQ(exp, initial);
}
TEST_F(DeclarableOpsTests19, test_matmul_ccc) { TEST_F(DeclarableOpsTests19, test_matmul_ccc) {
auto x = NDArrayFactory::create<float>('c', {10, 10}); auto x = NDArrayFactory::create<float>('c', {10, 10});

View File

@ -1957,6 +1957,9 @@ public abstract class BaseDataBuffer implements DataBuffer {
@Override @Override
public boolean wasClosed() { public boolean wasClosed() {
if (wrappedDataBuffer != null && wrappedDataBuffer != this)
return wrappedDataBuffer.wasClosed();
return released; return released;
} }

View File

@ -5521,7 +5521,7 @@ public abstract class BaseNDArray implements INDArray, Iterable {
public INDArray castTo(DataType dataType) { public INDArray castTo(DataType dataType) {
if(dataType == dataType()) //No-op if correct datatype if(dataType == dataType()) //No-op if correct datatype
return this; return this;
if(isEmpty()){ if(isEmpty() && rank() == 0){
return Nd4j.empty(dataType); return Nd4j.empty(dataType);
} }
val result = Nd4j.createUninitialized(dataType, this.shape(), this.ordering()); val result = Nd4j.createUninitialized(dataType, this.shape(), this.ordering());

View File

@ -41,6 +41,12 @@ public class EncodeThreshold extends DynamicCustomOp {
this(updates, threshold, Integer.MAX_VALUE); this(updates, threshold, Integer.MAX_VALUE);
} }
public EncodeThreshold(@NonNull INDArray updates, @NonNull INDArray encoded, float threshold, @NonNull Integer boundary) {
this(updates, threshold, boundary);
addOutputArgument(updates, encoded);
}
public EncodeThreshold(@NonNull INDArray updates, float threshold, @NonNull Integer boundary) { public EncodeThreshold(@NonNull INDArray updates, float threshold, @NonNull Integer boundary) {
addInputArgument(updates); addInputArgument(updates);

View File

@ -692,9 +692,33 @@ public abstract class DefaultOpExecutioner implements OpExecutioner {
return thresholdEncode(input, threshold, Integer.MAX_VALUE); return thresholdEncode(input, threshold, Integer.MAX_VALUE);
} }
private long _length(long[] shape) {
// scalar case
if (shape.length == 0)
return 1;
else if (shape.length == 1)
return shape[0];
else {
long length = 1;
for (int e = 0; e < shape.length; e++)
length *= shape[e];
return length;
}
}
@Override @Override
public INDArray thresholdEncode(INDArray input, double threshold, Integer boundary) { public INDArray thresholdEncode(INDArray input, double threshold, Integer boundary) {
val result = Nd4j.exec(new EncodeThreshold(input, (float) threshold, boundary))[1]; val op_shape = new EncodeThreshold(input, (float) threshold, boundary);
val shapes = Nd4j.getExecutioner().calculateOutputShape(op_shape);
if (_length(shapes.get(1).getShape()) < 2)
return null;
val result = Nd4j.create(DataType.INT32, shapes.get(1).getShape());
op_shape.addOutputArgument(input, result);
Nd4j.exec(op_shape);
return result.getInt(0) > 0 ? result : null; return result.getInt(0) > 0 ? result : null;
} }

View File

@ -71,7 +71,13 @@ public class CudaMemoryManager extends BasicMemoryManager {
return ptr;//allocator.getMemoryHandler().alloc(AllocationStatus.HOST, null, null, initialize).getHostPointer(); return ptr;//allocator.getMemoryHandler().alloc(AllocationStatus.HOST, null, null, initialize).getHostPointer();
} else if (kind == MemoryKind.DEVICE) { } else if (kind == MemoryKind.DEVICE) {
val ptr = NativeOpsHolder.getInstance().getDeviceNativeOps().mallocDevice(bytes, 0, 0); val ptr = NativeOpsHolder.getInstance().getDeviceNativeOps().mallocDevice(bytes, 0, 0);
//log.info("Allocating {} bytes for device_{}", bytes, Nd4j.getAffinityManager().getDeviceForCurrentThread()); log.trace("Allocating {} bytes for device_{}", bytes, Nd4j.getAffinityManager().getDeviceForCurrentThread());
val ec = NativeOpsHolder.getInstance().getDeviceNativeOps().lastErrorCode();
if (ec != 0) {
val em = NativeOpsHolder.getInstance().getDeviceNativeOps().lastErrorMessage();
throw new RuntimeException(em + "; Bytes: [" + bytes + "]; Error code [" + ec + "]; DEVICE [" + Nd4j.getAffinityManager().getDeviceForCurrentThread() + "]");
}
if (ptr == null) if (ptr == null)
throw new RuntimeException("Failed to allocate " + bytes + " bytes from DEVICE [" + Nd4j.getAffinityManager().getDeviceForCurrentThread() + "] memory"); throw new RuntimeException("Failed to allocate " + bytes + " bytes from DEVICE [" + Nd4j.getAffinityManager().getDeviceForCurrentThread() + "] memory");

