parent
a40d5aa7cf
commit
090c5ab2eb
|
@ -36,9 +36,9 @@ import static org.junit.jupiter.api.Assertions.assertTrue;
|
|||
public class LoadBackendTests {
|
||||
|
||||
@Test
|
||||
public void loadBackend() throws ClassNotFoundException, NoSuchFieldException, IllegalAccessException {
|
||||
public void loadBackend() throws NoSuchFieldException, IllegalAccessException {
|
||||
// check if Nd4j is there
|
||||
//Logger.getLogger(LoadBackendTests.class.getName()).info("System java.library.path: " + System.getProperty("java.library.path"));
|
||||
Logger.getLogger(LoadBackendTests.class.getName()).info("System java.library.path: " + System.getProperty("java.library.path"));
|
||||
final Field sysPathsField = ClassLoader.class.getDeclaredField("sys_paths");
|
||||
sysPathsField.setAccessible(true);
|
||||
sysPathsField.set(null, null);
|
||||
|
|
|
@ -37,6 +37,8 @@ import org.datavec.image.loader.NativeImageLoader;
|
|||
import org.datavec.image.recordreader.ImageRecordReader;
|
||||
import org.datavec.image.transform.*;
|
||||
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
|
||||
import org.deeplearning4j.datasets.iterator.ExistingDataSetIterator;
|
||||
import org.deeplearning4j.datasets.iterator.INDArrayDataSetIterator;
|
||||
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
|
||||
import org.deeplearning4j.nn.conf.GradientNormalization;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -46,24 +48,27 @@ import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
|||
import org.deeplearning4j.optimize.listeners.PerformanceListener;
|
||||
import org.junit.jupiter.api.Tag;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.nd4j.evaluation.classification.Evaluation;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.dataset.DataSet;
|
||||
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
|
||||
import static net.brutex.gan.App2Config.BATCHSIZE;
|
||||
|
||||
@Slf4j
|
||||
public class App2 {
|
||||
|
||||
final int INPUT = CHANNELS*DIMENSIONS*DIMENSIONS;
|
||||
static final float COLORSPACE = 255f;
|
||||
|
||||
static final int DIMENSIONS = 28;
|
||||
static final int CHANNELS = 1;
|
||||
final int ARRAY_SIZE_PER_SAMPLE = DIMENSIONS*DIMENSIONS*CHANNELS;
|
||||
final int OUTPUT_PER_PANEL = 10;
|
||||
|
||||
|
||||
final boolean BIAS = true;
|
||||
|
||||
static final int BATCHSIZE=128;
|
||||
|
||||
|
||||
private JFrame frame2, frame;
|
||||
static final String OUTPUT_DIR = "d:/out/";
|
||||
|
@ -76,7 +81,7 @@ public class App2 {
|
|||
Nd4j.getMemoryManager().setAutoGcWindow(15 * 1000);
|
||||
|
||||
MnistDataSetIterator mnistIter = new MnistDataSetIterator(20, 200);
|
||||
FileSplit fileSplit = new FileSplit(new File("c:/users/brian/downloads/humans2"), NativeImageLoader.getALLOWED_FORMATS());
|
||||
FileSplit fileSplit = new FileSplit(new File("c:/users/brian/downloads/humans3"), NativeImageLoader.getALLOWED_FORMATS());
|
||||
ImageTransform transform = new ColorConversionTransform(new Random(42), 7 );
|
||||
ImageTransform transform2 = new ShowImageTransform("Tester", 30);
|
||||
ImageTransform transform3 = new ResizeImageTransform(DIMENSIONS, DIMENSIONS);
|
||||
|
@ -129,12 +134,94 @@ public class App2 {
|
|||
|
||||
log.info("Generator Summary:\n{}", gen.summary());
|
||||
log.info("GAN Summary:\n{}", gan.summary());
|
||||
dis.addTrainingListeners(new PerformanceListener(10, true, "DIS"));
|
||||
gen.addTrainingListeners(new PerformanceListener(10, true, "GEN"));
|
||||
gan.addTrainingListeners(new PerformanceListener(10, true, "GAN"));
|
||||
dis.addTrainingListeners(new PerformanceListener(3, true, "DIS"));
