cavis/libnd4j/tests_cpu/layers_tests/ThreadsTests.cpp

233 lines
7.7 KiB
C++
Raw Normal View History

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "testlayers.h"
#include <ops/declarable/CustomOperations.h>
#include <loops/type_conversions.h>
#include <execution/Threads.h>
#include <chrono>
#include <execution/ThreadPool.h>
using namespace samediff;
using namespace nd4j;
using namespace nd4j::ops;
using namespace nd4j::graph;
class ThreadsTests : public testing::Test {
public:
};
TEST_F(ThreadsTests, th_test_1) {
ASSERT_EQ(1, ThreadsHelper::numberOfThreads(6, 1023));
ASSERT_EQ(1, ThreadsHelper::numberOfThreads(6, 1024));
ASSERT_EQ(1, ThreadsHelper::numberOfThreads(6, 1026));
ASSERT_EQ(1, ThreadsHelper::numberOfThreads(6, 2043));
ASSERT_EQ(2, ThreadsHelper::numberOfThreads(6, 2048));
}
TEST_F(ThreadsTests, th_test_2) {
// in this case we'll get better split over second loop - exactly 32 elements per thread
ASSERT_EQ(2, ThreadsHelper::pickLoop2d(32, 48, 1024));
ASSERT_EQ(2, ThreadsHelper::pickLoop2d(6, 4, 16384));
// in this case we'll get better split over first loop - 2 loops/2048 elements per thread
ASSERT_EQ(1, ThreadsHelper::pickLoop2d(32, 64, 1024));
ASSERT_EQ(1, ThreadsHelper::pickLoop2d(6, 6, 16384));
// in this case none of loops are good enough, but second loop is too small for split
ASSERT_EQ(1, ThreadsHelper::pickLoop2d(6, 64, 32));
// all loops are good enough, but we go with bigger one, since small
ASSERT_EQ(1, ThreadsHelper::pickLoop2d(2, 64, 32));
// obviously split goes into second loop, to give 1024 elements per thread
ASSERT_EQ(2, ThreadsHelper::pickLoop2d(2, 1, 2048));
}
TEST_F(ThreadsTests, th_test_3) {
// typical conv cases
ASSERT_EQ(1, ThreadsHelper::pickLoop3d(4, 32, 3, 128));
ASSERT_EQ(2, ThreadsHelper::pickLoop3d(4, 1, 128, 64));
ASSERT_EQ(3, ThreadsHelper::pickLoop3d(4, 1, 3, 128));
// checking for optimal threads for conv inference
ASSERT_EQ(6, ThreadsHelper::numberOfThreads3d(6, 1, 3, 128));
ASSERT_EQ(4, ThreadsHelper::numberOfThreads3d(4, 1, 3, 128));
ASSERT_EQ(8, ThreadsHelper::numberOfThreads3d(8, 1, 3, 128));
// checking for optimal threads for conv training
ASSERT_EQ(6, ThreadsHelper::numberOfThreads3d(6, 16, 3, 128));
ASSERT_EQ(6, ThreadsHelper::numberOfThreads3d(6, 8, 3, 128));
ASSERT_EQ(6, ThreadsHelper::numberOfThreads3d(6, 8, 3, 64));
ASSERT_EQ(1, ThreadsHelper::pickLoop3d(6, 8, 3, 64));
}
TEST_F(ThreadsTests, th_test_4) {
// typical conv cases
ASSERT_EQ(2, ThreadsHelper::numberOfThreads2d(2, 32, 3));
ASSERT_EQ(4, ThreadsHelper::numberOfThreads2d(4, 32, 3));
ASSERT_EQ(6, ThreadsHelper::numberOfThreads2d(6, 32, 1));
ASSERT_EQ(8, ThreadsHelper::numberOfThreads2d(8, 16, 64));
ASSERT_EQ(1, ThreadsHelper::pickLoop2d(4, 32, 1));
ASSERT_EQ(1, ThreadsHelper::pickLoop2d(8, 19, 17));
// primes edge cases
ASSERT_EQ(6, ThreadsHelper::numberOfThreads2d(6, 19, 17));
ASSERT_EQ(8, ThreadsHelper::numberOfThreads2d(8, 19, 17));
ASSERT_EQ(1, ThreadsHelper::pickLoop2d(8, 19, 17));
for (auto e = 0; e < 6; e++) {
auto span = Span2::build(1, e, 6, 0, 19, 1, 0, 17, 1);
