2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright ( c ) 2015 - 2018 Skymind , Inc .
*
* This program and the accompanying materials are made available under the
* terms of the Apache License , Version 2.0 which is available at
* https : //www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS , WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied . See the
* License for the specific language governing permissions and limitations
* under the License .
*
* SPDX - License - Identifier : Apache - 2.0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//
// @author raver119, created on 29/10/17.
// @author Yurii Shyrma, changed on 20.03.2018
//
2020-03-02 10:49:41 +01:00
# include <system/op_boilerplate.h>
2019-06-06 14:21:15 +02:00
# if NOT_EXCLUDED(OP_sconv2d)
# include <ops/declarable/CustomOperations.h>
# include <ops/declarable/helpers/convolutions.h>
# include <memory>
2020-03-02 10:49:41 +01:00
namespace sd {
2019-06-06 14:21:15 +02:00
namespace ops {
CUSTOM_OP_IMPL ( sconv2d , 2 , 1 , false , 0 , 9 ) {
NDArray * input = INPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
NDArray * weightsDepth = INPUT_VARIABLE ( 1 ) ; // [kH, kW, iC, mC] always
NDArray * weightsPoint = nullptr ; // [1, 1, iC*mC, oC] always
2019-11-21 20:17:30 +01:00
NDArray * bias = nullptr ; // [oC], if weightsPoint=nullptr then oC = iC*mC
2019-06-06 14:21:15 +02:00
NDArray * output = OUTPUT_VARIABLE ( 0 ) ; // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)
if ( block . width ( ) = = 3 ) {
if ( ( INPUT_VARIABLE ( 2 ) ) - > rankOf ( ) = = 4 )
weightsPoint = INPUT_VARIABLE ( 2 ) ;
else
bias = INPUT_VARIABLE ( 2 ) ;
}
else if ( block . width ( ) = = 4 ) {
weightsPoint = INPUT_VARIABLE ( 2 ) ;
bias = INPUT_VARIABLE ( 3 ) ;
}
REQUIRE_TRUE ( input - > rankOf ( ) = = 4 , 0 , " SCONV2D OP: rank of input array must be equal to 4, but got %i instead ! " , input - > rankOf ( ) ) ;
REQUIRE_TRUE ( weightsDepth - > rankOf ( ) = = 4 , 0 , " SCONV2D OP: rank of weightsDepth array must be equal to 4, but got %i instead ! " , weightsDepth - > rankOf ( ) ) ;
if ( weightsPoint )
REQUIRE_TRUE ( weightsPoint - > rankOf ( ) = = 4 , 0 , " SCONV2D OP: rank of weightsPoint array must be equal to 4, but got %i instead ! " , weightsPoint - > rankOf ( ) ) ;
if ( bias )
REQUIRE_TRUE ( bias - > rankOf ( ) = = 1 | | bias - > rankOf ( ) = = 2 , 0 , " SCONV2D OP: rank of biases array must be equal to 1 or 2, but got %i instead ! " , bias - > rankOf ( ) ) ; ;
int kH = INT_ARG ( 0 ) ; // filter(kernel) height
int kW = INT_ARG ( 1 ) ; // filter(kernel) width
int sH = INT_ARG ( 2 ) ; // strides height
int sW = INT_ARG ( 3 ) ; // strides width
int pH = INT_ARG ( 4 ) ; // paddings height
int pW = INT_ARG ( 5 ) ; // paddings width
int dH = INT_ARG ( 6 ) ; // dilations height
int dW = INT_ARG ( 7 ) ; // dilations width
int isSameMode = INT_ARG ( 8 ) ; // 0-VALID, 1-SAME
int isNCHW = block . getIArguments ( ) - > size ( ) > 9 ? ! INT_ARG ( 9 ) : 1 ; // INT_ARG(9): 0-NCHW, 1-NHWC
int bS , iC , iH , iW , mC , oC , oH , oW ; // batch size, input channels, input height/width, channels multiplier, output channels, output height/width
