2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright ( c ) 2015 - 2018 Skymind , Inc .
*
* This program and the accompanying materials are made available under the
* terms of the Apache License , Version 2.0 which is available at
* https : //www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS , WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied . See the
* License for the specific language governing permissions and limitations
* under the License .
*
* SPDX - License - Identifier : Apache - 2.0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//
// Created by Yurii Shyrma on 18.12.2017.
//
# ifndef LIBND4J_HOUSEHOLDER_H
# define LIBND4J_HOUSEHOLDER_H
2020-03-02 10:49:41 +01:00
# include "array/NDArray.h"
2019-06-06 14:21:15 +02:00
2020-03-02 10:49:41 +01:00
namespace sd {
2019-06-06 14:21:15 +02:00
namespace ops {
namespace helpers {
template < typename T >
class Householder {
public :
2020-05-14 17:06:13 +02:00
2019-06-06 14:21:15 +02:00
/**
* this method calculates Householder matrix P = identity_matrix - coeff * w * w ^ T
* P * x = [ normX , 0 , 0 , 0 , . . . ]
2020-05-14 17:06:13 +02:00
* coeff - scalar
2019-06-06 14:21:15 +02:00
* w = [ 1 , w1 , w2 , w3 , . . . ]
* w = u / u0
* u = x - | x | * e0
2020-05-14 17:06:13 +02:00
* u0 = x0 - | x |
2019-06-06 14:21:15 +02:00
* e0 = [ 1 , 0 , 0 , 0 , . . . ]
2020-05-14 17:06:13 +02:00
*
2019-06-06 14:21:15 +02:00
* x - input vector , remains unaffected
2020-05-14 17:06:13 +02:00
*/
// static NDArray evalHHmatrix(const NDArray& x);
2019-06-06 14:21:15 +02:00
/**
* this method evaluates data required for calculation of Householder matrix P = identity_matrix - coeff * w * w ^ T
* P * x = [ normX , 0 , 0 , 0 , . . . ]
2020-05-14 17:06:13 +02:00
* coeff - scalar
2019-06-06 14:21:15 +02:00
* w = [ 1 , w1 , w2 , w3 , . . . ]
* w = u / u0
* u = x - | x | * e0
2020-05-14 17:06:13 +02:00
* u0 = x0 - | x |
2019-06-06 14:21:15 +02:00
* e0 = [ 1 , 0 , 0 , 0 , . . . ]
2020-05-14 17:06:13 +02:00
*
2019-06-06 14:21:15 +02:00
* x - input vector , remains unaffected
* tail - the essential part of the vector w : [ w1 , w2 , w3 , . . . ]
* normX - this scalar is the first non - zero element in vector resulting from Householder transformation - > ( P * x )
2020-05-14 17:06:13 +02:00
* coeff - scalar , scaling factor in Householder matrix formula
2019-06-06 14:21:15 +02:00
*/
static void evalHHmatrixData ( const NDArray & x , NDArray & tail , T & coeff , T & normX ) ;
2020-05-14 17:06:13 +02:00
static void evalHHmatrixDataI ( NDArray & x , T & coeff , T & normX ) ; // in-place, x to be affected
2019-06-06 14:21:15 +02:00
/**
* this method mathematically multiplies input matrix on Householder from the left P * matrix
2020-05-14 17:06:13 +02:00
*
2019-06-06 14:21:15 +02:00
* matrix - input matrix
* tail - the essential part of the Householder vector w : [ w1 , w2 , w3 , . . . ]
2020-05-14 17:06:13 +02:00
* coeff - scalar , scaling factor in Householder matrix formula
2019-06-06 14:21:15 +02:00
*/
static void mulLeft ( NDArray & matrix , const NDArray & tail , const T coeff ) ;
/**
* this method mathematically multiplies input matrix on Householder from the right matrix * P
2020-05-14 17:06:13 +02:00
*
2019-06-06 14:21:15 +02:00
* matrix - input matrix
* tail - the essential part of the Householder vector w : [ w1 , w2 , w3 , . . . ]
2020-05-14 17:06:13 +02:00
* coeff - scalar , scaling factor in Householder matrix formula
*/
2019-06-06 14:21:15 +02:00
static void mulRight ( NDArray & matrix , const NDArray & tail , const T coeff ) ;
2020-05-14 17:06:13 +02:00
2019-06-06 14:21:15 +02:00
} ;
2020-05-14 17:06:13 +02:00
2019-06-06 14:21:15 +02:00
// /**
// * this function reduce given matrix to upper bidiagonal form (in-place operation), matrix must satisfy following condition rows >= cols
2020-05-14 17:06:13 +02:00
// *
// * matrix - input 2D matrix to be reduced to upper bidiagonal from
2019-06-06 14:21:15 +02:00
// */
// template <typename T>
// void biDiagonalizeUp(NDArray& matrix);
2020-05-14 17:06:13 +02:00
// /**
2019-06-06 14:21:15 +02:00
// * given a matrix [m,n], this function computes its singular value decomposition matrix = u * s * v^T
2020-05-14 17:06:13 +02:00
// *
2019-06-06 14:21:15 +02:00
// * matrix - input 2D matrix to decompose, [m, n]
// * u - unitary matrix containing left singular vectors of input matrix, [m, m]
// * s - diagonal matrix with singular values of input matrix (non-negative) on the diagonal sorted in decreasing order,
// * actually the mathematically correct dimension of s is [m, n], however for memory saving we work with s as vector [1, p], where p is smaller among m and n
// * v - unitary matrix containing right singular vectors of input matrix, [n, n]
// * calcUV - if true then u and v will be computed, in opposite case function works significantly faster
// * fullUV - if false then only p (p is smaller among m and n) first columns of u and v will be calculated and their dimensions in this case are [m, p] and [n, p]
// *
// */
2020-05-14 17:06:13 +02:00
// void svd(const NDArray& matrix, NDArray& u, NDArray& s, NDArray& v, const bool calcUV = false, const bool fullUV = false)
2019-06-06 14:21:15 +02:00
}
}
}
# endif //LIBND4J_HOUSEHOLDER_H