|
||||
//gen.addTrainingListeners(new PerformanceListener(3, true, "GEN")); //is never trained separately from GAN
|
||||
gan.addTrainingListeners(new PerformanceListener(3, true, "GAN"));
|
||||
/*
|
||||
Thread vt =
|
||||
new Thread(
|
||||
new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
while (true) {
|
||||
visualize(0, 0, gen);
|
||||
try {
|
||||
Thread.sleep(10000);
|
||||
} catch (InterruptedException e) {
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
vt.start();
|
||||
*/
|
||||
|
||||
int j = 0;
|
||||
for (int i = 0; i < 51; i++) { //epoch
|
||||
App2Display display = new App2Display();
|
||||
//Repack training data with new fake/real label. Original MNist has 10 labels, one for each digit
|
||||
DataSet data = null;
|
||||
int j =0;
|
||||
for(int i=0;i<App2Config.EPOCHS;i++) {
|
||||
log.info("Epoch {}", i);
|
||||
data = new DataSet(Nd4j.rand(BATCHSIZE, 784), label_fake);
|
||||
while (trainData.hasNext()) {
|
||||
j++;
|
||||
INDArray real = trainData.next().getFeatures();
|
||||
INDArray fakeIn = Nd4j.rand(BATCHSIZE, App2Config.INPUT);
|
||||
|
||||
INDArray fake = gan.activateSelectedLayers(0, gen.getLayers().length - 1,
|
||||
Nd4j.rand(BATCHSIZE, App2Config.INPUT));
|
||||
//sigmoid output is -1 to 1
|
||||
fake.addi(1f).divi(2f);
|
||||
|
||||
if (j % 50 == 1) {
|
||||
display.visualize(new INDArray[] {fake}, App2Config.OUTPUT_PER_PANEL, false);
|
||||
display.visualize(new INDArray[] {real}, App2Config.OUTPUT_PER_PANEL, true);
|
||||
}
|
||||
|
||||
|
||||
DataSet realSet = new DataSet(real, label_real);
|
||||
DataSet fakeSet = new DataSet(fake, label_fake);
|
||||
|
||||
//start next round if there are not enough images left to have a full batchsize dataset
|
||||
if(real.length() < ARRAY_SIZE_PER_SAMPLE*BATCHSIZE) {
|
||||
log.warn("Your total number of input images is not a multiple of {}, "
|
||||
+ "thus skipping {} images to make it fit", BATCHSIZE, real.length()/ARRAY_SIZE_PER_SAMPLE);
|
||||
break;
|
||||
}
|
||||
//if(real.length()/BATCHSIZE!=784) break;
|
||||
data = DataSet.merge(Arrays.asList(data, realSet, fakeSet));
|
||||
|
||||
}
|
||||
//fit the discriminator
|
||||
dis.fit(data);
|
||||
dis.fit(data);
|
||||
// Update the discriminator in the GAN network
|
||||
updateGan(gen, dis, gan);
|
||||
|
||||
//reset the training data and fit the complete GAN
|
||||
if (trainData.resetSupported()) {
|
||||
trainData.reset();
|
||||
} else {
|
||||
log.error("Trainingdata {} does not support reset.", trainData.toString());
|
||||
}
|
||||
gan.fit(new DataSet(Nd4j.rand(BATCHSIZE, App2Config.INPUT), label_real));
|
||||
|
||||
if (trainData.resetSupported()) {
|
||||
trainData.reset();
|
||||
} else {
|
||||
log.error("Trainingdata {} does not support reset.", trainData.toString());
|
||||
}
|
||||
|
||||
log.info("Updated GAN's generator from gen.");
|
||||
updateGen(gen, gan);
|
||||
gen.save(new File("mnist-mlp-generator.dlj"));
|
||||
}
|
||||
//vt.stop();
|
||||
|
||||
/*
|
||||
int j;
|
||||
for (int i = 0; i < App2Config.EPOCHS; i++) { //epoch
|
||||
j=0;
|
||||
while (trainData.hasNext()) {
|
||||
j++;
|
||||
DataSet next = trainData.next();
|
||||
|
@ -212,122 +299,25 @@ public class App2 {
|
|||
log.info("Updated GAN's generator from gen.");
|
||||
gen.save(new File("mnist-mlp-generator.dlj"));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
private static JFrame visualize(INDArray[] samples, int batchElements, JFrame frame, boolean isOrig) {
|
||||
if (isOrig) {
|
||||
frame.setTitle("Viz Original");
|
||||
} else {
|
||||