View File

@ -191,7 +191,7 @@ public class CudaWorkspace extends Nd4jWorkspace {
// spill // spill
if (workspaceConfiguration.getPolicyReset() == ResetPolicy.ENDOFBUFFER_REACHED && currentSize.get() > 0 && !trimmer && Nd4j.getWorkspaceManager().getDebugMode() != DebugMode.SPILL_EVERYTHING) { if (workspaceConfiguration.getPolicyReset() == ResetPolicy.ENDOFBUFFER_REACHED && currentSize.get() > 0 && !trimmer && Nd4j.getWorkspaceManager().getDebugMode() != DebugMode.SPILL_EVERYTHING) {
//log.info("End of space reached. Current offset: {}; requiredMemory: {}", deviceOffset.get(), requiredMemory); //log.info("End of space reached. Current offset: {}; requiredMemory: {}", deviceOffset.get(), requiredMemory);
reset(); deviceOffset.set(0);
resetPlanned.set(true); resetPlanned.set(true);
return alloc(requiredMemory, kind, type, initialize); return alloc(requiredMemory, kind, type, initialize);
} }
@ -204,7 +204,6 @@ public class CudaWorkspace extends Nd4jWorkspace {
if (isDebug.get()) { if (isDebug.get()) {
log.info("Workspace [{}] device_{}: spilled DEVICE array of {} bytes, capacity of {} elements", id, Nd4j.getAffinityManager().getDeviceForCurrentThread(), requiredMemory, numElements); log.info("Workspace [{}] device_{}: spilled DEVICE array of {} bytes, capacity of {} elements", id, Nd4j.getAffinityManager().getDeviceForCurrentThread(), requiredMemory, numElements);
} }
//Nd4j.getWorkspaceManager().printAllocationStatisticsForCurrentThread();
val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type); val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type);
@ -258,6 +257,12 @@ public class CudaWorkspace extends Nd4jWorkspace {
return ptr; return ptr;
} else { } else {
// log.info("Spilled HOST array of {} bytes, capacity of {} elements", requiredMemory, numElements); // log.info("Spilled HOST array of {} bytes, capacity of {} elements", requiredMemory, numElements);
if (workspaceConfiguration.getPolicyReset() == ResetPolicy.ENDOFBUFFER_REACHED && currentSize.get() > 0 && !trimmer && Nd4j.getWorkspaceManager().getDebugMode() != DebugMode.SPILL_EVERYTHING) {
//log.info("End of space reached. Current offset: {}; requiredMemory: {}", deviceOffset.get(), requiredMemory);
hostOffset.set(0);
//resetPlanned.set(true);
return alloc(requiredMemory, kind, type, initialize);
}
val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type); val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type);

