97 lines
3.9 KiB
C++
97 lines
3.9 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// Created by george@skymind.io on 2/21/2018.
|
||
|
//
|
||
|
|
||
|
#include <ops/declarable/CustomOperations.h>
|
||
|
#include <ops/declarable/helpers/segment.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
CUSTOM_OP_IMPL(segment_sum, 2, 1, false, 0, 0) {
|
||
|
auto input = INPUT_VARIABLE(0);
|
||
|
auto idxSegments = INPUT_VARIABLE(1);
|
||
|
auto segmentedOutput = OUTPUT_VARIABLE(0);
|
||
|
REQUIRE_TRUE(idxSegments->isVector(), 0, "segment_sum: segment indexes array should be a vector, but it rank is %i.", idxSegments->rankOf());
|
||
|
REQUIRE_TRUE(idxSegments->lengthOf() == input->sizeAt(0), 0, "segment_sum: segment indexes array length should be equal to the input first dimension, but %i != %i.", idxSegments->lengthOf(), input->sizeAt(0));
|
||
|
|
||
|
auto expected = NDArrayFactory::create(input->dataType(), 0.f, block.launchContext());
|
||
|
auto wrong = NDArrayFactory::create(input->dataType(), 0.f, block.launchContext());
|
||
|
|
||
|
REQUIRE_TRUE(helpers::segmentIndicesValidate(block.launchContext(), idxSegments, expected, wrong), 0, "segment_sum: segment indices should be arranged, but %2.1f > %2.1f", expected.e<float>(0), wrong.e<float>(0));
|
||
|
|
||
|
segmentedOutput->nullify();
|
||
|
helpers::segmentSumFunctor(block.launchContext(), input, idxSegments, segmentedOutput);
|
||
|
|
||
|
return ND4J_STATUS_OK;
|
||
|
}
|
||
|
|
||
|
DECLARE_SHAPE_FN(segment_sum) {
|
||
|
auto idxVector = INPUT_VARIABLE(1);
|
||
|
|
||
|
auto in = inputShape->at(0);
|
||
|
int outRank = shape::rank(in);
|
||
|
Nd4jLong* outputShape = nullptr;
|
||
|
int val = (*idxVector).e<int>(idxVector->lengthOf() - 1);
|
||
|
|
||
|
int numOfClasses = static_cast<int>(val) + 1;
|
||
|
|
||
|
ALLOCATE(outputShape, block.getWorkspace(), shape::shapeInfoLength(outRank), Nd4jLong);
|
||
|
|
||
|
outputShape[0] = outRank;
|
||
|
outputShape[1] = numOfClasses;
|
||
|
for(int i = 1; i < outRank; ++i)
|
||
|
outputShape[i + 1] = shape::sizeAt(in, i);
|
||
|
|
||
|
ShapeUtils::updateStridesAndType(outputShape, in, shape::order(in));
|
||
|
|
||
|
return SHAPELIST(CONSTANT(outputShape));
|
||
|
}
|
||
|
|
||
|
CUSTOM_OP_IMPL(segment_sum_bp, 3, 2, false, 0, 0) {
|
||
|
|
||
|
return helpers::segmentSumFunctorBP(block.launchContext(), INPUT_VARIABLE(0), INPUT_VARIABLE(1), INPUT_VARIABLE(2), OUTPUT_VARIABLE(0));
|
||
|
}
|
||
|
DECLARE_SHAPE_FN(segment_sum_bp){
|
||
|
Nd4jLong* in = inputShape->at(0);
|
||
|
Nd4jLong* inIdx = inputShape->at(1);
|
||
|
|
||
|
Nd4jLong* outShape;
|
||
|
Nd4jLong* outIndex;
|
||
|
COPY_SHAPE(in, outShape);
|
||
|
COPY_SHAPE(inIdx, outIndex);
|
||
|
return SHAPELIST(CONSTANT(outShape), CONSTANT(outIndex));
|
||
|
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(segment_sum) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
||
|
->setSameMode(true);
|
||
|
}
|
||
|
DECLARE_TYPES(segment_sum_bp) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
||
|
->setAllowedOutputTypes(0, {ALL_FLOATS})
|
||
|
->setAllowedOutputTypes(1, {ALL_INTS})
|
||
|
->setSameMode(false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|