/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
#include <system/op_boilerplate.h>
#if NOT_EXCLUDED(OP_where)
#include <helpers/ShapeUtils.h>
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/where.h>
namespace sd {
namespace ops {
CUSTOM_OP_IMPL(Where, 1, 1, false, 0, 0) {
auto condition = INPUT_VARIABLE(0);
auto z = OUTPUT_VARIABLE(0);
if (z->isEmpty())
return Status::OK();
if (block.width() == 3) {
auto x = INPUT_VARIABLE(1);
auto y = INPUT_VARIABLE(2);
REQUIRE_TRUE(x->isSameShape(y), 0, "X and Y must have equal shapes");
// if cond matches x/y shape - we have per-element mask
if (condition->isSameShape(x)) {
// FIXME: for perf it might be better to issue memcpy here, and fill only mismatched values from either X or Y
for (int e = 0; e < condition->lengthOf(); e++) {
if (y->isR()) {
auto r = !condition->e<bool>(e) ? y->e<double>(e) : x->e<double>(e);
z->p(e, r);
} else {
auto r = !condition->e<bool>(e) ? y->e<Nd4jLong>(e) : x->e<Nd4jLong>(e);
}
REQUIRE_TRUE(condition->lengthOf() == x->sizeAt(0), 0, "Condition length should be equal to the dim0 of x/y to act as TAD-mask, but got %d instead", condition->lengthOf());
auto dims = ShapeUtils::evalDimsToExclude(x->rankOf(), {0});
auto tadsX = x->allTensorsAlongDimension(dims);
auto tadsY = y->allTensorsAlongDimension(dims);
auto tadsZ = z->allTensorsAlongDimension(dims);
for (int e = 0; e < tadsX.size(); e++) {
if (!condition->e<bool>(e)) {
tadsZ.at(e)->assign(tadsY.at(e));
tadsZ.at(e)->assign(tadsX.at(e));
// in this case we return 2D matrix, which basically contains coordinates fo true
REQUIRE_TRUE(block.width() == 1, 0, "Where op takes either 1 or 3 operands, But got %d operands instead", block.width());
auto output = OUTPUT_VARIABLE(0);
int width = condition->rankOf();
return ND4J_STATUS_OK;
std::vector<int> dims = ShapeUtils::evalDimsToExclude(width, {0});
helpers::_where(block.launchContext(), *condition, *output, block.workspace());
DECLARE_SHAPE_FN(Where) {
auto inShape = inputShape->at(1);
Nd4jLong *newshape;
COPY_SHAPE(inShape, newshape);
return SHAPELIST(CONSTANT(newshape));
// FIXME: we can't estimate result here in this case
// output shape is the 2D tensor num_true x rankOf (inShape)
auto inShape = inputShape->at(0);
Nd4jLong numOfTrue = 0; //condition->reduceNumber(reduce::CountNonZero, nullptr).e<Nd4jLong>(0);
for (Nd4jLong i = 0; i < condition->lengthOf(); i++)
if (condition->e<bool>(i)) numOfTrue++;
Nd4jLong const* theNewShape;
if (numOfTrue > 0) {
Nd4jLong* newShape;
ALLOCATE(newShape, block.getWorkspace(), shape::shapeInfoLength(2), Nd4jLong);
newShape[0] = 2;
newShape[1] = numOfTrue;
newShape[2] = shape::rank(inShape);
newShape[3] = 1;
newShape[4] = 1;
newShape[5] = 0;
newShape[6] = 1;
newShape[7] = 99;
ShapeUtils::updateStridesAndType(newShape, sd::DataType::INT64, 'c');
theNewShape = CONSTANT(newShape);
else {
theNewShape = ConstantShapeHelper::getInstance().emptyShapeInfo(sd::DataType::INT64);
return SHAPELIST(theNewShape);
DECLARE_TYPES(Where) {
getOpDescriptor()
->setAllowedInputTypes(0, DataType::ANY) // bool
->setAllowedInputTypes(1, DataType::ANY)
->setAllowedInputTypes(2, DataType::ANY)
->setAllowedOutputTypes(0, {ALL_INTS, ALL_FLOATS});
#endif