View File

@ -85,6 +85,9 @@ public abstract class BaseCudaDataBuffer extends BaseDataBuffer implements JCuda
} }
public OpaqueDataBuffer getOpaqueDataBuffer() { public OpaqueDataBuffer getOpaqueDataBuffer() {
if (released)
throw new IllegalStateException("You can't use DataBuffer once it was released");
return ptrDataBuffer; return ptrDataBuffer;
} }
@ -104,7 +107,8 @@ public abstract class BaseCudaDataBuffer extends BaseDataBuffer implements JCuda
ptrDataBuffer = OpaqueDataBuffer.externalizedDataBuffer(length, this.type, pointer, specialPointer); ptrDataBuffer = OpaqueDataBuffer.externalizedDataBuffer(length, this.type, pointer, specialPointer);
this.allocationPoint = new AllocationPoint(ptrDataBuffer, this.type.width() * length); this.allocationPoint = new AllocationPoint(ptrDataBuffer, this.type.width() * length);
Nd4j.getDeallocatorService().pickObject(this); Nd4j.getDeallocatorService().pickObject(this);if (released)
throw new IllegalStateException("You can't use DataBuffer once it was released");
} }
/** /**
@ -473,6 +477,9 @@ public abstract class BaseCudaDataBuffer extends BaseDataBuffer implements JCuda
} }
public BaseCudaDataBuffer(@NonNull DataBuffer underlyingBuffer, long length, long offset) { public BaseCudaDataBuffer(@NonNull DataBuffer underlyingBuffer, long length, long offset) {
if (underlyingBuffer.wasClosed())
throw new IllegalStateException("You can't use DataBuffer once it was released");
//this(length, underlyingBuffer.getElementSize(), offset); //this(length, underlyingBuffer.getElementSize(), offset);
this.allocationMode = AllocationMode.MIXED_DATA_TYPES; this.allocationMode = AllocationMode.MIXED_DATA_TYPES;
initTypeAndSize(); initTypeAndSize();
@ -1630,7 +1637,7 @@ public abstract class BaseCudaDataBuffer extends BaseDataBuffer implements JCuda
setIndexer(ShortIndexer.create((ShortPointer) pointer)); setIndexer(ShortIndexer.create((ShortPointer) pointer));
} else if (t == DataType.UINT32) { } else if (t == DataType.UINT32) {
pointer = new PagedPointer(cptr, length).asIntPointer(); pointer = new PagedPointer(cptr, length).asIntPointer();
setIndexer(IntIndexer.create((IntPointer) pointer)); setIndexer(UIntIndexer.create((IntPointer) pointer));
} else if (t == DataType.INT) { } else if (t == DataType.INT) {
pointer = new PagedPointer(cptr, length).asIntPointer(); pointer = new PagedPointer(cptr, length).asIntPointer();
setIndexer(IntIndexer.create((IntPointer) pointer)); setIndexer(IntIndexer.create((IntPointer) pointer));
@ -1699,6 +1706,9 @@ public abstract class BaseCudaDataBuffer extends BaseDataBuffer implements JCuda
indexer = ShortIndexer.create((ShortPointer) pointer); indexer = ShortIndexer.create((ShortPointer) pointer);
break; break;
case UINT32: case UINT32:
pointer = nPtr.asIntPointer();
indexer = UIntIndexer.create((IntPointer) pointer);
break;
case INT: case INT:
pointer = nPtr.asIntPointer(); pointer = nPtr.asIntPointer();
indexer = IntIndexer.create((IntPointer) pointer); indexer = IntIndexer.create((IntPointer) pointer);
@ -1750,6 +1760,9 @@ public abstract class BaseCudaDataBuffer extends BaseDataBuffer implements JCuda
indexer = ShortIndexer.create((ShortPointer) pointer); indexer = ShortIndexer.create((ShortPointer) pointer);
break; break;
case UINT32: case UINT32:
pointer = nPtr.asIntPointer();
indexer = UIntIndexer.create((IntPointer) pointer);
break;
case INT: case INT:
pointer = nPtr.asIntPointer(); pointer = nPtr.asIntPointer();
indexer = IntIndexer.create((IntPointer) pointer); indexer = IntIndexer.create((IntPointer) pointer);