int indIOioC , indIiH , indWmC , indWiC , indWkH , indOoH ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv2d ( isNCHW , * input , * output , bS , iC , iH , iW , oC , oH , oW , indIOioC , indIiH , indWiC , indWmC , indWkH , indOoH ) ;
mC = weightsDepth - > sizeAt ( indWmC ) ; // channels multiplier
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedWeightsDShape = { kH , kW , iC , mC } ;
REQUIRE_TRUE ( weightsDepth - > isSameShape ( expectedWeightsDShape ) , 0 , " SCONV2D OP: wrong shape of weightsDepth array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsDShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsDepth ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
if ( weightsPoint ) {
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedWeightsPShape = { 1 , 1 , iC * mC , oC } ;
REQUIRE_TRUE ( weightsPoint - > isSameShape ( expectedWeightsPShape ) , 0 , " SCONV2D OP: wrong shape of weightsPoint array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsPShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsPoint ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
}
if ( bias )
REQUIRE_TRUE ( oC = = bias - > lengthOf ( ) , 0 , " SCONV2D OP: length of bias array must be equal to outChannels, but got %i instead " , bias - > lengthOf ( ) ) ;
if ( iC = = 1 ) {
nd4j_debug ( " SCONV2D OP: for input_channels = 1 this op is equivalent to standard conv2d \n " , " " ) ;
2019-06-15 13:34:34 +02:00
ConvolutionUtils : : conv2d ( block , input , weightsDepth , bias , output , kH , kW , sH , sW , pH , pW , dH , dW , isSameMode , isNCHW ) ;
2019-06-06 14:21:15 +02:00
return Status : : OK ( ) ;
}
2019-06-15 13:34:34 +02:00
ConvolutionUtils : : sconv2d ( block , input , weightsDepth , weightsPoint , bias , output , kH , kW , sH , sW , pH , pW , dH , dW , isSameMode , isNCHW ) ;
2019-06-06 14:21:15 +02:00
return Status : : OK ( ) ;
}
DECLARE_TYPES ( sconv2d ) {
getOpDescriptor ( )
2020-03-02 10:49:41 +01:00
- > setAllowedInputTypes ( sd : : DataType : : ANY )
2019-06-06 14:21:15 +02:00
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
DECLARE_SHAPE_FN ( sconv2d ) {
auto inputShapeInfo = inputShape - > at ( 0 ) ; // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
auto weightsDShapeInfo = inputShape - > at ( 1 ) ; // [kH, kW, iC, mC] always
Nd4jLong * weightsPShapeInfo = nullptr ; // [1, 1, iC*mC, oC] always
Nd4jLong * biasShapeInfo = nullptr ; // [oC], oC = iC*mC if weightsPoint=nullptr
if ( block . width ( ) = = 3 )
if ( inputShape - > at ( 2 ) [ 0 ] = = 4 )
weightsPShapeInfo = inputShape - > at ( 2 ) ;
else
biasShapeInfo = inputShape - > at ( 2 ) ;
else if ( block . width ( ) = = 4 ) {
weightsPShapeInfo = inputShape - > at ( 2 ) ;
biasShapeInfo = inputShape - > at ( 3 ) ;
}
const int rank = 4 ;
REQUIRE_TRUE ( inputShapeInfo [ 0 ] = = rank , 0 , " SCONV2D OP: rank of input array must be equal to %i, but got %i instead ! " , rank , inputShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( weightsDShapeInfo [ 0 ] = = rank , 0 , " SCONV2D OP: rank of weightsDepth array must be equal to %i, but got %i instead ! " , rank , weightsDShapeInfo [ 0 ] ) ;
if ( weightsPShapeInfo )
REQUIRE_TRUE ( weightsPShapeInfo [ 0 ] = = rank , 0 , " SCONV2D OP: rank of weightsPoint array must be equal to %i, but got %i instead ! " , rank , weightsPShapeInfo [ 0 ] ) ;
if ( biasShapeInfo )
