2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
#ifndef NDARRAY_CPP
|
|
|
|
#define NDARRAY_CPP
|
|
|
|
|
|
|
|
#include "../NDArray.h"
|
|
|
|
#include "../NDArrayFactory.h"
|
|
|
|
#include "NativeOpExecutioner.h"
|
|
|
|
#include <BroadcastPairwiseConverter.h>
|
|
|
|
#include <memory/Workspace.h>
|
|
|
|
#include <memory/MemoryRegistrator.h>
|
|
|
|
#include <ops.h>
|
|
|
|
#include <ops/gemm.h>
|
|
|
|
#include <pointercast.h>
|
|
|
|
#include <stdexcept>
|
|
|
|
#include <memory>
|
|
|
|
#include <helpers/logger.h>
|
|
|
|
#include <loops/pairwise_transform.h>
|
|
|
|
#include <loops/transform_same.h>
|
|
|
|
#include <loops/random.h>
|
|
|
|
#include <loops/broadcasting.h>
|
|
|
|
#include <indexing/NDIndex.h>
|
|
|
|
#include <indexing/IndicesList.h>
|
|
|
|
#include <helpers/ShapeUtils.h>
|
|
|
|
#include <sstream>
|
|
|
|
#include <helpers/ArrayUtils.h>
|
|
|
|
#include <MmulHelper.h>
|
|
|
|
#include <helpers/threshold.h>
|
|
|
|
#include <exceptions/datatype_exception.h>
|
|
|
|
#include <exceptions/allocation_exception.h>
|
|
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
|
|
|
|
#include <NDArray.hpp>
|
|
|
|
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void* NDArray::platformBuffer() { return buffer(); }
|
|
|
|
void* NDArray::getPlatformBuffer() const { return getBuffer(); }
|
|
|
|
|
|
|
|
Nd4jLong* NDArray::getPlatformShapeInfo() const { return getShapeInfo(); }
|
|
|
|
Nd4jLong* NDArray::platformShapeInfo() { return shapeInfo(); }
|
|
|
|
|
|
|
|
void NDArray::syncToDevice() const { }
|
|
|
|
void NDArray::syncToHost() const { }
|
|
|
|
void NDArray::tickWriteHost() const { }
|
|
|
|
void NDArray::tickWriteDevice() const { }
|
|
|
|
void NDArray::tickReadHost() const { }
|
|
|
|
void NDArray::tickReadDevice() const { }
|
|
|
|
void NDArray::tickBothActual() const { }
|
2019-06-15 13:34:34 +02:00
|
|
|
bool NDArray::isActualOnHostSide() const { return true; }
|
|
|
|
bool NDArray::isActualOnDeviceSide() const { return true; }
|
2019-06-06 14:21:15 +02:00
|
|
|
void NDArray::makeBothBuffersActual() const { }
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
2019-12-20 20:35:39 +01:00
|
|
|
void NDArray::fillAsTriangular(const float val, int lower, int upper, NDArray& target, const char direction) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
if (isS())
|
|
|
|
throw std::runtime_error("NDArray::fillArrayAsTriangular: you can't use this method on String array!");
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
if(!isSameShape(target) && !(rankOf() == 1 && target.rankOf() == 2 && sizeAt(0) == target.sizeAt(0) && sizeAt(0) == target.sizeAt(1)))
|
2019-06-06 14:21:15 +02:00
|
|
|
throw std::string("NDArray::fillArrayAsTriangular method: wrong shape of target array !");
|
|
|
|
|
|
|
|
if (direction == 'u')
|
2019-12-20 20:35:39 +01:00
|
|
|
lower = -target.sizeAt(-2);
|
2019-06-06 14:21:15 +02:00
|
|
|
else if (direction == 'l')
|
2019-12-20 20:35:39 +01:00
|
|
|
upper = target.sizeAt(-1);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const T value = static_cast<T>(val);
|
|
|
|
const auto x = reinterpret_cast<const T*>(getBuffer());
|
2019-12-20 20:35:39 +01:00
|
|
|
auto z = reinterpret_cast<T*>(target.getBuffer());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const int xRank = rankOf();
|
2019-12-20 20:35:39 +01:00
|
|
|
const int zRank = target.rankOf();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
const auto zLen = target.lengthOf();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
const bool areSameOffsets = shape::haveSameShapeAndStrides(getShapeInfo(), target.getShapeInfo());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
Nd4jLong coords[MAX_RANK];
|
|
|
|
for (auto i = start; i < stop; i += increment) {
|
2019-12-20 20:35:39 +01:00
|
|
|
shape::index2coords(i, target.getShapeInfo(), coords);
|
|
|
|
const auto zOffset = shape::getOffset(target.getShapeInfo(), coords);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
// if( (row + upper < col) || (row + lower > col) )
|
|
|
|
if ((coords[zRank - 2] + upper < coords[zRank - 1]) || (coords[zRank - 2] + lower > coords[zRank - 1]))
|
|
|
|
z[zOffset] = value;
|
2019-12-20 20:35:39 +01:00
|
|
|
else if (this != &target) { // when this and target are different arrays
|
2019-11-13 15:15:18 +01:00
|
|
|
if (xRank != zRank)
|
|
|
|
coords[0] = coords[1];
|
|
|
|
|
|
|
|
const auto xOffset = areSameOffsets ? zOffset : shape::getOffset(getShapeInfo(), coords);
|
|
|
|
z[zOffset] = x[xOffset];