View File

@ -0,0 +1,105 @@
/*******************************************************************************
* Copyright (c) 2020 Konduit K.k.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.jita.workspace;
import lombok.val;
import org.junit.Test;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.concurrency.AffinityManager;
import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration;
import org.nd4j.linalg.api.memory.enums.AllocationPolicy;
import org.nd4j.linalg.api.memory.enums.LearningPolicy;
import org.nd4j.linalg.api.memory.enums.ResetPolicy;
import org.nd4j.linalg.api.memory.enums.SpillPolicy;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.*;
public class CudaWorkspaceTest {
@Test
public void testCircularWorkspaceAsymmetry_1() {
// circular workspace mode
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
val array = Nd4j.create(DataType.FLOAT, 10, 10);
assertEquals(0, ws.getHostOffset());
assertNotEquals(0, ws.getDeviceOffset());
// we expect that this array has no data/buffer on HOST side
assertEquals(AffinityManager.Location.DEVICE, Nd4j.getAffinityManager().getActiveLocation(array));
// since this array doesn't have HOST buffer - it will allocate one now
array.getDouble(3L);
assertEquals(ws.getHostOffset(), ws.getDeviceOffset());
}
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
assertEquals(ws.getHostOffset(), ws.getDeviceOffset());
}
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
}
@Test
public void testCircularWorkspaceAsymmetry_2() {
// circular workspace mode
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
val root = Nd4j.create(DataType.FLOAT, 1000000).assign(119);
for (int e = 0; e < 100; e++) {
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
val array = Nd4j.create(DataType.FLOAT, root.shape());
array.assign(root);
array.data().getInt(3);
assertEquals(ws.getHostOffset(), ws.getDeviceOffset());
}
}
}
@Test
public void testCircularWorkspaceAsymmetry_3() {
// circular workspace mode
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
val root = Nd4j.create(DataType.FLOAT, 1000000).assign(119);
for (int e = 0; e < 100; e++) {
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
val array = Nd4j.create(DataType.FLOAT, root.shape());
array.assign(root);
val second = Nd4j.create(DataType.FLOAT, root.shape());
array.data().getInt(3);
}
}
}
}

View File

@ -198,4 +198,27 @@ public class BaseCudaDataBufferTest extends BaseND4JTest {
// there shoul dbe no exceptions during execution // there shoul dbe no exceptions during execution
assertEquals(Nd4j.getAffinityManager().getNumberOfDevices(), cnt.get()); assertEquals(Nd4j.getAffinityManager().getNumberOfDevices(), cnt.get());
} }
@Test
public void testClose_1() {
val x = Nd4j.createFromArray(1, 2, 3);
x.close();
assertTrue(x.wasClosed());
assertTrue(x.data().wasClosed());
}
@Test
public void testClose_2() {
val x = Nd4j.create(DataType.FLOAT, 5, 6);
val row = x.getRow(1);
x.close();
assertTrue(x.wasClosed());
assertTrue(x.data().wasClosed());
assertTrue(row.wasClosed());
assertTrue(row.data().wasClosed());
}
} }

View File

@ -61,6 +61,9 @@ public abstract class BaseCpuDataBuffer extends BaseDataBuffer implements Deallo
} }
public OpaqueDataBuffer getOpaqueDataBuffer() { public OpaqueDataBuffer getOpaqueDataBuffer() {
if (released)
throw new IllegalStateException("You can't use DataBuffer once it was released");
return ptrDataBuffer; return ptrDataBuffer;
} }
@ -411,7 +414,7 @@ public abstract class BaseCpuDataBuffer extends BaseDataBuffer implements Deallo
setIndexer(ShortIndexer.create((ShortPointer) pointer)); setIndexer(ShortIndexer.create((ShortPointer) pointer));
} else if (t == DataType.UINT32) { } else if (t == DataType.UINT32) {
pointer = new PagedPointer(cptr, length).asIntPointer(); pointer = new PagedPointer(cptr, length).asIntPointer();
setIndexer(IntIndexer.create((IntPointer) pointer)); setIndexer(UIntIndexer.create((IntPointer) pointer));
} else if (t == DataType.INT) { } else if (t == DataType.INT) {
pointer = new PagedPointer(cptr, length).asIntPointer(); pointer = new PagedPointer(cptr, length).asIntPointer();
setIndexer(IntIndexer.create((IntPointer) pointer)); setIndexer(IntIndexer.create((IntPointer) pointer));
@ -514,7 +517,6 @@ public abstract class BaseCpuDataBuffer extends BaseDataBuffer implements Deallo
attached = true; attached = true;
parentWorkspace = workspace; parentWorkspace = workspace;
// FIXME: need unsigned indexer here
pointer = workspace.alloc(length * getElementSize(), dataType(), initialize).asIntPointer(); //new IntPointer(length()); pointer = workspace.alloc(length * getElementSize(), dataType(), initialize).asIntPointer(); //new IntPointer(length());
setIndexer(UIntIndexer.create((IntPointer) pointer)); setIndexer(UIntIndexer.create((IntPointer) pointer));
@ -882,6 +884,9 @@ public abstract class BaseCpuDataBuffer extends BaseDataBuffer implements Deallo
indexer = ShortIndexer.create((ShortPointer) pointer); indexer = ShortIndexer.create((ShortPointer) pointer);
break; break;
case UINT32: case UINT32:
pointer = nPtr.asIntPointer();
indexer = UIntIndexer.create((IntPointer) pointer);
break;
case INT: case INT:
pointer = nPtr.asIntPointer(); pointer = nPtr.asIntPointer();
indexer = IntIndexer.create((IntPointer) pointer); indexer = IntIndexer.create((IntPointer) pointer);
@ -932,6 +937,9 @@ public abstract class BaseCpuDataBuffer extends BaseDataBuffer implements Deallo
indexer = ShortIndexer.create((ShortPointer) pointer); indexer = ShortIndexer.create((ShortPointer) pointer);
break; break;
case UINT32: case UINT32:
pointer = nPtr.asIntPointer();
indexer = UIntIndexer.create((IntPointer) pointer);
break;
case INT: case INT:
pointer = nPtr.asIntPointer(); pointer = nPtr.asIntPointer();
indexer = IntIndexer.create((IntPointer) pointer); indexer = IntIndexer.create((IntPointer) pointer);