frame.setTitle("Generated");
|
||||
}
|
||||
|
||||
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
|
||||
frame.setLayout(new BorderLayout());
|
||||
|
||||
JPanel panelx = new JPanel();
|
||||
|
||||
panelx.setLayout(new GridLayout(4, 4, 8, 8));
|
||||
for (INDArray sample : samples) {
|
||||
for(int i = 0; i<batchElements; i++) {
|
||||
panelx.add(getImage(sample, i, isOrig));
|
||||
}
|
||||
}
|
||||
frame.add(panelx, BorderLayout.CENTER);
|
||||
frame.setVisible(true);
|
||||
|
||||
frame.revalidate();
|
||||
frame.setMinimumSize(new Dimension(300, 20));
|
||||
frame.pack();
|
||||
return frame;
|
||||
}
|
||||
|
||||
|
||||
private static JLabel getImage(INDArray tensor, int batchElement, boolean isOrig) {
|
||||
final BufferedImage bi;
|
||||
if(CHANNELS >1) {
|
||||
bi = new BufferedImage(DIMENSIONS, DIMENSIONS, BufferedImage.TYPE_INT_RGB); //need to change here based on channels
|
||||
} else {
|
||||
bi = new BufferedImage(DIMENSIONS, DIMENSIONS, BufferedImage.TYPE_BYTE_GRAY); //need to change here based on channels
|
||||
}
|
||||
final int imageSize = DIMENSIONS * DIMENSIONS;
|
||||
final int offset = batchElement * imageSize;
|
||||
int pxl = offset * CHANNELS; //where to start in the INDArray
|
||||
|
||||
//Image in NCHW - channels first format
|
||||
for (int c = 0; c < CHANNELS; c++) { //step through the num channels for each pixel
|
||||
for (int y = 0; y < DIMENSIONS; y++) { // step through the columns x
|
||||
for (int x = 0; x < DIMENSIONS; x++) { //step through the rows y
|
||||
float f_pxl = tensor.getFloat(pxl) * COLORSPACE;
|
||||
if(isOrig) log.trace("'{}.' Image (x,y,c): ({}, {}, {}) with INDArray with index {} and value '{}'", batchElement, x, y, c, pxl, f_pxl);
|
||||
bi.getRaster().setSample(x, y, c, f_pxl);
|
||||
pxl++; //next item in INDArray
|
||||
}
|
||||
}
|
||||
}
|
||||
ImageIcon orig = new ImageIcon(bi);
|
||||
Image imageScaled = orig.getImage().getScaledInstance((4 * DIMENSIONS), (4 * DIMENSIONS), Image.SCALE_DEFAULT);
|
||||
ImageIcon scaled = new ImageIcon(imageScaled);
|
||||
if(! isOrig) saveImage(imageScaled, batchElement, isOrig);
|
||||
return new JLabel(scaled);
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
private static void saveImage(Image image, int batchElement, boolean isOrig) {
|
||||
String outputDirectory = OUTPUT_DIR; // Set the output directory where the images will be saved
|
||||
|
||||
try {
|
||||
// Save the images to disk
|
||||
saveImage(image, outputDirectory, UUID.randomUUID().toString()+".png");
|
||||
|
||||
log.debug("Images saved successfully.");
|
||||
} catch (IOException e) {
|
||||
log.error("Error saving the images: {}", e.getMessage());
|
||||
}
|
||||
}
|
||||
private static void saveImage(Image image, String outputDirectory, String fileName) throws IOException {
|
||||
File directory = new File(outputDirectory);
|
||||
if (!directory.exists()) {
|
||||
directory.mkdir();
|
||||
}
|
||||
|
||||
File outputFile = new File(directory, fileName);
|
||||
ImageIO.write(imageToBufferedImage(image), "png", outputFile);
|
||||
}
|
||||
|
||||
public static BufferedImage imageToBufferedImage(Image image) {
|
||||
if (image instanceof BufferedImage) {
|
||||
return (BufferedImage) image;
|
||||
}
|
||||
|
||||
// Create a buffered image with the same dimensions and transparency as the original image
|
||||
BufferedImage bufferedImage;
|
||||
if (CHANNELS > 1) {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_INT_ARGB);
|
||||
} else {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_BYTE_GRAY);
|
||||
}
|
||||
|
||||
