238 lines
9.3 KiB
C++
238 lines
9.3 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author Yurii Shyrma, created on 21.09.2018
|
||
|
// @author raver119@gmail.com
|
||
|
//
|
||
|
|
||
|
|
||
|
#include <helpers/TAD.h>
|
||
|
#include<ops/declarable/helpers/ismax.h>
|
||
|
#include <helpers/ConstantTadHelper.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
template <typename T>
|
||
|
static void ismax_(const NDArray* input, NDArray* output, const std::vector<int>& dimensions) {
|
||
|
|
||
|
if (input->isVector()) {
|
||
|
int dimensionsLength = dimensions.size();
|
||
|
int length = input->lengthOf();
|
||
|
if ((input->shapeOf())[dimensions[0]] == 1) {
|
||
|
for (int i = 0; i < length; i++)
|
||
|
output->p<T>(i, 1.f);
|
||
|
}
|
||
|
else {
|
||
|
int eleStride = shape::elementWiseStride(input->getShapeInfo());
|
||
|
if (eleStride == 1) {
|
||
|
int maxIdx = 0;
|
||
|
T currMax = input->e<T>(0);
|
||
|
if (length < ELEMENT_THRESHOLD) {
|
||
|
|
||
|
for (int i = 0; i < length; i++) {
|
||
|
if (currMax < input->e<T>(i)) {
|
||
|
currMax = input->e<T>(i);
|
||
|
maxIdx = i;
|
||
|
}
|
||
|
output->p<T>(i, 0.f);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
{
|
||
|
int maxIdxLocal = maxIdx;
|
||
|
T currMaxLocal = currMax;
|
||
|
|
||
|
for (int i = 0; i < length; i++) {
|
||
|
if (currMaxLocal < input->e<T>(i)) {
|
||
|
currMaxLocal = input->e<T>(i);
|
||
|
maxIdxLocal = i;
|
||
|
}
|
||
|
output->p<T>(i, 0.f);
|
||
|
}
|
||
|
|
||
|
PRAGMA_OMP_CRITICAL
|
||
|
{
|
||
|
if (currMax < currMaxLocal) {
|
||
|
currMax = currMaxLocal;
|
||
|
maxIdx = maxIdxLocal;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
output->p<T>(maxIdx, 1.f);
|
||
|
}
|
||
|
else {
|
||
|
int maxIdx = 0;
|
||
|
T currMax = input->e<T>(0);
|
||
|
if (length < ELEMENT_THRESHOLD) {
|
||
|
|
||
|
for (int i = 0; i < length; i++) {
|
||
|
if (currMax < input->e<T>(i*eleStride)) {
|
||
|
currMax = input->e<T>(i*eleStride);
|
||
|
maxIdx = i;
|
||
|
}
|
||
|
output->p<T>(i, 0.f);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
{
|
||
|
int maxIdxLocal = maxIdx;
|
||
|
T currMaxLocal = currMax;
|
||
|
for (int i = 0; i < length; i++) {
|
||
|
if (currMaxLocal < input->e<T>(i*eleStride)) {
|
||
|
currMaxLocal = input->e<T>(i*eleStride);
|
||
|
maxIdxLocal = i;
|
||
|
}
|
||
|
output->p<T>(i, 0.f);
|
||
|
}
|
||
|
|
||
|
PRAGMA_OMP_CRITICAL
|
||
|
{
|
||
|
if (currMax < currMaxLocal) {
|
||
|
currMax = currMaxLocal;
|
||
|
maxIdx = maxIdxLocal;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
output->p<T>(maxIdx, 1.f);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
int dimensionsLength = dimensions.size();
|
||
|
//int tads = tad.numTads;
|
||
|
//decompose in to several sub tads after
|
||
|
//moving all dimensions (in sorted order)
|
||
|
//to the back.