REQUIRE_TRUE ( biasShapeInfo [ 0 ] < = 2 , 0 , " SCONV2D OP: rank of biases array must be <= 2, but got %i instead ! " , biasShapeInfo [ 0 ] ) ; ;
int kH = INT_ARG ( 0 ) ; // filter(kernel) height
int kW = INT_ARG ( 1 ) ; // filter(kernel) width
int sH = INT_ARG ( 2 ) ; // strides height
int sW = INT_ARG ( 3 ) ; // strides width
int pH = INT_ARG ( 4 ) ; // paddings height
int pW = INT_ARG ( 5 ) ; // paddings width
int dH = INT_ARG ( 6 ) ; // dilations height
int dW = INT_ARG ( 7 ) ; // dilations width
int isSameMode = INT_ARG ( 8 ) ; // 0-VALID, 1-SAME
int isNCHW = block . getIArguments ( ) - > size ( ) > 9 ? ! INT_ARG ( 9 ) : 1 ; // INT_ARG(9): 1-NHWC, 0-NCHW
int indIOioC , indIiH , indWmC ( 3 ) ;
if ( ! isNCHW ) {
indIOioC = 3 ; indIiH = 1 ;
}
else {
indIOioC = 1 ; indIiH = 2 ;
}
const int bS = inputShapeInfo [ 1 ] ; // batch size
const int iH = inputShapeInfo [ indIiH + 1 ] ; // input height
const int iW = inputShapeInfo [ indIiH + 2 ] ; // input width
const int iC = inputShapeInfo [ indIOioC + 1 ] ; // input channels
const int mC = weightsDShapeInfo [ indWmC + 1 ] ; // channel multiplier
const int oC = weightsPShapeInfo ? weightsPShapeInfo [ indWmC + 1 ] : iC * mC ; // output channels (oC or iC*mC)
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedWeightsDShape = { kH , kW , iC , mC } ;
REQUIRE_TRUE ( ShapeUtils : : areShapesEqual ( weightsDShapeInfo , expectedWeightsDShape ) , 0 , " SCONV2D OP: wrong shape of depth weights array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsDShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsDShapeInfo ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
if ( weightsPShapeInfo ) {
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedWeightsPShape = { 1 , 1 , iC * mC , oC } ;
REQUIRE_TRUE ( ShapeUtils : : areShapesEqual ( weightsPShapeInfo , expectedWeightsPShape ) , 0 , " SCONV2D OP: wrong shape of point array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsPShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsPShapeInfo ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
}
if ( biasShapeInfo )
REQUIRE_TRUE ( biasShapeInfo [ 0 ] < = 2 & & oC = = shape : : length ( biasShapeInfo ) , 0 , " SCONV2D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , biasShapeInfo [ 0 ] , shape : : length ( biasShapeInfo ) ) ;
int oH , oW ; // output height, width
ConvolutionUtils : : calcOutSizePool2D ( oH , oW , kH , kW , sH , sW , pH , pW , dH , dW , iH , iW , isSameMode ) ;
Nd4jLong * outputShapeInfo = nullptr ;
ALLOCATE ( outputShapeInfo , block . getWorkspace ( ) , shape : : shapeInfoLength ( inputShapeInfo ) , Nd4jLong ) ;
outputShapeInfo [ 0 ] = 4 ;
outputShapeInfo [ 1 ] = bS ;
if ( isNCHW ) {
outputShapeInfo [ 2 ] = oC ;
outputShapeInfo [ 3 ] = oH ;
outputShapeInfo [ 4 ] = oW ;
} else {
outputShapeInfo [ 2 ] = oH ;
outputShapeInfo [ 3 ] = oW ;
outputShapeInfo [ 4 ] = oC ;
}
ShapeUtils : : updateStridesAndType ( outputShapeInfo , weightsDShapeInfo , shape : : order ( inputShapeInfo ) ) ;
return SHAPELIST ( CONSTANT ( outputShapeInfo ) ) ;
}
DECLARE_TYPES ( sconv2d_bp ) {
getOpDescriptor ( )
2020-03-02 10:49:41 +01:00
- > setAllowedInputTypes ( sd : : DataType : : ANY )
2019-06-06 14:21:15 +02:00
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL ( sconv2d_bp , 3 , 2 , false , 0 , 9 ) {
