121 lines
5.0 KiB
Java
121 lines
5.0 KiB
Java
|
|
/*******************************************************************************
|
||
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
|
*
|
||
|
|
* This program and the accompanying materials are made available under the
|
||
|
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
|
*
|
||
|
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
|
* License for the specific language governing permissions and limitations
|
||
|
|
* under the License.
|
||
|
|
*
|
||
|
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
|
******************************************************************************/
|
||
|
|
|
||
|
|
package org.deeplearning4j.zoo.model;
|
||
|
|
|
||
|
|
import lombok.AllArgsConstructor;
|
||
|
|
import lombok.Builder;
|
||
|
|
import lombok.NoArgsConstructor;
|
||
|
|
import org.deeplearning4j.nn.api.Model;
|
||
|
|
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
|
||
|
|
import org.deeplearning4j.nn.conf.*;
|
||
|
|
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
|
||
|
|
import org.deeplearning4j.nn.conf.layers.GravesLSTM;
|
||
|
|
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
|
||
|
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||
|
|
import org.deeplearning4j.nn.weights.WeightInit;
|
||
|
|
import org.deeplearning4j.zoo.ModelMetaData;
|
||
|
|
import org.deeplearning4j.zoo.PretrainedType;
|
||
|
|
import org.deeplearning4j.zoo.ZooModel;
|
||
|
|
import org.deeplearning4j.zoo.ZooType;
|
||
|
|
import org.nd4j.linalg.activations.Activation;
|
||
|
|
import org.nd4j.linalg.learning.config.IUpdater;
|
||
|
|
import org.nd4j.linalg.learning.config.RmsProp;
|
||
|
|
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
||
|
|
|
||
|
|
/**
|
||
|
|
* LSTM designed for text generation. Can be trained on a corpus of text. For this model, numClasses is
|
||
|
|
* used to input {@code totalUniqueCharacters} for the LSTM input layer.
|
||
|
|
*
|
||
|
|
* Architecture follows this implementation: <a href="https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py">
|
||
|
|
* https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py</a>
|
||
|
|
*
|
||
|
|
* <p>Walt Whitman weights are available for generating text from his works, adapted from <a href="https://github.com/craigomac/InfiniteMonkeys">
|
||
|
|
* https://github.com/craigomac/InfiniteMonkeys</a>.</p>
|
||
|
|
*
|
||
|
|
* @author Justin Long (crockpotveggies)
|
||
|
|
*/
|
||
|
|
@AllArgsConstructor
|
||
|
|
@Builder
|
||
|
|
public class TextGenerationLSTM extends ZooModel {
|
||
|
|
|
||
|
|
@Builder.Default private long seed = 1234;
|
||
|
|
@Builder.Default private int maxLength = 40;
|
||
|
|
@Builder.Default private int totalUniqueCharacters = 47;
|
||
|
|
private int[] inputShape = new int[] {maxLength, totalUniqueCharacters};
|
||
|
|
@Builder.Default private IUpdater updater = new RmsProp(0.01);
|
||
|
|
@Builder.Default private CacheMode cacheMode = CacheMode.NONE;
|
||
|
|
@Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
|
||
|
|
@Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;
|
||
|
|
|
||
|
|
private TextGenerationLSTM() {}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public String pretrainedUrl(PretrainedType pretrainedType) {
|
||
|
|
return null;
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public long pretrainedChecksum(PretrainedType pretrainedType) {
|
||
|
|
return 0L;
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public Class<? extends Model> modelType() {
|
||
|
|
return MultiLayerNetwork.class;
|
||
|
|
}
|
||
|
|
|
||
|
|
public MultiLayerConfiguration conf() {
|
||
|
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345)
|
||
|
|
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
|
||
|
|
.l2(0.001)
|
||
|
|
.weightInit(WeightInit.XAVIER)
|
||
|
|
.updater(updater)
|
||
|
|
.cacheMode(cacheMode)
|
||
|
|
.trainingWorkspaceMode(workspaceMode)
|
||
|
|
.inferenceWorkspaceMode(workspaceMode)
|
||
|
|
.cudnnAlgoMode(cudnnAlgoMode)
|
||
|
|
.list()
|
||
|
|
.layer(0, new GravesLSTM.Builder().nIn(inputShape[1]).nOut(256).activation(Activation.TANH)
|
||
|
|
.build())
|
||
|
|
.layer(1, new GravesLSTM.Builder().nOut(256).activation(Activation.TANH).build())
|
||
|
|
.layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||
|
|
.activation(Activation.SOFTMAX) //MCXENT + softmax for classification
|
||
|
|
.nOut(totalUniqueCharacters).build())
|
||
|
|
.backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(50).tBPTTBackwardLength(50)
|
||
|
|
.build();
|
||
|
|
|
||
|
|
return conf;
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public Model init() {
|
||
|
|
MultiLayerNetwork network = new MultiLayerNetwork(conf());
|
||
|
|
network.init();
|
||
|
|
return network;
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public ModelMetaData metaData() {
|
||
|
|
return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.RNN);
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public void setInputShape(int[][] inputShape) {
|
||
|
|
this.inputShape = inputShape[0];
|
||
|
|
}
|
||
|
|
}
|