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
samediff::Threads::parallel_for(func, 0, zLen);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-12-20 20:35:39 +01:00
|
|
|
BUILD_SINGLE_TEMPLATE(template void NDArray::fillAsTriangular, (const float val, int lower, int upper, NDArray& target, const char direction), LIBND4J_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void NDArray::setIdentity() {
|
|
|
|
if (isS())
|
|
|
|
throw std::runtime_error("NDArray::setIdentity: you can't use this method on String array!");
|
|
|
|
|
|
|
|
this->nullify();
|
|
|
|
|
|
|
|
int rank = rankOf();
|
|
|
|
auto shape = shapeOf();
|
|
|
|
int minDim = MAX_INT;
|
|
|
|
Nd4jLong indices[MAX_RANK];
|
|
|
|
for(int j = 0; j < rank; ++j)
|
|
|
|
indices[j] = 1;
|
|
|
|
|
2019-09-11 19:12:09 +02:00
|
|
|
Nd4jLong offset = shape::getOffset(getShapeInfo(), indices);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
for(int i = 0; i < rank; ++i)
|
|
|
|
if(minDim > shape[i])
|
|
|
|
minDim = shape[i];
|
|
|
|
|
|
|
|
float v = 1.0f;
|
2019-11-13 15:15:18 +01:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
for(int i = 0; i < minDim; ++i)
|
|
|
|
templatedSet<float>(buffer(), i*offset, this->dataType(), &v);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
|
|
static void templatedSwap(void *xBuffer, void *yBuffer, Nd4jLong length) {
|
|
|
|
auto x = reinterpret_cast<T *>(xBuffer);
|
|
|
|
auto y = reinterpret_cast<T *>(yBuffer);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
auto temp = x[i];
|
|
|
|
x[i] = y[i];
|
|
|
|
y[i] = temp;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
samediff::Threads::parallel_for(func, 0, length);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void templatedSwap, (void *xBuffer, void *yBuffer, Nd4jLong length), LIBND4J_TYPES);
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void NDArray::swapUnsafe(NDArray& other) {
|
|
|
|
auto xType = this->dataType();
|
|
|
|
|
|
|
|
if (xType != other.dataType())
|
|
|
|
throw std::runtime_error("NDArray::swapUnsage method: both arrays must have the same data type");
|
|
|
|
|
|
|
|
if(buffer() == nullptr || other.buffer() == nullptr)
|
|
|
|
throw std::runtime_error("NDArray::swapUnsafe method: input array should not be empty!");
|
|
|
|
|
|
|
|
if(lengthOf() != other.lengthOf())
|
|
|
|
throw std::runtime_error("NDArray::swapUnsafe method: input arrays should have the same length!");
|
|
|
|
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, templatedSwap, (buffer(), other.buffer(), this->lengthOf()), LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void NDArray::synchronize(const char* msg) const {
|
|
|
|
// no-op
|
|
|
|
}
|
2019-08-03 12:23:12 +02:00
|
|
|
|
2020-01-04 11:27:50 +01:00
|
|
|
void NDArray::prepareSpecialUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList, bool synchronizeWritables) {
|
2019-06-06 14:21:15 +02:00
|
|
|
// no-op
|
|
|
|
}
|
2020-01-04 11:27:50 +01:00
|
|
|
void NDArray::registerSpecialUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList) {
|
2019-06-06 14:21:15 +02:00
|
|
|
// no-op
|
|
|
|
}
|
2020-01-04 11:27:50 +01:00
|
|
|
void NDArray::preparePrimaryUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList, bool synchronizeWritables) {
|
2019-06-06 14:21:15 +02:00
|
|
|
// no-op
|
|
|
|
}
|
2020-01-04 11:27:50 +01:00
|
|
|
void NDArray::registerPrimaryUse(const std::vector<const NDArray*>& writeList, const std::vector<const NDArray*>& readList) {
|
2019-06-06 14:21:15 +02:00
|
|
|
// no-op
|
|
|
|
}
|
2019-08-03 12:23:12 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
void NDArray::syncShape() const {
|
|
|
|
// no-op
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
|
|
void NDArray::printCurrentBuffer(const bool host, const char* msg, const int precision) const {
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void* NDArray::specialBufferWithOffset(Nd4jLong offset) const {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void* NDArray::specialBuffer() {
|
|
|
|
if (_buffer->special() == nullptr)
|
|
|
|
return getBuffer();
|
|
|
|
// FIXME: this should be fixed once CUDA backend added
|
|
|
|
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void* NDArray::getSpecialBuffer() const {
|
|
|
|
if (_buffer->special() == nullptr)
|
|
|
|
return getBuffer();
|
|
|
|
// FIXME: this should be fixed once CUDA backend added
|
|
|
|
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
// change an array by repeating it the number of times given by reps.