NDArray * input = INPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
NDArray * gradO = INPUT_VARIABLE ( 1 ) ; // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
NDArray * weightsDepth = INPUT_VARIABLE ( 2 ) ; // [kH, kW, iC, mC] always
NDArray * weightsPoint = nullptr ; // [1, 1, iC*mC, oC] always
NDArray * bias = nullptr ; // [oC], oC = iC*mC if weightsPoint=nullptr
NDArray * gradI = OUTPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
NDArray * gradWD = OUTPUT_VARIABLE ( 1 ) ; // [kH, kW, iC, mC] always
NDArray * gradWP = nullptr ; // [1, 1, iC*mC, oC] always
NDArray * gradB = nullptr ; // [oC]
if ( block . width ( ) = = 4 ) {
if ( ( INPUT_VARIABLE ( 3 ) ) - > rankOf ( ) = = 4 ) {
weightsPoint = INPUT_VARIABLE ( 3 ) ;
gradWP = OUTPUT_VARIABLE ( 2 ) ;
}
else {
bias = INPUT_VARIABLE ( 3 ) ;
gradB = OUTPUT_VARIABLE ( 2 ) ;
}
}
else if ( block . width ( ) = = 5 ) {
weightsPoint = INPUT_VARIABLE ( 3 ) ;
bias = INPUT_VARIABLE ( 4 ) ;
gradWP = OUTPUT_VARIABLE ( 2 ) ;
gradB = OUTPUT_VARIABLE ( 3 ) ;
}
REQUIRE_TRUE ( input - > rankOf ( ) = = 4 , 0 , " SCONV2D_BP OP: rank of input array must be equal to 4, but got %i instead ! " , input - > rankOf ( ) ) ;
REQUIRE_TRUE ( gradO - > rankOf ( ) = = 4 , 0 , " SCONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead ! " , gradO - > rankOf ( ) ) ;
REQUIRE_TRUE ( weightsDepth - > rankOf ( ) = = 4 , 0 , " SCONV2D_BP OP: rank of weightsDepth array must be equal to 4 !, but got %i instead ! " , weightsDepth - > rankOf ( ) ) ;
if ( weightsPoint ) {
REQUIRE_TRUE ( weightsPoint - > rankOf ( ) = = 4 , 0 , " SCONV2D_BP OP: rank of weightsPoint array must be equal to 4, but got %i instead ! " , weightsPoint - > rankOf ( ) ) ;
REQUIRE_TRUE ( gradWP - > rankOf ( ) = = 4 , 0 , " SCONV2D_BP OP: rank of weightsPoint gradients array must be equal to 4, but got %i instead ! " , gradWP - > rankOf ( ) ) ;
}
if ( bias ) {
REQUIRE_TRUE ( bias - > rankOf ( ) = = 1 | | bias - > rankOf ( ) = = 2 , 0 , " SCONV2D_BP OP: rank of biases array must be equal to 1 or 2, but got %i instead ! " , bias - > rankOf ( ) ) ;
REQUIRE_TRUE ( gradB - > rankOf ( ) = = 1 | | gradB - > rankOf ( ) = = 2 , 0 , " SCONV2D_BP OP: rank of biases gradientsarray must be equal to 1 or 2, but got %i instead ! " , gradB - > rankOf ( ) ) ;
}
int kH = INT_ARG ( 0 ) ; // filter(kernel) height
int kW = INT_ARG ( 1 ) ; // filter(kernel) width
int sH = INT_ARG ( 2 ) ; // strides height
int sW = INT_ARG ( 3 ) ; // strides width
int pH = INT_ARG ( 4 ) ; // paddings height
int pW = INT_ARG ( 5 ) ; // paddings width
int dH = INT_ARG ( 6 ) ; // dilations height
int dW = INT_ARG ( 7 ) ; // dilations width
int isSameMode = INT_ARG ( 8 ) ; // 0-VALID, 1-SAME
int isNCHW = block . getIArguments ( ) - > size ( ) > 9 ? ! INT_ARG ( 9 ) : 1 ; // INT_ARG(9): 0-NCHW, 1-NHWC
int bS , iC , iH , iW , mC , oC , oH , oW ; // batch size, input channels, input height/width, channels multiplier, output channels, output height/width
int indIOioC , indIiH , indWmC , indWiC , indWkH , indOoH ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv2d ( isNCHW , * input , * gradO , bS , iC , iH , iW , oC , oH , oW , indIOioC , indIiH , indWiC , indWmC , indWkH , indOoH ) ;
