243 lines
9.3 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.params;
import lombok.val;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.deeplearning4j.nn.weights.WeightInitUtil;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.*;
/**
* Static weight initializer with just a weight matrix and a bias
* @author Adam Gibson
*/
public class DefaultParamInitializer implements ParamInitializer {
private static final DefaultParamInitializer INSTANCE = new DefaultParamInitializer();
public static DefaultParamInitializer getInstance() {
return INSTANCE;
}
public final static String WEIGHT_KEY = "W";
public final static String BIAS_KEY = "b";
public final static String GAIN_KEY = "g";
@Override
public long numParams(NeuralNetConfiguration conf) {
return numParams(conf.getLayer());
}
@Override
public long numParams(Layer l) {
FeedForwardLayer layerConf = (FeedForwardLayer) l;
val nIn = layerConf.getNIn();
val nOut = layerConf.getNOut();
return (nIn * nOut + (hasBias(l) ? nOut : 0) + (hasLayerNorm(l) ? nOut : 0)); //weights + bias + gain
}
@Override
public List<String> paramKeys(Layer layer) {
final ArrayList<String> keys = new ArrayList<>(3);
keys.addAll(weightKeys(layer));
keys.addAll(biasKeys(layer));
return keys;
}
@Override
public List<String> weightKeys(Layer layer) {
if(hasLayerNorm(layer)){
return Arrays.asList(WEIGHT_KEY, GAIN_KEY);
}
return Collections.singletonList(WEIGHT_KEY);
}
@Override
public List<String> biasKeys(Layer layer) {
if(hasBias(layer)){
return Collections.singletonList(BIAS_KEY);
} else {
return Collections.emptyList();
}
}
@Override
public boolean isWeightParam(Layer layer, String key) {
return WEIGHT_KEY.equals(key) || (hasLayerNorm(layer) && GAIN_KEY.equals(key));
}
@Override
public boolean isBiasParam(Layer layer, String key) {
return BIAS_KEY.equals(key);
}
@Override
public Map<String, INDArray> init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
if (!(conf.getLayer() instanceof org.deeplearning4j.nn.conf.layers.FeedForwardLayer))
throw new IllegalArgumentException("unsupported layer type: " + conf.getLayer().getClass().getName());
Map<String, INDArray> params = Collections.synchronizedMap(new LinkedHashMap<String, INDArray>());
val length = numParams(conf);
if (paramsView.length() != length)
throw new IllegalStateException(
"Expected params view of length " + length + ", got length " + paramsView.length());
org.deeplearning4j.nn.conf.layers.FeedForwardLayer layerConf =
(org.deeplearning4j.nn.conf.layers.FeedForwardLayer) conf.getLayer();
val nIn = layerConf.getNIn();
val nOut = layerConf.getNOut();
val nWeightParams = nIn * nOut;
INDArray weightView = paramsView.get(NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(0, nWeightParams));
params.put(WEIGHT_KEY, createWeightMatrix(conf, weightView, initializeParams));
conf.addVariable(WEIGHT_KEY);
long offset = nWeightParams;
if(hasBias(layerConf)){
INDArray biasView = paramsView.get(NDArrayIndex.interval(0,0,true),
NDArrayIndex.interval(offset, offset + nOut));
params.put(BIAS_KEY, createBias(conf, biasView, initializeParams));
conf.addVariable(BIAS_KEY);
offset += nOut;
}
if(hasLayerNorm(layerConf)){
INDArray gainView = paramsView.get(NDArrayIndex.interval(0,0,true),
NDArrayIndex.interval(offset, offset + nOut));
params.put(GAIN_KEY, createGain(conf, gainView, initializeParams));
conf.addVariable(GAIN_KEY);
}
return params;
}
@Override
public Map<String, INDArray> getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
