2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 31.08.2018
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/histogramFixedWidth.h>
|
|
|
|
#include <cuda_exception.h>
|
2019-08-26 18:37:05 +02:00
|
|
|
#include <PointersManager.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace helpers {
|
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
|
|
__global__ static void histogramFixedWidthCuda( const void* vx, const Nd4jLong* xShapeInfo,
|
|
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
|
|
const T leftEdge, const T rightEdge) {
|
|
|
|
|
|
|
|
const T* x = reinterpret_cast<const T*>(vx);
|
|
|
|
Nd4jLong* z = reinterpret_cast<Nd4jLong*>(vz);
|
|
|
|
|
|
|
|
__shared__ Nd4jLong xLen, zLen, totalThreads, nbins;
|
|
|
|
__shared__ T binWidth, secondEdge, lastButOneEdge;
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
|
|
|
|
xLen = shape::length(xShapeInfo);
|
|
|
|
nbins = shape::length(zShapeInfo); // nbins = zLen
|
|
|
|
totalThreads = gridDim.x * blockDim.x;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
binWidth = (rightEdge - leftEdge ) / nbins;
|
|
|
|
secondEdge = leftEdge + binWidth;
|
|
|
|
lastButOneEdge = rightEdge - binWidth;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
for (Nd4jLong i = tid; i < xLen; i += totalThreads) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
const T value = x[shape::getIndexOffset(i, xShapeInfo, xLen)];
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
Nd4jLong zIndex;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
if(value < secondEdge)
|
|
|
|
zIndex = 0;
|
|
|
|
else if(value >= lastButOneEdge)
|
|
|
|
zIndex = nbins - 1;
|
|
|
|
else
|
|
|
|
zIndex = static_cast<Nd4jLong>((value - leftEdge) / binWidth);
|
|
|
|
|
|
|
|
nd4j::math::atomics::nd4j_atomicAdd(&z[shape::getIndexOffset(zIndex, zShapeInfo, nbins)], 1LL);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-08-26 18:37:05 +02:00
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
|
|
__host__ static void histogramFixedWidthCudaLauncher(const cudaStream_t *stream, const NDArray& input, const NDArray& range, NDArray& output) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
const T leftEdge = range.e<T>(0);
|
|
|
|
const T rightEdge = range.e<T>(1);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-26 18:37:05 +02:00
|
|
|
histogramFixedWidthCuda<T><<<512, MAX_NUM_THREADS / 2, 512, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftEdge, rightEdge);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void histogramFixedWidth(nd4j::LaunchContext* context, const NDArray& input, const NDArray& range, NDArray& output) {
|
|
|
|
|
|
|
|
// firstly initialize output with zeros
|
|
|
|
output.nullify();
|
|
|
|
|
|
|
|
PointersManager manager(context, "histogramFixedWidth");
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({&output}, {&input});
|
|
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), histogramFixedWidthCudaLauncher, (context->getCudaStream(), input, range, output), LIBND4J_TYPES);
|
|
|
|
NDArray::registerSpecialUse({&output}, {&input});
|
|
|
|
|
|
|
|
manager.synchronize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// template <typename T>
|
|
|
|
// __global__ static void copyBuffers(Nd4jLong* destination, void const* source, Nd4jLong* sourceShape, Nd4jLong bufferLength) {
|
|
|
|
// const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
|
|
|
|
// const auto step = gridDim.x * blockDim.x;
|
|
|
|
// for (int t = tid; t < bufferLength; t += step) {
|
|
|
|
// destination[t] = reinterpret_cast<T const*>(source)[shape::getIndexOffset(t, sourceShape, bufferLength)];
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// template <typename T>
|
|
|
|
// __global__ static void returnBuffers(void* destination, Nd4jLong const* source, Nd4jLong* destinationShape, Nd4jLong bufferLength) {
|
|
|
|
// const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
|
|
|
|
// const auto step = gridDim.x * blockDim.x;
|
|
|
|
// for (int t = tid; t < bufferLength; t += step) {
|
|
|
|
// reinterpret_cast<T*>(destination)[shape::getIndexOffset(t, destinationShape, bufferLength)] = source[t];
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// template <typename T>
|
|
|
|
