195 lines
8.7 KiB
Java
195 lines
8.7 KiB
Java
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
package org.deeplearning4j.nn.params;
|
||
|
|
||
|
import lombok.val;
|
||
|
import org.deeplearning4j.nn.api.ParamInitializer;
|
||
|
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||
|
import org.deeplearning4j.nn.conf.layers.LSTM;
|
||
|
import org.deeplearning4j.nn.conf.layers.Layer;
|
||
|
import org.deeplearning4j.nn.weights.IWeightInit;
|
||
|
import org.deeplearning4j.nn.weights.WeightInitUtil;
|
||
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||
|
import org.nd4j.linalg.factory.Nd4j;
|
||
|
import org.nd4j.linalg.indexing.INDArrayIndex;
|
||
|
import org.nd4j.linalg.indexing.NDArrayIndex;
|
||
|
|
||
|
import java.util.*;
|
||
|
|
||
|
/**LSTM Parameter initializer, for LSTM based on
|
||
|
* Graves: Supervised Sequence Labelling with Recurrent Neural Networks
|
||
|
* <a href="http://www.cs.toronto.edu/~graves/phd.pdf">http://www.cs.toronto.edu/~graves/phd.pdf</a>
|
||
|
*/
|
||
|
public class LSTMParamInitializer implements ParamInitializer {
|
||
|
|
||
|
private static final LSTMParamInitializer INSTANCE = new LSTMParamInitializer();
|
||
|
|
||
|
public static LSTMParamInitializer getInstance() {
|
||
|
return INSTANCE;
|
||
|
}
|
||
|
|
||
|
/** Weights for previous time step -> current time step connections */
|
||
|
public final static String RECURRENT_WEIGHT_KEY = "RW";
|
||
|
public final static String BIAS_KEY = DefaultParamInitializer.BIAS_KEY;
|
||
|
public final static String INPUT_WEIGHT_KEY = DefaultParamInitializer.WEIGHT_KEY;
|
||
|
|
||
|
private static final List<String> LAYER_PARAM_KEYS = Collections.unmodifiableList(
|
||
|
Arrays.asList(INPUT_WEIGHT_KEY, RECURRENT_WEIGHT_KEY, BIAS_KEY));
|
||
|
private static final List<String> WEIGHT_KEYS = Collections.unmodifiableList(
|
||
|
Arrays.asList(INPUT_WEIGHT_KEY, RECURRENT_WEIGHT_KEY));
|
||
|
private static final List<String> BIAS_KEYS = Collections.unmodifiableList(Collections.singletonList(BIAS_KEY));
|
||
|
|
||
|
@Override
|
||
|
public long numParams(NeuralNetConfiguration conf) {
|
||
|
return numParams(conf.getLayer());
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public long numParams(Layer l) {
|
||
|
LSTM layerConf = (LSTM) l;
|
||
|
|
||
|
val nL = layerConf.getNOut(); //i.e., n neurons in this layer
|
||
|
val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer
|
||
|
|
||
|
val nParams = nLast * (4 * nL) //"input" weights
|
||
|
+ nL * (4 * nL) //recurrent weights
|
||
|
+ 4 * nL; //bias
|
||
|
|
||
|
return nParams;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public List<String> paramKeys(Layer layer) {
|
||
|
return LAYER_PARAM_KEYS;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public List<String> weightKeys(Layer layer) {
|
||
|
return WEIGHT_KEYS;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public List<String> biasKeys(Layer layer) {
|
||
|
return BIAS_KEYS;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public boolean isWeightParam(Layer layer, String key) {
|
||
|
return RECURRENT_WEIGHT_KEY.equals(key) || INPUT_WEIGHT_KEY.equals(key);
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public boolean isBiasParam(Layer layer, String key) {
|
||
|
return BIAS_KEY.equals(key);
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public Map<String, INDArray> init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
|
||
|
Map<String, INDArray> params = Collections.synchronizedMap(new LinkedHashMap<String, INDArray>());
|
||
|
org.deeplearning4j.nn.conf.layers.LSTM layerConf = (org.deeplearning4j.nn.conf.layers.LSTM) conf.getLayer();
|
||
|
double forgetGateInit = layerConf.getForgetGateBiasInit();
|
||
|
|
||
|
val nL = layerConf.getNOut(); //i.e., n neurons in this layer
|
||
|
val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer
|
||
|
|
||
|
conf.addVariable(INPUT_WEIGHT_KEY);
|
||
|
conf.addVariable(RECURRENT_WEIGHT_KEY);
|
||
|
conf.addVariable(BIAS_KEY);
|
||
|
|
||
|
val length = numParams(conf);
|
||
|
if (paramsView.length() != length)
|
||
|
throw new IllegalStateException(
|
||
|