mC = weightsDepth - > sizeAt ( indWmC ) ; // channels multiplier
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedWeightsDShape = { kH , kW , iC , mC } ;
REQUIRE_TRUE ( weightsDepth - > isSameShape ( expectedWeightsDShape ) , 0 , " SCONV2D_BP OP: wrong shape of weightsDepth array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsDShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsDepth ) . c_str ( ) ) ;
REQUIRE_TRUE ( gradWD - > isSameShape ( expectedWeightsDShape ) , 0 , " SCONV2D_BP OP: wrong shape of gradWD array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsDShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( gradWD ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
if ( weightsPoint ) {
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedWeightsPShape = { 1 , 1 , iC * mC , oC } ;
REQUIRE_TRUE ( weightsPoint - > isSameShape ( expectedWeightsPShape ) , 0 , " SCONV2D_BP OP: wrong shape of weightsPoint array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsPShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsPoint ) . c_str ( ) ) ;
REQUIRE_TRUE ( gradWP - > isSameShape ( expectedWeightsPShape ) , 0 , " SCONV2D_BP OP: wrong shape of gradWP array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsPShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( gradWP ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
}
if ( bias ) {
REQUIRE_TRUE ( oC = = bias - > lengthOf ( ) , 0 , " SCONV2D_BP OP: length of bias array must be equal to outChannels, but got %i instead " , bias - > lengthOf ( ) ) ;
REQUIRE_TRUE ( oC = = gradB - > lengthOf ( ) , 0 , " SCONV2D_BP OP: length of biases gradients array must be equal to outChannels, but got %i instead " , gradB - > lengthOf ( ) ) ;
}
// if (iC == 1) {
// nd4j_debug(" SCONV2D_BP OP: for input_channels=1 this op is equivalent to standard conv2d_bp \n","");
2020-03-02 10:49:41 +01:00
// sd::ops::conv2d_bp op;
2019-06-06 14:21:15 +02:00
// return op.execute(&block);
// }
// ----- if weightsPoint is present, perform pointwise backprop first and calculate gradWP at this step ----- //
if ( weightsPoint ) {
auto resultFFShape = isNCHW ? std : : vector < Nd4jLong > ( { bS , mC * iC , oH , oW } ) : std : : vector < Nd4jLong > ( { bS , oH , oW , mC * iC } ) ;
auto resultFF = NDArrayFactory : : create_ ( input - > ordering ( ) , resultFFShape , input - > dataType ( ) , block . launchContext ( ) ) ;
2019-06-15 13:34:34 +02:00
ConvolutionUtils : : sconv2d ( block , input , weightsDepth , nullptr , nullptr , resultFF , kH , kW , sH , sW , pH , pW , dH , dW , isSameMode , isNCHW ) ;
2019-06-06 14:21:15 +02:00
auto gradIDepthShape = ShapeUtils : : composeShapeUsingDimsAndIdx ( { bS , iC * mC , oH , oW , 0 , indIOioC , indIiH , indIiH + 1 } ) ;
auto gradIDepth = NDArrayFactory : : create_ ( resultFF - > ordering ( ) , gradIDepthShape , resultFF - > dataType ( ) , block . launchContext ( ) ) ; // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW)
2019-06-15 13:34:34 +02:00
ConvolutionUtils : : conv2dBP ( block , resultFF , weightsPoint , bias , gradO , gradIDepth , gradWP , gradB , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , isSameMode , isNCHW ) ; // in this case oH=iH and oW=iW
2019-06-06 14:21:15 +02:00
gradO = gradIDepth ;