org.deeplearning4j.nn.conf.layers.FeedForwardLayer layerConf =
(org.deeplearning4j.nn.conf.layers.FeedForwardLayer) conf.getLayer();
val nIn = layerConf.getNIn();
val nOut = layerConf.getNOut();
val nWeightParams = nIn * nOut;
INDArray weightGradientView = gradientView.get(NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(0, nWeightParams))
.reshape('f', nIn, nOut);
Map<String, INDArray> out = new LinkedHashMap<>();
out.put(WEIGHT_KEY, weightGradientView);
long offset = nWeightParams;
if(hasBias(layerConf)){
INDArray biasView = gradientView.get(NDArrayIndex.interval(0,0,true),
NDArrayIndex.interval(offset, offset + nOut)); //Already a row vector
out.put(BIAS_KEY, biasView);
offset += nOut;
}
if(hasLayerNorm(layerConf)){
INDArray gainView = gradientView.get(NDArrayIndex.interval(0,0,true),
NDArrayIndex.interval(offset, offset + nOut)); //Already a row vector
out.put(GAIN_KEY, gainView);
}
return out;
}
protected INDArray createBias(NeuralNetConfiguration conf, INDArray biasParamView, boolean initializeParameters) {
org.deeplearning4j.nn.conf.layers.FeedForwardLayer layerConf =
(org.deeplearning4j.nn.conf.layers.FeedForwardLayer) conf.getLayer();
return createBias(layerConf.getNOut(), layerConf.getBiasInit(), biasParamView, initializeParameters);
}
protected INDArray createBias(long nOut, double biasInit, INDArray biasParamView, boolean initializeParameters) {
if (initializeParameters) {
biasParamView.assign(biasInit);
}
return biasParamView;
}
protected INDArray createGain(NeuralNetConfiguration conf, INDArray gainParamView, boolean initializeParameters) {
org.deeplearning4j.nn.conf.layers.FeedForwardLayer layerConf =
(org.deeplearning4j.nn.conf.layers.FeedForwardLayer) conf.getLayer();
return createGain(layerConf.getNOut(), layerConf.getGainInit(), gainParamView, initializeParameters);
}
protected INDArray createGain(long nOut, double gainInit, INDArray gainParamView, boolean initializeParameters) {
if (initializeParameters) {
gainParamView.assign(gainInit);
}
return gainParamView;
}
protected INDArray createWeightMatrix(NeuralNetConfiguration conf, INDArray weightParamView,
boolean initializeParameters) {
org.deeplearning4j.nn.conf.layers.FeedForwardLayer layerConf =
(org.deeplearning4j.nn.conf.layers.FeedForwardLayer) conf.getLayer();
if (initializeParameters) {
return createWeightMatrix(layerConf.getNIn(), layerConf.getNOut(), layerConf.getWeightInitFn(),
weightParamView, true);
} else {
return createWeightMatrix(layerConf.getNIn(), layerConf.getNOut(), null, weightParamView, false);
}
}
protected INDArray createWeightMatrix(long nIn, long nOut, IWeightInit weightInit,
INDArray weightParamView, boolean initializeParameters) {
val shape = new long[] {nIn, nOut};
if (initializeParameters) {
INDArray ret = weightInit.init(nIn, //Fan in
nOut, //Fan out
shape, IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, weightParamView);
return ret;
} else {
return WeightInitUtil.reshapeWeights(shape, weightParamView);
}
}
protected boolean hasBias(Layer layer){
if(layer instanceof BaseOutputLayer ) {
return ((BaseOutputLayer) layer).hasBias();
} else if(layer instanceof DenseLayer){
return ((DenseLayer)layer).hasBias();
} else if(layer instanceof EmbeddingLayer){
return ((EmbeddingLayer)layer).hasBias();
} else if(layer instanceof EmbeddingSequenceLayer){
return ((EmbeddingSequenceLayer)layer).hasBias();
}
return true;
}
protected boolean hasLayerNorm(Layer layer){
if(layer instanceof DenseLayer){
return ((DenseLayer) layer).hasLayerNorm();
}
return false;
}
}