2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 20/04/18.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <helpers/DebugHelper.h>
|
|
|
|
#include <NDArray.h>
|
|
|
|
#include <NDArrayFactory.h>
|
|
|
|
#include <ops/declarable/headers/parity_ops.h>
|
|
|
|
#include <helpers/DebugInfo.h>
|
2019-11-13 15:15:18 +01:00
|
|
|
#include <execution/Threads.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
DebugInfo DebugHelper::debugStatistics(NDArray const* input) {
|
|
|
|
DebugInfo info;
|
|
|
|
DebugHelper::retrieveDebugStatistics(&info, input);
|
|
|
|
return info;
|
|
|
|
}
|
|
|
|
void
|
|
|
|
DebugHelper::retrieveDebugStatistics(DebugInfo* info, NDArray const* input) {
|
|
|
|
if (nullptr == info)
|
|
|
|
return;
|
|
|
|
|
|
|
|
info->_minValue = 0.;
|
|
|
|
info->_maxValue = -1;
|
|
|
|
info->_meanValue = 0.;
|
|
|
|
info->_stdDevValue = 1.;
|
|
|
|
info->_zeroCount = 0;
|
|
|
|
info->_positiveCount = 0;
|
|
|
|
info->_negativeCount = 0;
|
|
|
|
info->_infCount = 0;
|
|
|
|
info->_nanCount = 0;
|
|
|
|
if (input->lengthOf() == 1) { // scalar case
|
|
|
|
info->_minValue = input->e<double>(0);
|
|
|
|
info->_maxValue = info->_minValue;
|
|
|
|
info->_meanValue = info->_minValue;
|
|
|
|
info->_stdDevValue = info->_minValue;
|
|
|
|
info->_zeroCount = nd4j::math::nd4j_abs(input->e<double>(0)) > 0.00001? 0: 1;
|
|
|
|
info->_positiveCount = input->e<double>(0) > 0?1:0;
|
|
|
|
info->_negativeCount = input->e<double>(0) < 0?1:0;
|
|
|
|
info->_infCount = nd4j::math::nd4j_isinf(input->e<double>(0));
|
|
|
|
info->_nanCount = nd4j::math::nd4j_isnan(input->e<double>(0));
|
|
|
|
}
|
|
|
|
else if (input->lengthOf() > 0) {
|
|
|
|
// TO DO: here processing for all elements with array
|
|
|
|
auto _minValue = input->e<double>(0);
|
|
|
|
auto _maxValue = input->e<double>(0);
|
|
|
|
auto _meanValue = input->e<double>(0);
|
|
|
|
auto _stdDevValue = 0.; //info->_minValue;
|
|
|
|
auto _zeroCount = nd4j::math::nd4j_abs(input->e<double>(0)) > 0.00001? 0L : 1L;
|
|
|
|
auto _positiveCount = input->e<double>(0) > 0? 1L : 0L;
|
|
|
|
auto _negativeCount = input->e<double>(0) < 0? 1L : 0L;
|
|
|
|
auto _infCount = nd4j::math::nd4j_isinf(input->e<double>(0)) ? 1L : 0L;
|
|
|
|
auto _nanCount = nd4j::math::nd4j_isnan(input->e<double>(0)) ? 1L : 0L;
|
|
|
|
|
2019-07-18 13:13:56 +02:00
|
|
|
PRAGMA_OMP_PARALLEL_FOR_ARGS(schedule(guided) reduction(+:_nanCount,_infCount,_meanValue,_zeroCount,_positiveCount,_negativeCount) reduction(min:_minValue) reduction(max:_maxValue))
|
2019-06-06 14:21:15 +02:00
|
|
|
for (Nd4jLong e = 1; e < input->lengthOf(); e++) {
|
|
|
|
auto current = input->e<double>(e);
|
|
|
|
auto n = e + 1.;
|
|
|
|
// auto delta = current - _meanValue;
|
|
|
|
// auto delta2 = delta * delta;
|
|
|
|
_minValue = nd4j::math::nd4j_min(current, _minValue);
|
|
|
|
_maxValue = nd4j::math::nd4j_max(current, _maxValue);
|
|
|
|
|
|
|
|
_meanValue += current;
|
|
|
|
//_meanValue += delta / n; // this is a perfect formula but not working with omp in this notation
|
|
|
|
//_stdDevValue += delta2 * e / n;
|
|
|
|
|
|
|
|
_zeroCount += nd4j::math::nd4j_abs(current) > 0.00001 ? 0 : 1;
|
|
|
|
_positiveCount += current > 0 ? 1 : 0;
|
|
|
|
_negativeCount += current < 0 ? 1 : 0;
|
|
|
|
_infCount += nd4j::math::nd4j_isinf(current);
|
|
|
|
_nanCount += nd4j::math::nd4j_isnan(current);
|
|
|
|
}
|
|
|
|
*info = {_minValue, _maxValue, _meanValue / input->lengthOf(), _stdDevValue, _zeroCount, _positiveCount, _negativeCount, _infCount, _nanCount};
|
|
|
|
_stdDevValue = 0; //math::nd4j_sqrt<double, double>(info->_stdDevValue / (input->lengthOf() - 1));
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
auto func = PRAGMA_REDUCE_DOUBLE {
|
|
|
|
auto _stdDevValue = 0.0;
|
|
|
|
for (auto e = start; e < stop; e++) {
|
|
|
|
double current = input->e<double>(e);
|
|
|
|
_stdDevValue += (info->_meanValue - current) * (info->_meanValue - current); //info->_minValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
return _stdDevValue;
|
|
|
|
};
|
|
|
|
_stdDevValue = samediff::Threads::parallel_double(func, LAMBDA_AD { return _old + _new; }, 0, input->lengthOf());
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
info->_stdDevValue = math::nd4j_sqrt<double, double>(_stdDevValue / input->lengthOf());
|
|
|
|
|
|
|
|
}
|
|
|
|
// else - no statistics for empty
|
|
|
|
}
|
|
|
|
}
|