// Draw the original image onto the buffered image
|
||||
Graphics2D g2d = bufferedImage.createGraphics();
|
||||
g2d.drawImage(image, 0, 0, null);
|
||||
g2d.dispose();
|
||||
|
||||
return bufferedImage;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
private static void updateGen(MultiLayerNetwork gen, MultiLayerNetwork gan) {
|
||||
for (int i = 0; i < gen.getLayers().length; i++) {
|
||||
gen.getLayer(i).setParams(gan.getLayer(i).getParams());
|
||||
|
@ -341,4 +331,41 @@ public class App2 {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
void testDiskriminator() throws IOException {
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(App2Config.discriminator());
|
||||
net.init();
|
||||
net.addTrainingListeners(new PerformanceListener(10, true, "DIS"));
|
||||
DataSetIterator trainData = new MnistDataSetIterator(BATCHSIZE, true, 42);
|
||||
|
||||
DataSet data = null;
|
||||
for(int i=0;i<App2Config.EPOCHS;i++) {
|
||||
log.info("Epoch {}", i);
|
||||
data = new DataSet(Nd4j.rand(BATCHSIZE, 784), label_fake);
|
||||
while (trainData.hasNext()) {
|
||||
INDArray real = trainData.next().getFeatures();
|
||||
long[] l = new long[]{BATCHSIZE, real.length() / BATCHSIZE};
|
||||
INDArray fake = Nd4j.rand(l );
|
||||
|
||||
DataSet realSet = new DataSet(real, label_real);
|
||||
DataSet fakeSet = new DataSet(fake, label_fake);
|
||||
if(real.length()/BATCHSIZE!=784) break;
|
||||
data = DataSet.merge(Arrays.asList(data, realSet, fakeSet));
|
||||
|
||||
}
|
||||
net.fit(data);
|
||||
trainData.reset();
|
||||
}
|
||||
|
||||
long[] l = new long[]{BATCHSIZE, 784};
|
||||
INDArray fake = Nd4j.rand(l );
|
||||
DataSet fakeSet = new DataSet(fake, label_fake);
|
||||
data = DataSet.merge(Arrays.asList(data, fakeSet));
|
||||
ExistingDataSetIterator iter = new ExistingDataSetIterator(data);
|
||||
Evaluation eval = net.evaluate(iter);
|
||||
log.info( "\n" + eval.confusionMatrix());
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -36,10 +36,17 @@ import org.nd4j.linalg.lossfunctions.LossFunctions;
|
|||
public class App2Config {
|
||||
|
||||
public static final int INPUT = 100;
|
||||
public static final int BATCHSIZE=150;
|
||||
public static final int X_DIM = 28;
|
||||
public static final int y_DIM = 28;
|
||||
public static final int Y_DIM = 28;
|
||||
public static final int CHANNELS = 1;
|
||||
public static final int EPOCHS = 50;
|
||||
public static final IUpdater UPDATER = Adam.builder().learningRate(0.0002).beta1(0.5).build();
|
||||
public static final IUpdater UPDATER_DIS = Adam.builder().learningRate(0.02).beta1(0.5).build();
|
||||
public static final boolean SHOW_GENERATED = true;
|
||||
public static final float COLORSPACE = 255f;
|
||||
|
||||
final static int OUTPUT_PER_PANEL = 10;
|
||||
|
||||
static LayerConfiguration[] genLayerConfig() {
|
||||
return new LayerConfiguration[] {
|
||||
|
@ -158,7 +165,7 @@ public class App2Config {
|
|||
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
|
||||
.gradientNormalizationThreshold(100)
|
||||
.seed(42)
|
||||
.updater(UPDATER)
|
||||
.updater(UPDATER_DIS)
|
||||
.weightInit(WeightInit.XAVIER)
|
||||
// .weightNoise(new WeightNoise(new NormalDistribution(0.5, 0.5)))
|
||||
.weightNoise(null)
|
||||
|
|
|
@ -0,0 +1,160 @@
|
|||
/*
|
||||
*
|
||||
* ******************************************************************************
|
||||
* *
|
||||
* * This program and the accompanying materials are made available under the
|
||||
* * terms of the Apache License, Version 2.0 which is available at
|
||||
* * https://www.apache.org/licenses/LICENSE-2.0.