|
||
|
//permuted version of the input shape info for setting up the tad problem
|
||
|
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), const_cast<int*>(dimensions.data()), dimensionsLength);
|
||
|
|
||
|
auto tadShapeShapeInfo = tadPack.primaryShapeInfo();
|
||
|
auto tadOffsets = tadPack.primaryOffsets();
|
||
|
|
||
|
int tadLength = shape::length(tadShapeShapeInfo);
|
||
|
int tads = tadPack.numberOfTads();
|
||
|
|
||
|
int tadsPerThread = tads / TAD_THRESHOLD;
|
||
|
int num_threads = nd4j::math::nd4j_max<int>(1, tadsPerThread);
|
||
|
num_threads = nd4j::math::nd4j_min<int>(num_threads, omp_get_max_threads());
|
||
|
|
||
|
auto tadEWS = shape::elementWiseStride(tadShapeShapeInfo);
|
||
|
auto zEWS = tadEWS;
|
||
|
|
||
|
int span = (tads / num_threads) + 8;
|
||
|
|
||
|
PRAGMA_OMP_PARALLEL_THREADS(num_threads)
|
||
|
{
|
||
|
int tid = omp_get_thread_num();
|
||
|
int start = span * tid;
|
||
|
int end = span * (tid + 1);
|
||
|
if (end > tads) end = tads;
|
||
|
|
||
|
for (int r = start; r < end; r++) {
|
||
|
if (tadEWS > 0 && zEWS > 0 && dimensionsLength == 1) {
|
||
|
T *rX = const_cast<NDArray*>(input)->bufferAsT<T>() + tadOffsets[r];
|
||
|
T *rZ = output->bufferAsT<T>() + tadOffsets[r];
|
||
|
|
||
|
T maxValue = rX[0];
|
||
|
int maxIdx = 0;
|
||
|
if (tadEWS == 1 && zEWS == 1) {
|
||
|
for (int i = 0; i < tadLength; i++) {
|
||
|
if (rX[i] > maxValue) {
|
||
|
maxIdx = i;
|
||
|
maxValue = rX[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
PRAGMA_OMP_SIMD
|
||
|
for (int i = 0; i < tadLength; i++) {
|
||
|
rZ[i] = maxIdx == i ? (T) 1.0 : (T) 0.0;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
for (int i = 0; i < tadLength; i++) {
|
||
|
if (rX[i * tadEWS] > maxValue) {
|
||
|
maxIdx = i;
|
||
|
maxValue = rX[i * tadEWS];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
PRAGMA_OMP_SIMD
|
||
|
for (int i = 0; i < tadLength; i++) {
|
||
|
rZ[i * zEWS] = maxIdx == i ? (T) 1.0 : (T) 0.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
int tadsPerThread = tads / TAD_THRESHOLD;
|
||
|
int num_threads = nd4j::math::nd4j_max<int>(1, tadsPerThread);
|
||
|
num_threads = nd4j::math::nd4j_min<int>(num_threads, omp_get_max_threads());
|
||
|
|
||
|
Nd4jLong offset = tadOffsets[r];
|
||
|
Nd4jLong shapeIter[MAX_RANK];
|
||
|
Nd4jLong coord[MAX_RANK];
|
||
|
int dim;
|
||
|
Nd4jLong xStridesIter[MAX_RANK];
|
||
|
Nd4jLong resultStridesIter[MAX_RANK];
|
||
|
Nd4jLong *xShape = shape::shapeOf(tadShapeShapeInfo);
|
||
|
Nd4jLong *xStride = shape::stride(tadShapeShapeInfo);
|
||
|
Nd4jLong *resultStride = shape::stride(tadShapeShapeInfo);
|
||
|
int rank = shape::rank(tadShapeShapeInfo);
|
||
|
T *xPointer = const_cast<NDArray*>(input)->bufferAsT<T>() + offset;
|
||
|
T *resultPointer = output->bufferAsT<T>() + offset;
|
||
|
T maxValue = xPointer[0];
|
||
|
|
||
|
T *maxCursor = resultPointer;
|
||
|
Nd4jPointer maxCursorLong = reinterpret_cast<Nd4jPointer>(maxCursor);
|
||
|
|
||
|
if (PrepareTwoRawArrayIter<T>(rank, xShape, xPointer, xStride, resultPointer, resultStride, &rank, shapeIter, &xPointer, xStridesIter, &resultPointer, resultStridesIter) >= 0) {
|
||
|
ND4J_RAW_ITER_START(dim, rank, coord, shapeIter);
|
||
|
{
|
||
|
if (maxValue < xPointer[0]) {
|
||
|
maxCursor = resultPointer;
|
||
|
maxCursorLong = reinterpret_cast<Nd4jPointer>(resultPointer);
|
||
|
maxValue = xPointer[0];
|
||
|
}
|
||
|
resultPointer[0] = 0.0;
|
||
|
}
|
||
|
ND4J_RAW_ITER_TWO_NEXT(dim, rank, coord, shapeIter, xPointer, xStridesIter, resultPointer, resultStridesIter);
|
||
|
maxCursor = reinterpret_cast<T*>(maxCursorLong);
|
||
|
maxCursor[0] = 1.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void ismax(nd4j::LaunchContext * context, const NDArray *input, NDArray *output, const std::vector<int>& dimensions) {
|
||
|
BUILD_SINGLE_SELECTOR(input->dataType(), ismax_, (input, output, dimensions), LIBND4J_TYPES);
|
||
|
}
|
||
|
|
||
|
BUILD_SINGLE_TEMPLATE(template void ismax_, (const NDArray *input, NDArray *output, const std::vector<int>& dimensions), LIBND4J_TYPES);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|