// static __global__ void histogramFixedWidthKernel(void* outputBuffer, Nd4jLong outputLength, void const* inputBuffer, Nd4jLong* inputShape, Nd4jLong inputLength, double const leftEdge, double binWidth, double secondEdge, double lastButOneEdge) {
|
|
|
|
|
|
|
|
// __shared__ T const* x;
|
|
|
|
// __shared__ Nd4jLong* z; // output buffer
|
|
|
|
|
|
|
|
// if (threadIdx.x == 0) {
|
|
|
|
// z = reinterpret_cast<Nd4jLong*>(outputBuffer);
|
|
|
|
// x = reinterpret_cast<T const*>(inputBuffer);
|
|
|
|
// }
|
|
|
|
// __syncthreads();
|
|
|
|
// auto tid = blockIdx.x * gridDim.x + threadIdx.x;
|
|
|
|
// auto step = blockDim.x * gridDim.x;
|
|
|
|
|
|
|
|
// for(auto i = tid; i < inputLength; i += step) {
|
|
|
|
|
|
|
|
// const T value = x[shape::getIndexOffset(i, inputShape, inputLength)];
|
|
|
|
// Nd4jLong currInd = static_cast<Nd4jLong>((value - leftEdge) / binWidth);
|
|
|
|
|
|
|
|
// if(value < secondEdge)
|
|
|
|
// currInd = 0;
|
|
|
|
// else if(value >= lastButOneEdge)
|
|
|
|
// currInd = outputLength - 1;
|
|
|
|
// nd4j::math::atomics::nd4j_atomicAdd(&z[currInd], 1LL);
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
|
|
// template <typename T>
|
|
|
|
// void histogramFixedWidth_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& range, NDArray& output) {
|
|
|
|
// const int nbins = output.lengthOf();
|
|
|
|
// auto stream = context->getCudaStream();
|
|
|
|
// // firstly initialize output with zeros
|
|
|
|
// //if(output.ews() == 1)
|
|
|
|
// // memset(output.buffer(), 0, nbins * output.sizeOfT());
|
|
|
|
// //else
|
|
|
|
// output.assign(0);
|
|
|
|
// if (!input.isActualOnDeviceSide())
|
|
|
|
// input.syncToDevice();
|
|
|
|
|
|
|
|
// const double leftEdge = range.e<double>(0);
|
|
|
|
// const double rightEdge = range.e<double>(1);
|
|
|
|
|
|
|
|
// const double binWidth = (rightEdge - leftEdge ) / nbins;
|
|
|
|
// const double secondEdge = leftEdge + binWidth;
|
|
|
|
// double lastButOneEdge = rightEdge - binWidth;
|
|
|
|
// Nd4jLong* outputBuffer;
|
|
|
|
// cudaError_t err = cudaMalloc(&outputBuffer, output.lengthOf() * sizeof(Nd4jLong));
|
|
|
|
// if (err != 0)
|
|
|
|
// throw cuda_exception::build("helpers::histogramFixedWidth: Cannot allocate memory for output", err);
|
|
|
|
// copyBuffers<Nd4jLong ><<<256, 512, 8192, *stream>>>(outputBuffer, output.getSpecialBuffer(), output.getSpecialShapeInfo(), output.lengthOf());
|
|
|
|
// histogramFixedWidthKernel<T><<<256, 512, 8192, *stream>>>(outputBuffer, output.lengthOf(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), input.lengthOf(), leftEdge, binWidth, secondEdge, lastButOneEdge);
|
|
|
|
// returnBuffers<Nd4jLong><<<256, 512, 8192, *stream>>>(output.specialBuffer(), outputBuffer, output.specialShapeInfo(), output.lengthOf());
|
|
|
|
// //cudaSyncStream(*stream);
|
|
|
|
// err = cudaFree(outputBuffer);
|
|
|
|
// if (err != 0)
|
|
|
|
// throw cuda_exception::build("helpers::histogramFixedWidth: Cannot deallocate memory for output buffer", err);
|
|
|
|
// output.tickWriteDevice();
|
|
|
|
// //#pragma omp parallel for schedule(guided)
|
|
|
|
// // for(Nd4jLong i = 0; i < input.lengthOf(); ++i) {
|
|
|
|
// //
|
|
|
|
// // const T value = input.e<T>(i);
|
|
|
|
// //
|
|
|
|
// // if(value < secondEdge)
|
|
|
|
// //#pragma omp critical
|
|
|
|
// // output.p<Nd4jLong>(0, output.e<Nd4jLong>(0) + 1);
|
|
|
|
// // else if(value >= lastButOneEdge)
|
|
|
|
// //#pragma omp critical
|
|
|
|
// // output.p<Nd4jLong>(nbins-1, output.e<Nd4jLong>(nbins-1) + 1);
|
|
|
|
// // else {
|
|
|
|
// // Nd4jLong currInd = static_cast<Nd4jLong>((value - leftEdge) / binWidth);
|
|
|
|
// //#pragma omp critical
|
|
|
|
// // output.p<Nd4jLong>(currInd, output.e<Nd4jLong>(currInd) + 1);
|
|
|
|
// // }
|
|
|
|
// // }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// void histogramFixedWidth(nd4j::LaunchContext * context, const NDArray& input, const NDArray& range, NDArray& output) {
|
|
|
|
// BUILD_SINGLE_SELECTOR(input.dataType(), histogramFixedWidth_, (context, input, range, output), LIBND4J_TYPES);
|
|
|
|
// }
|
|
|
|
// BUILD_SINGLE_TEMPLATE(template void histogramFixedWidth_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& range, NDArray& output), LIBND4J_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|