105 lines
3.6 KiB
C++
105 lines
3.6 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author raver119@gmail.com
|
||
|
// modified by sgazeos@gmail.com with backprop implementation.
|
||
|
//
|
||
|
#include <op_boilerplate.h>
|
||
|
#if NOT_EXCLUDED(OP_floormod)
|
||
|
|
||
|
#include <ops/declarable/generic/helpers/BroadcastHelper.h>
|
||
|
#include <ops/declarable/CustomOperations.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
BROADCASTABLE_OP_IMPL(floormod, 0, 0) {
|
||
|
auto x = INPUT_VARIABLE(0);
|
||
|
auto y = INPUT_VARIABLE(1);
|
||
|
auto z = OUTPUT_VARIABLE(0);
|
||
|
|
||
|
BROADCAST_CHECK_EMPTY(x,y,z);
|
||
|
|
||
|
REQUIRE_TRUE(!y->isB(), 0, "FLOORMOD OP: you can't divide by bool array!");
|
||
|
auto tZ = BroadcastHelper::broadcastApply(BROADCAST(FloorMod), x, y, z);
|
||
|
if (tZ == nullptr)
|
||
|
return ND4J_STATUS_KERNEL_FAILURE;
|
||
|
else if (tZ != z) {
|
||
|
OVERWRITE_RESULT(tZ);
|
||
|
}
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(floormod) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(0, DataType::ANY)
|
||
|
->setAllowedInputTypes(1, DataType::ANY)
|
||
|
->setAllowedOutputTypes(0, DataType::INHERIT);
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(floormod_bp) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS});
|
||
|
}
|
||
|
|
||
|
CUSTOM_OP_IMPL(floormod_bp, 3, 2, false, 0, 0) {
|
||
|
auto x = INPUT_VARIABLE(0);
|
||
|
auto y = INPUT_VARIABLE(1);
|
||
|
auto epsNext = INPUT_VARIABLE(2);
|
||
|
|
||
|
auto gradX = OUTPUT_VARIABLE(0);
|
||
|
auto gradY = OUTPUT_VARIABLE(1);
|
||
|
gradX->assign(epsNext);
|
||
|
nd4j::ops::floormod op;
|
||
|
std::unique_ptr<ResultSet> tmpResult(op.execute({x, y}, {}, {}, {}));
|
||
|
|
||
|
if (gradY->rankOf() == gradX->rankOf())
|
||
|
epsNext->applyPairwiseTransform(pairwise::Multiply, tmpResult->at(0), gradY, nullptr);
|
||
|
else // epsNext is greater than gradY
|
||
|
{
|
||
|
std::vector<Nd4jLong> dims(epsNext->rankOf() * 2);
|
||
|
Nd4jLong gap = epsNext->rankOf() - gradY->rankOf();
|
||
|
for (Nd4jLong d = 0; d < gap; d++) {
|
||
|
dims[d * 2 + 1] = 1;
|
||
|
}
|
||
|
auto tempIn((*tmpResult->at(0))(dims));
|
||
|
(*epsNext)(dims).applyPairwiseTransform(pairwise::Multiply, &tempIn, gradY, nullptr);
|
||
|
}
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
DECLARE_SHAPE_FN(floormod_bp) {
|
||
|
auto x = inputShape->at(0);
|
||
|
auto y = inputShape->at(1);
|
||
|
auto e = inputShape->at(2);
|
||
|
|
||
|
// eps always has shape of x
|
||
|
// grad always has shape of y
|
||
|
|
||
|
Nd4jLong *shapeE;
|
||
|
Nd4jLong *shapeG;
|
||
|
|
||
|
COPY_SHAPE(x, shapeE);
|
||
|
COPY_SHAPE(y, shapeG);
|
||
|
|
||
|
return SHAPELIST(CONSTANT(shapeE), CONSTANT(shapeG));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|