|
|
|
|
NDArray NDArray::tile(const std::vector<Nd4jLong>& reps) const {
|
2019-07-12 10:51:51 +02:00
|
|
|
const int repsSize = reps.size();
|
2019-08-21 14:05:47 +02:00
|
|
|
|
|
|
|
Nd4jLong product = 1;
|
2019-06-06 14:21:15 +02:00
|
|
|
for(const auto& item : reps)
|
|
|
|
product *= item;
|
|
|
|
if(product == 0)
|
|
|
|
throw std::runtime_error("NDArray::tile method: one of the elements in reps array is zero !");
|
|
|
|
|
|
|
|
int rankOld = rankOf();
|
2019-07-12 10:51:51 +02:00
|
|
|
int diff = rankOld - repsSize;
|
2019-06-06 14:21:15 +02:00
|
|
|
if(product==1) { // in this case 2 possibilities are present: just reshape or nothing to do
|
|
|
|
NDArray result(*this);
|
|
|
|
if(diff < 0) { // reshape to higher dimension
|
2019-07-12 10:51:51 +02:00
|
|
|
std::vector<Nd4jLong> shapeNew = reps; // there is requirement to have unities at first "diff" positions of new shape
|
2019-06-06 14:21:15 +02:00
|
|
|
memcpy(&shapeNew[-diff], result.getShapeInfo()+1, rankOld * sizeof(Nd4jLong)); // put old shape numbers at rest of positions
|
|
|
|
result.reshapei(ordering(), shapeNew);
|
|
|
|
}
|
|
|
|
return result; // nothing to do, if diff >= 0 -> identity tile
|
|
|
|
}
|
|
|
|
|
|
|
|
// evaluate shapeInfo for resulting array
|
|
|
|
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
|
|
|
|
// create new buffer, in any case the memory amount new buffer points to is bigger then those for old _buffer
|
|
|
|
std::shared_ptr<DataBuffer> newBuff = std::make_shared<DataBuffer>(shape::length(newShapeInfo) * sizeOfT(), dataType(), getContext()->getWorkspace());
|
|
|
|
// assign new shape and new buffer to resulting array
|
|
|
|
NDArray result(newBuff, ShapeDescriptor(newShapeInfo), getContext());
|
|
|
|
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
|
|
// looping through _buffer goes automatically by means of getSubArrayIndex applying
|
|
|
|
const auto resultLen = result.lengthOf();
|
|
|
|
auto xType = this->dataType();
|
|
|
|
if(result.ordering() == 'c') { // ews == 1 always here
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
auto yOffset = shape::subArrayOffset(i, newShapeInfo, getShapeInfo());
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, this->template templatedAssign,(result.getBuffer(), i, this->getBuffer(), yOffset), LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
};
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
samediff::Threads::parallel_for(func, 0, resultLen);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
auto xOffset = result.getOffset(i);
|
|
|
|
auto yOffset = shape::subArrayOffset(i, newShapeInfo, getShapeInfo());
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, this->template templatedAssign,(result.getBuffer(), xOffset, this->getBuffer(), yOffset), LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
samediff::Threads::parallel_for(func, 0, resultLen);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
result.tickWriteHost();
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
// change an array by repeating it the number of times given by reps.