bias = gradB = nullptr ; // if pointwise backprop was done then don't calculate gradB at depthwise_conv2d_bp step
delete resultFF ;
}
// ----- apply depthwise_conv2d_bp ----- //
2019-06-15 13:34:34 +02:00
ConvolutionUtils : : depthwiseConv2dBP ( block , input , weightsDepth , bias , gradO , gradI , gradWD , gradB , kH , kW , sH , sW , pH , pW , dH , dW , isSameMode , isNCHW ) ;
2019-06-06 14:21:15 +02:00
if ( weightsPoint )
delete gradO ;
return Status : : OK ( ) ;
}
DECLARE_SHAPE_FN ( sconv2d_bp ) {
auto inputShapeInfo = inputShape - > at ( 0 ) ; // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
2019-11-21 20:17:30 +01:00
auto gradOShapeInfo = inputShape - > at ( 1 ) ; // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next
2019-06-06 14:21:15 +02:00
auto weightsDShapeInfo = inputShape - > at ( 2 ) ; // [kH, kW, iC, mC] always
Nd4jLong * weightsPShapeInfo = nullptr ; // [1, 1, iC*mC, oC] always
Nd4jLong * biasShapeInfo = nullptr ; // [oC], oC = iC*mC if weightsPoint=nullptr
if ( block . width ( ) = = 4 ) {
if ( inputShape - > at ( 3 ) [ 0 ] = = 4 )
weightsPShapeInfo = inputShape - > at ( 3 ) ;
else
biasShapeInfo = inputShape - > at ( 3 ) ;
}
else if ( block . width ( ) = = 5 ) {
weightsPShapeInfo = inputShape - > at ( 3 ) ;
biasShapeInfo = inputShape - > at ( 4 ) ;
}
const int rank = 4 ;
REQUIRE_TRUE ( inputShapeInfo [ 0 ] = = rank , 0 , " SCONV2D_BP OP: rank of input array must be equal to %i, but got %i instead ! " , rank , inputShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( gradOShapeInfo [ 0 ] = = rank , 0 , " SCONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead ! " , rank , gradOShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( weightsDShapeInfo [ 0 ] = = rank , 0 , " SCONV2D_BP OP: rank of weightsDepth array must be equal to %i, but got %i instead ! " , rank , weightsDShapeInfo [ 0 ] ) ;
if ( weightsPShapeInfo )
REQUIRE_TRUE ( weightsPShapeInfo [ 0 ] = = rank , 0 , " SCONV2D_BP OP: rank of weightsPoint array must be equal to %i, but got %i instead ! " , rank , weightsPShapeInfo [ 0 ] ) ;
if ( biasShapeInfo )
REQUIRE_TRUE ( biasShapeInfo [ 0 ] = = 1 | | biasShapeInfo [ 0 ] = = 2 , 0 , " SCONV2D_BP OP: rank of biases array must be 1 or 2, but got %i instead ! " , biasShapeInfo [ 0 ] ) ; ;
int kH = INT_ARG ( 0 ) ; // filter(kernel) height
int kW = INT_ARG ( 1 ) ; // filter(kernel) width
int sH = INT_ARG ( 2 ) ; // strides height
int sW = INT_ARG ( 3 ) ; // strides width
int pH = INT_ARG ( 4 ) ; // paddings height
int pW = INT_ARG ( 5 ) ; // paddings width
int dH = INT_ARG ( 6 ) ; // dilations height
int dW = INT_ARG ( 7 ) ; // dilations width
int isSameMode = INT_ARG ( 8 ) ; // 0-VALID, 1-SAME
int isNCHW = block . getIArguments ( ) - > size ( ) > 9 ? ! INT_ARG ( 9 ) : 1 ; // INT_ARG(9): 0-NCHW, 1-NHWC
int indIOioC , indIiH , indWmC ( 3 ) ;
if ( ! isNCHW ) {
indIOioC = 3 ; indIiH = 1 ;
}
else {
indIOioC = 1 ; indIiH = 2 ;
}
const int bS = inputShapeInfo [ 1 ] ; // batch size
const int iH = inputShapeInfo [ indIiH + 1 ] ; // input height
const int iW = inputShapeInfo [ indIiH + 2 ] ; // input width
const int iC = inputShapeInfo [ indIOioC + 1 ] ; // input channels
const int mC = weightsDShapeInfo [ indWmC + 1 ] ; // channel multiplier