nd4j_printf("Span start: %lld; stop: %lld\n", span.startX(), span.stopX());
}
nd4j_printf("-----------------------\n","");
for (auto e = 0; e < 6; e++) {
auto span = Span2::build(1, e, 6, 0, 32, 1, 0, 3, 1);
nd4j_printf("Span start: %lld; stop: %lld\n", span.startX(), span.stopX());
}
}
TEST_F(ThreadsTests, test_span_converage_1) {
for (int b = 1; b <= 128; b++) {
for (int c = 1; c <= 64; c++) {
for (int t = 1; t <= 64; t++) {
auto threads = ThreadsHelper::numberOfThreads2d(t, b, c);
auto loop = ThreadsHelper::pickLoop2d(threads, b, c);
if (t > 1 && threads == 1 && (b > 1 && c > 1)) {
nd4j_printf("Got 1 thread for [%i, %i] loop; initial max threads: %i\n", b, c, t)
}
auto sum = 0;
for (auto a = 0; a < threads; a++) {
auto span = Span2::build(loop, a,threads, 0, b, 1, 0, c, 1);
if (loop == 1)
sum += span.stopX() - span.startX();
else if (loop == 2)
sum += span.stopY() - span.startY();
else
throw std::runtime_error("Bad loop!");
}
if (loop == 1)
ASSERT_EQ(b, sum);
else
ASSERT_EQ(c, sum);
}
}
}
}
TEST_F(ThreadsTests, validation_test_2d_1) {
if (1 > 0)
return;
std::vector<int> threads({1, 2, 4, 6, 8, 12, 16, 20, 32, 48, 64});
for (int e = 1; e < 1024; e++) {
for (int i = 1; i <= 1024; i++ ) {
for (auto t:threads) {
std::atomic<int64_t> sum;
sum.store(0);
auto func = PRAGMA_THREADS_FOR_2D {
for (auto x = start_x; x < stop_x; x += inc_x) {
for (auto y = start_y; y < stop_y; y += inc_y) {
sum++;
}
}
};
samediff::Threads::parallel_for(func, 0, e, 1, 0, i, 1, t, true);
ASSERT_EQ(e * i, sum.load());
}
}
nd4j_printf("Finished iteration %i\n", e);
}
}
TEST_F(ThreadsTests, reduction_test_1) {
auto func = PRAGMA_REDUCE_LONG {
int64_t sum = 0;
for (auto e = start; e < stop; e++) {
sum++;
};
return sum;
};
auto sum = samediff::Threads::parallel_long(func, LAMBDA_AL {return _old + _new;}, 0, 8192, 1, 4);
ASSERT_EQ(8192, sum);
}
/*
TEST_F(ThreadsTests, basic_test_1) {
if (!Environment::getInstance()->isCPU())
return;
auto instance = samediff::ThreadPool::getInstance();
auto array = NDArrayFactory::create<float>('c', {512, 768});
auto like = array.like();
auto buffer = array.bufferAsT<float>();
auto lbuffer = like.bufferAsT<float>();
auto func = PRAGMA_THREADS_FOR {
PRAGMA_OMP_SIMD
for (uint64_t e = start; e < stop; e += increment) {
buffer[e] += 1.0f;
}
};
auto timeStartThreads = std::chrono::system_clock::now();
samediff::Threads::parallel_for(func, 0, array.lengthOf());
auto timeEndThreads = std::chrono::system_clock::now();
auto outerTimeThreads = std::chrono::duration_cast<std::chrono::microseconds> (timeEndThreads - timeStartThreads).count();
auto timeStartOmp = std::chrono::system_clock::now();
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint64_t e = 0; e < array.lengthOf(); e ++) {
lbuffer[e] += 1.0f;
}
auto timeEndOmp = std::chrono::system_clock::now();
auto outerTimeOmp = std::chrono::duration_cast<std::chrono::microseconds> (timeEndOmp - timeStartOmp).count();
ASSERT_NEAR((float) array.lengthOf(), array.sumNumber().e<float>(0), 1e-5f);
nd4j_printf("Threads time: %lld us; OMP time: %lld us; %p\n", outerTimeThreads, outerTimeOmp, instance)
}
*/