"Expected params view of length " + length + ", got length " + paramsView.length());
|
||
|
|
||
|
val nParamsIn = nLast * (4 * nL);
|
||
|
val nParamsRecurrent = nL * (4 * nL);
|
||
|
val nBias = 4 * nL;
|
||
|
INDArray inputWeightView = paramsView.get(NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(0, nParamsIn));
|
||
|
INDArray recurrentWeightView = paramsView.get(NDArrayIndex.interval(0,0,true),
|
||
|
NDArrayIndex.interval(nParamsIn, nParamsIn + nParamsRecurrent));
|
||
|
INDArray biasView = paramsView.get(NDArrayIndex.interval(0,0,true),
|
||
|
NDArrayIndex.interval(nParamsIn + nParamsRecurrent, nParamsIn + nParamsRecurrent + nBias));
|
||
|
|
||
|
if (initializeParams) {
|
||
|
val fanIn = nL;
|
||
|
val fanOut = nLast + nL;
|
||
|
val inputWShape = new long[] {nLast, 4 * nL};
|
||
|
val recurrentWShape = new long[] {nL, 4 * nL};
|
||
|
|
||
|
IWeightInit rwInit;
|
||
|
if(layerConf.getWeightInitFnRecurrent() != null){
|
||
|
rwInit = layerConf.getWeightInitFnRecurrent();
|
||
|
} else {
|
||
|
rwInit = layerConf.getWeightInitFn();
|
||
|
}
|
||
|
|
||
|
params.put(INPUT_WEIGHT_KEY, layerConf.getWeightInitFn().init(fanIn, fanOut, inputWShape,
|
||
|
IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, inputWeightView));
|
||
|
params.put(RECURRENT_WEIGHT_KEY, rwInit.init(fanIn, fanOut, recurrentWShape, IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, recurrentWeightView));
|
||
|
biasView.put(new INDArrayIndex[] {NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(nL, 2 * nL)},
|
||
|
Nd4j.valueArrayOf(new long[]{1, nL}, forgetGateInit)); //Order: input, forget, output, input modulation, i.e., IFOG}
|
||
|
/*The above line initializes the forget gate biases to specified value.
|
||
|
* See Sutskever PhD thesis, pg19:
|
||
|
* "it is important for [the forget gate activations] to be approximately 1 at the early stages of learning,
|
||
|
* which is accomplished by initializing [the forget gate biases] to a large value (such as 5). If it is
|
||
|
* not done, it will be harder to learn long range dependencies because the smaller values of the forget
|
||
|
* gates will create a vanishing gradients problem."
|
||
|
* http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
|
||
|
*/
|
||
|
params.put(BIAS_KEY, biasView);
|
||
|
} else {
|
||
|
params.put(INPUT_WEIGHT_KEY, WeightInitUtil.reshapeWeights(new long[] {nLast, 4 * nL}, inputWeightView));
|
||
|
params.put(RECURRENT_WEIGHT_KEY,
|
||
|
WeightInitUtil.reshapeWeights(new long[] {nL, 4 * nL}, recurrentWeightView));
|
||
|
params.put(BIAS_KEY, biasView);
|
||
|
}
|
||
|
|
||
|
return params;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public Map<String, INDArray> getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
|
||
|
org.deeplearning4j.nn.conf.layers.LSTM layerConf = (org.deeplearning4j.nn.conf.layers.LSTM) conf.getLayer();
|
||
|
|
||
|
val nL = layerConf.getNOut(); //i.e., n neurons in this layer
|
||
|
val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer
|
||
|
|
||
|
val length = numParams(conf);
|
||
|
if (gradientView.length() != length)
|
||
|
throw new IllegalStateException(
|
||
|
"Expected gradient view of length " + length + ", got length " + gradientView.length());
|
||
|
|
||
|
val nParamsIn = nLast * (4 * nL);
|
||
|
val nParamsRecurrent = nL * (4 * nL);
|
||
|
val nBias = 4 * nL;
|
||
|
INDArray inputWeightGradView = gradientView.get(NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(0, nParamsIn))
|
||
|
.reshape('f', nLast, 4 * nL);
|
||
|
INDArray recurrentWeightGradView = gradientView
|
||
|
.get(NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(nParamsIn, nParamsIn + nParamsRecurrent))
|
||
|
.reshape('f', nL, 4 * nL);
|
||
|
INDArray biasGradView = gradientView.get(NDArrayIndex.interval(0,0,true),
|
||
|
NDArrayIndex.interval(nParamsIn + nParamsRecurrent, nParamsIn + nParamsRecurrent + nBias)); //already a row vector
|
||
|
|
||
|
Map<String, INDArray> out = new LinkedHashMap<>();
|
||
|
out.put(INPUT_WEIGHT_KEY, inputWeightGradView);
|
||
|
out.put(RECURRENT_WEIGHT_KEY, recurrentWeightGradView);
|
||
|
out.put(BIAS_KEY, biasGradView);
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
}
|