|
|
|
|
void NDArray::tile(const std::vector<Nd4jLong>& reps, NDArray& target) const {
|
|
|
|
|
2019-08-21 14:05:47 +02:00
|
|
|
auto repProd = shape::prodLong(reps.data(), reps.size());
|
|
|
|
if (repProd < 1)
|
|
|
|
throw std::runtime_error("NDArray::tile: reps can't contain 0s");
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
// evaluate true tile shapeInfo for comparison with target shapeInfo
|
|
|
|
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
|
|
|
|
if(!shape::equalsSoft(newShapeInfo, target.getShapeInfo())) {
|
|
|
|
delete []newShapeInfo;
|
|
|
|
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
|
|
|
|
}
|
|
|
|
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
|
|
// looping through _buffer goes automatically by means of getSubArrayIndex applying
|
|
|
|
const int ews = target.ews();
|
|
|
|
const int targetLen = target.lengthOf();
|
|
|
|
if(target.ordering() == 'c' && ews == 1) { // ews == 1 always here
|
|
|
|
//#pragma omp parallel for simd if(targetLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided)
|
|
|
|
for(Nd4jLong i=0; i<targetLen; ++i) {
|
|
|
|
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
|
|
|
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), i, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(target.ordering() == 'c' && ews > 1) {
|
2019-08-10 08:14:18 +02:00
|
|
|
for(Nd4jLong i=0; i<targetLen; ++i) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
|
|
|
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), i*ews, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
2019-08-10 08:14:18 +02:00
|
|
|
|
|
|
|
for(Nd4jLong i=0; i<targetLen; ++i) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
auto xOffset = target.getOffset(i);
|
|
|
|
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
|
|
|
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), xOffset, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void NDArray::tile(NDArray& target) const {
|
|
|
|
if(rankOf() > target.rankOf())
|
|
|
|
throw std::runtime_error("NDArray::tile method - rank of target array must be bigger or equal to the rank of this array !");
|
|
|
|
|
|
|
|
if(!ShapeUtils::areShapesBroadcastable(*this, target))
|
|
|
|
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
|
|
|
|
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
|
|
// looping through _buffer goes automatically by means of getSubArrayIndex applying
|
|
|
|
const auto ews = target.ews();
|
|
|
|
const auto targetLen = target.lengthOf();
|
2019-11-13 15:15:18 +01:00
|
|
|
if(target.ordering() == 'c' && ews >= 1) {
|
2019-08-10 08:14:18 +02:00
|
|
|
|
|
|
|
for(Nd4jLong i=0; i<targetLen; ++i) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
|
|
|
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), i*ews, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
2019-08-10 08:14:18 +02:00
|
|
|
for(Nd4jLong i=0; i<targetLen; ++i) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
auto xOffset = target.getOffset(i);
|
|
|
|
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
|
|
|
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), xOffset, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename X, typename Z>
|
|
|
|
static void repeat_(const NDArray& input, NDArray& output, const std::vector<int>& repeats, const int axis) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
const X* x = input.bufferAsT<X>();
|
|
|
|
Z* z = output.bufferAsT<Z>();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
const int rank = input.rankOf(); // xRank = zRank
|
|
|
|
const int zLen = output.lengthOf(); // xLen <= zLen
|
|
|
|
const int repSize = repeats.size();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
// loop through input array
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
Nd4jLong coords[MAX_RANK];
|
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
shape::index2coords(i, output.getShapeInfo(), coords);
|
|
|
|
|
|
|
|
const auto zOffset = shape::getOffset(output.getShapeInfo(), coords);
|
|
|
|
|
|
|
|
if (repSize > 1) {
|
|
|
|
for (uint j = 0; j < repSize; ++j) {
|
|
|
|
coords[axis] -= repeats[j];
|
|
|
|
if (coords[axis] < 0) {
|
|
|
|
coords[axis] = j;
|
|
|
|
break;
|
|
|
|
}
|
2019-08-21 20:10:29 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
} else
|
|
|
|
coords[axis] /= repeats[0];
|
|
|
|
|
|
|
|
z[zOffset] = x[shape::getOffset(input.getShapeInfo(), coords)];
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
samediff::Threads::parallel_for(func, 0, zLen);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
2019-08-21 20:10:29 +02:00
|
|
|
// create new array by repeating it the number of times given by repeats
|
2019-12-20 20:35:39 +01:00
|
|
|
NDArray NDArray::repeat(const int axis, const std::vector<int>& repeats) const {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
NDArray output('c', ShapeUtils::evalRepeatShape(axis, repeats, *this), dataType(), getContext());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
BUILD_SINGLE_SELECTOR_TWICE(dataType(), repeat_, (*this, output, repeats, axis), LIBND4J_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
return output;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
// fill array by repeating it the number of times given by reps
|
|
|
|
void NDArray::repeat(const int axis, const std::vector<int>& repeats, NDArray& target) const {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
if(!target.isSameShape(ShapeUtils::evalRepeatShape(axis, repeats, *this)))
|
|
|
|
throw std::invalid_argument("NDArray::repeat(const int axis, const std::vector<int>& repeats, NDArray& target) method: wrong shape of target array!");
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-21 20:10:29 +02:00
|
|
|
BUILD_DOUBLE_SELECTOR(dataType(), target.dataType(), repeat_, (*this, target, repeats, axis), LIBND4J_TYPES, LIBND4J_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef __JAVACPP_HACK__
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
#include "NDArrayLambda.hpp"
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
#ifndef __CLION_IDE__
|
|
|
|
#include "NDArray.macro"
|
|
|
|
#endif
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|