const int oC = weightsPShapeInfo ? weightsPShapeInfo [ indWmC + 1 ] : iC * mC ; // output channels (oC or iC*mC)
int trueoH , trueoW ; // true output height, width
ConvolutionUtils : : calcOutSizePool2D ( trueoH , trueoW , kH , kW , sH , sW , pH , pW , dH , dW , iH , iW , isSameMode ) ;
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedGradOShapeInfo = ShapeUtils : : composeShapeUsingDimsAndIdx ( { bS , oC , trueoH , trueoW , 0 , indIOioC , indIiH , indIiH + 1 } ) ;
REQUIRE_TRUE ( ShapeUtils : : areShapesEqual ( gradOShapeInfo , expectedGradOShapeInfo ) , 0 , " SCONV2D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedGradOShapeInfo ) . c_str ( ) , ShapeUtils : : shapeAsString ( gradOShapeInfo ) . c_str ( ) ) ;
std : : vector < Nd4jLong > expectedWeightsDShape = { kH , kW , iC , mC } ;
REQUIRE_TRUE ( ShapeUtils : : areShapesEqual ( weightsDShapeInfo , expectedWeightsDShape ) , 0 , " SCONV2D_BP OP: wrong shape of depth weights array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsDShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsDShapeInfo ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
if ( weightsPShapeInfo ) {
2020-03-03 05:32:37 +01:00
std : : vector < Nd4jLong > expectedWeightsPShape = { 1 , 1 , iC * mC , oC } ;
REQUIRE_TRUE ( ShapeUtils : : areShapesEqual ( weightsPShapeInfo , expectedWeightsPShape ) , 0 , " SCONV2D_BP OP: wrong shape of point array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsPShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weightsPShapeInfo ) . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
}
if ( biasShapeInfo )
REQUIRE_TRUE ( ( biasShapeInfo [ 0 ] = = 1 | | biasShapeInfo [ 0 ] = = 2 ) & & oC = = shape : : length ( biasShapeInfo ) , 0 , " SCONV2D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , biasShapeInfo [ 0 ] , shape : : length ( biasShapeInfo ) ) ;
auto gradIshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( inputShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
auto gradWDshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( weightsDShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
Nd4jLong * gradWPshapeInfo ( nullptr ) , * gradBshapeInfo ( nullptr ) ;
if ( weightsPShapeInfo & & biasShapeInfo ) {
gradWPshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( weightsPShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
gradBshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( biasShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
return SHAPELIST ( CONSTANT ( gradIshapeInfo ) , CONSTANT ( gradWDshapeInfo ) , CONSTANT ( gradWPshapeInfo ) , CONSTANT ( gradBshapeInfo ) ) ;
}
if ( weightsPShapeInfo & & ! biasShapeInfo ) {
gradWPshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( weightsPShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
return SHAPELIST ( CONSTANT ( gradIshapeInfo ) , CONSTANT ( gradWDshapeInfo ) , CONSTANT ( gradWPshapeInfo ) ) ;
}
if ( ! weightsPShapeInfo & & biasShapeInfo ) {
gradBshapeInfo = ShapeBuilders : : copyShapeInfoAndType ( biasShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
return SHAPELIST ( CONSTANT ( gradIshapeInfo ) , CONSTANT ( gradWDshapeInfo ) , CONSTANT ( gradBshapeInfo ) ) ;
}
return SHAPELIST ( CONSTANT ( gradIshapeInfo ) , CONSTANT ( gradWDshapeInfo ) ) ;
}
}
}
# endif