View File

@ -16619,6 +16619,21 @@ public static final int TAD_THRESHOLD = TAD_THRESHOLD();
private native void allocate(); private native void allocate();
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block); public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
} }
@Namespace("sd::ops") public static class clipbyavgnorm_bp extends DeclarableCustomOp {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public clipbyavgnorm_bp(Pointer p) { super(p); }
/** Native array allocator. Access with {@link Pointer#position(long)}. */
public clipbyavgnorm_bp(long size) { super((Pointer)null); allocateArray(size); }
private native void allocateArray(long size);
@Override public clipbyavgnorm_bp position(long position) {
return (clipbyavgnorm_bp)super.position(position);
}
public clipbyavgnorm_bp() { super((Pointer)null); allocate(); }
private native void allocate();
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
}
// #endif // #endif
// #if NOT_EXCLUDED(OP_cumsum) // #if NOT_EXCLUDED(OP_cumsum)

View File

@ -123,8 +123,61 @@ public class TFGraphTestAllSameDiff { //Note: Can't extend BaseNd4jTest here a
//AB 2020/01/07 - Known issues //AB 2020/01/07 - Known issues
"bitcast/from_float64_to_int64", "bitcast/from_float64_to_int64",
"bitcast/from_rank2_float64_to_int64", "bitcast/from_rank2_float64_to_int64",
"bitcast/from_float64_to_uint64" "bitcast/from_float64_to_uint64",
};
//NEWLY ADDED TESTCASES from 27/04/2020
"non_max_suppression_v2/.*", "non_max_suppression/.*",
"random_gamma/.*",
"non_max_suppression_v5/.*",
"non_max_suppression_v4/.*",
"non_max_suppression_v3/.*",
"dropout/.*",
"max_pool_with_argmax/.*",
"conv2d_transpose/.*",
"Conv3DBackpropInputV2/.*",
"Conv3DBackpropInput/.*",
"mod/.*",
"leaky_relu/.*",
"DeepCopy/.*",
"empty/.*",
"ones_like/.*",
"is_non_decreasing/.*",
"div/.*",
"lgamma/.*",
"random_uniform/.*",
"random_uniform_int/.*",
"resize_area/.*",
"zeros_like_tf1/.*",
"Conv2DTranspose/.*",
"rgb_to_yuv/.*",
"rgb_to_grayscale/.*",
"rgb_to_yiq/.*",
"losses/.*",
"yiq_to_rgb/.*",
"yuv_to_rgb/.*",
"emptyArrayTests/.*",
"random_normal/.*",
"random_shuffle/.*",
"random_poisson_v2/.*",
"random_poisson/.*",
"random_crop/.*",
"compare_and_bitpack/.*",
"adjust_contrast/.*",
"confusion/.*",
"bitcast/.*",
"roll/.*",
"matrix_band_part/.*",
"conv3d_transpose_layers/.*",
"multinomial/.*",
"unsorted_segment/.*",
"cnn2d_nn/.*",
"truncatemod/.*",
"bincount/.*",
"slogdet/.*",
"adjust_contrast_v2/.*"
};
/* As per TFGraphTestList.printArraysDebugging - this field defines a set of regexes for test cases that should have /* As per TFGraphTestList.printArraysDebugging - this field defines a set of regexes for test cases that should have
all arrays printed during execution. all arrays printed during execution.