|
||||
* *
|
||||
* * See the NOTICE file distributed with this work for additional
|
||||
* * information regarding copyright ownership.
|
||||
* * Unless required by applicable law or agreed to in writing, software
|
||||
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* * License for the specific language governing permissions and limitations
|
||||
* * under the License.
|
||||
* *
|
||||
* * SPDX-License-Identifier: Apache-2.0
|
||||
* *****************************************************************************
|
||||
*
|
||||
*/
|
||||
|
||||
package net.brutex.gan;
|
||||
|
||||
import com.google.inject.Singleton;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
|
||||
import javax.imageio.ImageIO;
|
||||
import javax.swing.*;
|
||||
import java.awt.*;
|
||||
import java.awt.color.ColorSpace;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.util.UUID;
|
||||
|
||||
import static net.brutex.gan.App2.OUTPUT_DIR;
|
||||
import static net.brutex.gan.App2Config.*;
|
||||
@Slf4j
|
||||
@Singleton
|
||||
public class App2Display {
|
||||
|
||||
private final JFrame frame = new JFrame();
|
||||
private final App2GUI display = new App2GUI();
|
||||
|
||||
private final JPanel real_panel;
|
||||
private final JPanel fake_panel;
|
||||
|
||||
|
||||
public App2Display() {
|
||||
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
|
||||
frame.setContentPane(display.getOverall_panel());
|
||||
frame.setMinimumSize(new Dimension(300, 20));
|
||||
frame.pack();
|
||||
frame.setVisible(true);
|
||||
real_panel = display.getReal_panel();
|
||||
fake_panel = display.getGen_panel();
|
||||
real_panel.setLayout(new GridLayout(4, 4, 8, 8));
|
||||
fake_panel.setLayout(new GridLayout(4, 4, 8, 8));
|
||||
}
|
||||
|
||||
public void visualize(INDArray[] samples, int batchElements, boolean isOrig) {
|
||||
for (INDArray sample : samples) {
|
||||
for(int i = 0; i<batchElements; i++) {
|
||||
final Image img = this.getImage(sample, i, isOrig);
|
||||
final ImageIcon icon = new ImageIcon(img);
|
||||
if(isOrig) {
|
||||
if(real_panel.getComponents().length>=OUTPUT_PER_PANEL) {
|
||||
real_panel.remove(0);
|
||||
}
|
||||
real_panel.add(new JLabel(icon));
|
||||
} else {
|
||||
if(fake_panel.getComponents().length>=OUTPUT_PER_PANEL) {
|
||||
fake_panel.remove(0);
|
||||
}
|
||||
fake_panel.add(new JLabel(icon));
|
||||
}
|
||||
}
|
||||
}
|
||||
frame.pack();
|
||||
frame.repaint();
|
||||
}
|
||||
|
||||
public Image getImage(INDArray tensor, int batchElement, boolean isOrig) {
|
||||
final BufferedImage bi;
|
||||
if(CHANNELS >1) {
|
||||
bi = new BufferedImage(X_DIM, Y_DIM, BufferedImage.TYPE_INT_RGB); //need to change here based on channels
|
||||
} else {
|
||||
bi = new BufferedImage(X_DIM, Y_DIM, BufferedImage.TYPE_BYTE_GRAY); //need to change here based on channels
|
||||
}
|
||||
final int imageSize = X_DIM * Y_DIM;
|
||||
final int offset = batchElement * imageSize;
|
||||
int pxl = offset * CHANNELS; //where to start in the INDArray
|
||||
|
||||
//Image in NCHW - channels first format
|
||||
for (int c = 0; c < CHANNELS; c++) { //step through the num channels for each pixel
|
||||
for (int y = 0; y < X_DIM; y++) { // step through the columns x
|
||||
for (int x = 0; x < Y_DIM; x++) { //step through the rows y
|
||||
float f_pxl = tensor.getFloat(pxl) * COLORSPACE;
|
||||
if(isOrig) log.trace("'{}.'{} Image (x,y,c): ({}, {}, {}) with INDArray with index {} and value '{}'", batchElement, isOrig ? "Real" : "Fake", x, y, c, pxl, f_pxl);
|
||||
bi.getRaster().setSample(x, y, c, f_pxl);
|
||||
pxl++; //next item in INDArray
|
||||
}