View File

@ -8411,6 +8411,76 @@ public class Nd4jTestsC extends BaseNd4jTest {
INDArray arr = Nd4j.create(db, new long[]{lengthElements}); INDArray arr = Nd4j.create(db, new long[]{lengthElements});
arr.toStringFull(); arr.toStringFull();
arr.toString();
for(DataType dt2 : DataType.values()) {
if (dt2 == DataType.COMPRESSED || dt2 == DataType.UTF8 || dt2 == DataType.UNKNOWN)
continue;
INDArray a2 = arr.castTo(dt2);
a2.toStringFull();
}
}
}
@Test
public void testCreateBufferFromByteBufferViews(){
for(DataType dt : DataType.values()){
if(dt == DataType.COMPRESSED || dt == DataType.UTF8 || dt == DataType.UNKNOWN)
continue;
// System.out.println(dt);
int lengthBytes = 256;
int lengthElements = lengthBytes / dt.width();
ByteBuffer bb = ByteBuffer.allocateDirect(lengthBytes);
DataBuffer db = Nd4j.createBuffer(bb, dt, lengthElements, 0);
INDArray arr = Nd4j.create(db, new long[]{lengthElements/2, 2});
arr.toStringFull();
INDArray view = arr.get(NDArrayIndex.all(), NDArrayIndex.point(0));
INDArray view2 = arr.get(NDArrayIndex.point(1), NDArrayIndex.all());
view.toStringFull();
view2.toStringFull();
}
}
@Test
public void testTypeCastingToString(){
for(DataType dt : DataType.values()) {
if (dt == DataType.COMPRESSED || dt == DataType.UTF8 || dt == DataType.UNKNOWN)
continue;
INDArray a1 = Nd4j.create(dt, 10);
for(DataType dt2 : DataType.values()) {
if (dt2 == DataType.COMPRESSED || dt2 == DataType.UTF8 || dt2 == DataType.UNKNOWN)
continue;
INDArray a2 = a1.castTo(dt2);
a2.toStringFull();
}
}
}
@Test
public void testShape0Casts(){
for(DataType dt : DataType.values()){
if(!dt.isNumerical())
continue;
INDArray a1 = Nd4j.create(dt, 1,0,2);
for(DataType dt2 : DataType.values()){
if(!dt2.isNumerical())
continue;
INDArray a2 = a1.castTo(dt2);
assertArrayEquals(a1.shape(), a2.shape());
assertEquals(dt2, a2.dataType());
}
} }
} }

View File

@ -26,6 +26,7 @@ import org.junit.runner.RunWith;
import org.junit.runners.Parameterized; import org.junit.runners.Parameterized;
import org.nd4j.linalg.BaseNd4jTest; import org.nd4j.linalg.BaseNd4jTest;
import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.concurrency.AffinityManager;
import org.nd4j.linalg.api.memory.MemoryWorkspace; import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration; import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration;
import org.nd4j.linalg.api.memory.enums.*; import org.nd4j.linalg.api.memory.enums.*;
@ -1219,6 +1220,30 @@ public class BasicWorkspaceTests extends BaseNd4jTest {
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread(); Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
} }
@Test
public void testCircularWorkspaceAsymmetry_1() {
// nothing to test on CPU here
if (Nd4j.getEnvironment().isCPU())
return;
// circular workspace mode
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
try (val ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
val array = Nd4j.create(DataType.FLOAT, 10, 10);
// we expect that this array has no data/buffer on HOST side
assertEquals(AffinityManager.Location.DEVICE, Nd4j.getAffinityManager().getActiveLocation(array));
// since this array doesn't have HOST buffer - it will allocate one now
array.getDouble(3L);
}
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
}
@Override @Override
public char ordering() { public char ordering() {