|
||||
}
|
||||
}
|
||||
ImageIcon orig = new ImageIcon(bi);
|
||||
Image imageScaled = orig.getImage().getScaledInstance((4 * X_DIM), (4 * Y_DIM), Image.SCALE_DEFAULT);
|
||||
ImageIcon scaled = new ImageIcon(imageScaled);
|
||||
//if(! isOrig) saveImage(imageScaled, batchElement, isOrig);
|
||||
return imageScaled;
|
||||
|
||||
}
|
||||
|
||||
private static void saveImage(Image image, int batchElement, boolean isOrig) {
|
||||
String outputDirectory = OUTPUT_DIR; // Set the output directory where the images will be saved
|
||||
|
||||
try {
|
||||
// Save the images to disk
|
||||
saveImage(image, outputDirectory, UUID.randomUUID().toString()+".png");
|
||||
|
||||
log.debug("Images saved successfully.");
|
||||
} catch (IOException e) {
|
||||
log.error("Error saving the images: {}", e.getMessage());
|
||||
}
|
||||
}
|
||||
private static void saveImage(Image image, String outputDirectory, String fileName) throws IOException {
|
||||
File directory = new File(outputDirectory);
|
||||
if (!directory.exists()) {
|
||||
directory.mkdir();
|
||||
}
|
||||
|
||||
File outputFile = new File(directory, fileName);
|
||||
ImageIO.write(imageToBufferedImage(image), "png", outputFile);
|
||||
}
|
||||
|
||||
public static BufferedImage imageToBufferedImage(Image image) {
|
||||
if (image instanceof BufferedImage) {
|
||||
return (BufferedImage) image;
|
||||
}
|
||||
|
||||
// Create a buffered image with the same dimensions and transparency as the original image
|
||||
BufferedImage bufferedImage;
|
||||
if (CHANNELS > 1) {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_INT_ARGB);
|
||||
} else {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_BYTE_GRAY);
|
||||
}
|
||||
|
||||
// Draw the original image onto the buffered image
|
||||
Graphics2D g2d = bufferedImage.createGraphics();
|
||||
g2d.drawImage(image, 0, 0, null);
|
||||
g2d.dispose();
|
||||
|
||||
return bufferedImage;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,61 @@
|
|||
package net.brutex.gan;
|
||||
|
||||
import javax.swing.JPanel;
|
||||
import javax.swing.JSplitPane;
|
||||
import javax.swing.JLabel;
|
||||
import java.awt.BorderLayout;
|
||||
|
||||
public class App2GUI extends JPanel {
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
private static final long serialVersionUID = 1L;
|
||||
private JPanel overall_panel;
|
||||
private JPanel real_panel;
|
||||
private JPanel gen_panel;
|
||||
|
||||
/**
|
||||
* Create the panel.
|
||||
*/
|
||||
public App2GUI() {
|
||||
|
||||
overall_panel = new JPanel();
|
||||
add(overall_panel);
|
||||
|
||||
JSplitPane splitPane = new JSplitPane();
|
||||
overall_panel.add(splitPane);
|
||||
|
||||
JPanel p1 = new JPanel();
|
||||
splitPane.setLeftComponent(p1);
|
||||
p1.setLayout(new BorderLayout(0, 0));
|
||||
|
||||
JLabel lblNewLabel = new JLabel("Generator");
|
||||
p1.add(lblNewLabel, BorderLayout.NORTH);
|
||||
|
||||
gen_panel = new JPanel();
|
||||
p1.add(gen_panel, BorderLayout.SOUTH);
|
||||
|
||||
JPanel p2 = new JPanel();
|
||||
splitPane.setRightComponent(p2);
|
||||
p2.setLayout(new BorderLayout(0, 0));
|
||||
|
||||
JLabel lblNewLabel_1 = new JLabel("Real");
|
||||
p2.add(lblNewLabel_1, BorderLayout.NORTH);
|
||||
|
||||
real_panel = new JPanel();
|
||||
p2.add(real_panel, BorderLayout.SOUTH);
|
||||
|
||||
}
|
||||
|
||||
|
||||
public JPanel getOverall_panel() {
|
||||
return overall_panel;
|
||||
}
|
||||
public JPanel getReal_panel() {
|
||||
return real_panel;
|
||||
}
|
||||
public JPanel getGen_panel() {
|
||||
return gen_panel;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue