cavis/libnd4j/include/ops/declarable/helpers/cpu/svd.cpp

1001 lines
32 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 03.01.2018
//
#include <svd.h>
#include <NDArrayFactory.h>
#include <helpers/jacobiSVD.h>
#include <helpers/biDiagonalUp.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
SVD<T>::SVD(const NDArray& matrix, const int switchSize, const bool calcU, const bool calcV, const bool fullUV ) {
if(matrix.rankOf() != 2 || matrix.isScalar())
throw std::runtime_error("ops::helpers::SVD constructor: input array must be 2D matrix !");
const int rows = matrix.sizeAt(0);
const int cols = matrix.sizeAt(1);
if(cols > rows) {
_transp = true;
_diagSize = rows;
}
else {
_transp = false;
_diagSize = cols;
}
_switchSize = switchSize;
_calcU = calcU;
_calcV = calcV;
_fullUV = fullUV;
if (_transp)
math::nd4j_swap<bool>(_calcU, _calcV);
_s = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize, 1}, matrix.getContext());
_m = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize + 1, _diagSize}, matrix.getContext());
_m.assign(0.);
if (_calcU)
_u = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize + 1, _diagSize + 1}, matrix.getContext());
else
_u = NDArrayFactory::create<T>(matrix.ordering(), {2, _diagSize + 1}, matrix.getContext());
_u.assign(0.);
if (_calcV) {
_v = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize, _diagSize}, matrix.getContext());
_v.assign(0.);
}
evalData(matrix);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
SVD<T>::SVD(const NDArray& matrix, const int switchSize, const bool calcU, const bool calcV, const bool fullUV, const char t) {
if(matrix.rankOf() != 2 || matrix.isScalar())
throw std::runtime_error("ops::helpers::SVD constructor: input array must be 2D matrix !");
const int rows = matrix.sizeAt(0);
const int cols = matrix.sizeAt(1);
if(cols > rows) {
_transp = true;
_diagSize = rows;
}
else {
_transp = false;
_diagSize = cols;
}
_switchSize = switchSize;
_calcU = calcU;
_calcV = calcV;
_fullUV = fullUV;
if (_transp)
math::nd4j_swap<bool>(_calcU, _calcV);
_s = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize, 1}, matrix.getContext());
_m = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize + 1, _diagSize}, matrix.getContext());
_m.assign(0.f);
if (_calcU)
_u = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize + 1, _diagSize + 1}, matrix.getContext());
else
_u = NDArrayFactory::create<T>(matrix.ordering(), {2, _diagSize + 1}, matrix.getContext());
_u.assign(0.);
if (_calcV) {
_v = NDArrayFactory::create<T>(matrix.ordering(), {_diagSize, _diagSize}, matrix.getContext());
_v.assign(0.);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void SVD<T>::deflation1(int col1, int shift, int ind, int size) {
if(ind <= 0)
throw std::runtime_error("ops::helpers::SVD::deflation1 method: input int must satisfy condition ind > 0 !");
int first = col1 + shift;
T cos = _m.e<T>(first, first);
T sin = _m.e<T>(first+ind, first);
T denom = math::nd4j_sqrt<T, T>(cos*cos + sin*sin);
if (denom == (T)0.) {
_m.p(first+ind, first+ind, 0.f);
return;
}
cos /= denom;
sin /= denom;
_m.p(first,first, denom);
_m.p(first+ind, first, 0.f);
_m.p(first+ind, first+ind, 0.f);
auto rotation = NDArrayFactory::create<T>(_m.ordering(), {2, 2}, _m.getContext());
rotation.p(0, 0, cos);
rotation.p(0, 1, -sin);
rotation.p(1, 0, sin);
rotation.p(1, 1, cos);
if (_calcU) {
auto temp = _u({col1,col1+size+1, 0,0}, true);
JacobiSVD<T>::mulRotationOnRight(col1, col1+ind, temp, rotation);
}
else
JacobiSVD<T>::mulRotationOnRight(col1, col1+ind, _u, rotation);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void SVD<T>::deflation2(int col1U , int col1M, int row1W, int col1W, int ind1, int ind2, int size) {
if(ind1 >= ind2)
throw std::runtime_error("ops::helpers::SVD::deflation2 method: input intes must satisfy condition ind1 < ind2 !");
if(size <= 0)
throw std::runtime_error("ops::helpers::SVD::deflation2 method: input size must satisfy condition size > 0 !");
T cos = _m.e<T>(col1M+ind1, col1M);
T sin = _m.e<T>(col1M+ind2, col1M);
T denom = math::nd4j_sqrt<T,T>(cos*cos + sin*sin);
if (denom == (T)0.) {
_m.p(col1M + ind1, col1M + ind1, _m.e<T>(col1M + ind2, col1M + ind2));
return;
}
cos /= denom;
sin /= denom;
_m.p(col1M + ind1, col1M, denom);
_m.p(col1M + ind2, col1M + ind2, _m.e<T>(col1M + ind1, col1M + ind1));
_m.p(col1M + ind2, col1M, 0.f);
auto rotation = NDArrayFactory::create<T>(_m.ordering(), {2, 2}, _m.getContext());
rotation.p(0,0, cos);
rotation.p(1,1, cos);
rotation.p(0,1, -sin);
rotation.p(1,0, sin);
if (_calcU) {
auto temp = _u({col1U,col1U+size+1, 0,0}, true);
JacobiSVD<T>::mulRotationOnRight(col1U+ind1, col1U+ind2, temp, rotation);
}
else
JacobiSVD<T>::mulRotationOnRight(col1U+ind1, col1U+ind2, _u, rotation);
if (_calcV) {
auto temp = _v({row1W,row1W+size, 0,0}, true);
JacobiSVD<T>::mulRotationOnRight(col1W+ind1, col1W+ind2, temp, rotation);
}
}
//////////////////////////////////////////////////////////////////////////
// has effect on block from (col1+shift, col1+shift) to (col2+shift, col2+shift) inclusively
template <typename T>
void SVD<T>::deflation(int col1, int col2, int ind, int row1W, int col1W, int shift)
{
const int len = col2 + 1 - col1;
auto colVec0 = new NDArray(_m({col1+shift,col1+shift+len, col1+shift,col1+shift+1}, true));
auto diagInterval = _m({col1+shift, col1+shift+len, col1+shift,col1+shift+len}, true).diagonal('c');
const T almostZero = DataTypeUtils::min<T>();
T maxElem;
if(len == 1)
maxElem = math::nd4j_abs<T>(diagInterval->template e<T>(0));
else
maxElem = (*diagInterval)({1,-1, 0,0}, true).reduceNumber(reduce::AMax).template e<T>(0);
T maxElem0 = colVec0->reduceNumber(reduce::AMax).template e<T>(0);
T eps = math::nd4j_max<T>(almostZero, DataTypeUtils::eps<T>() * maxElem);
T epsBig = (T)8. * DataTypeUtils::eps<T>() * math::nd4j_max<T>(maxElem0, maxElem);
if(diagInterval->template e<T>(0) < epsBig)
diagInterval->p(Nd4jLong(0), epsBig);
for(int i=1; i < len; ++i)
if(math::nd4j_abs<T>(colVec0->template e<T>(i)) < eps)
colVec0->p(i, 0.f);
for(int i=1; i < len; i++)
if(diagInterval->template e<T>(i) < epsBig) {
deflation1(col1, shift, i, len);
for(int i = 0; i < len; ++i)
diagInterval->p(i, _m.e<T>(col1+shift+i,col1+shift+i));
}
{
bool totDefl = true;
for(int i=1; i < len; i++)
if(colVec0->template e<T>(i) >= almostZero) {
totDefl = false;
break;
}
int* permut = nullptr;
ALLOCATE(permut, _m.getContext()->getWorkspace(), 3*_diagSize, int);
{
permut[0] = 0;
int p = 1;
for(int i=1; i<len; ++i)
if(math::nd4j_abs<T>(diagInterval->template e<T>(i)) < almostZero)
permut[p++] = i;
int k = 1, m = ind+1;
for( ; p < len; ++p) {
if(k > ind)
permut[p] = m++;
else if(m >= len)
permut[p] = k++;
else if(diagInterval->template e<T>(k) < diagInterval->template e<T>(m))
permut[p] = m++;
else
permut[p] = k++;
}
}
if(totDefl) {
for(int i=1; i<len; ++i) {
int ki = permut[i];
if(math::nd4j_abs<T>(diagInterval->template e<T>(ki)) < almostZero || diagInterval->template e<T>(0) < diagInterval->template e<T>(ki))
permut[i-1] = permut[i];
else {
permut[i-1] = 0;
break;
}
}
}
int *tInd = permut + len;
int *tCol = permut + 2*len;
for(int m = 0; m < len; m++) {
tCol[m] = m;
tInd[m] = m;
}
for(int i = totDefl ? 0 : 1; i < len; i++) {
const int ki = permut[len - (totDefl ? i+1 : i)];
const int jac = tCol[ki];
T _e0 = diagInterval->template e<T>(jac);
//math::nd4j_swap<T>(diagInterval)(i), (*diagInterval)(jac));
diagInterval->p(jac, diagInterval->template e<T>(i));
diagInterval->p(i, _e0);
if(i!=0 && jac!=0) {
_e0 = colVec0->template e<T>(jac);
//math::nd4j_swap<T>((*colVec0)(i), (*colVec0)(jac));
colVec0->p(jac, colVec0->template e<T>(i));
colVec0->p(i, _e0);
}
if (_calcU) {
auto temp1 = _u({col1,col1+len+1, col1+i, col1+i+1}, true);
auto temp2 = _u({col1,col1+len+1, col1+jac,col1+jac+1}, true);
auto temp3 = temp1;
temp1.assign(temp2);
temp2.assign(temp3);
}
else {
auto temp1 = _u({0,2, col1+i, col1+i+1}, true);
auto temp2 = _u({0,2, col1+jac, col1+jac+1}, true);
auto temp3 = temp1;
temp1.assign(temp2);
temp2.assign(temp3);
}
if(_calcV) {
auto temp1 = _v({row1W,row1W+len, col1W+i, col1W+i+1}, true);
auto temp2 = _v({row1W,row1W+len, col1W+jac, col1W+jac+1}, true);
auto temp3 = temp1;
temp1.assign(temp2);
temp2.assign(temp3);
}
const int tI = tInd[i];
tCol[tI] = jac;
tCol[ki] = i;
tInd[jac] = tI;
tInd[i] = ki;
}
RELEASE(permut, _m.getContext());
}
{
int i = len-1;
while(i > 0 && (math::nd4j_abs<T>(diagInterval->template e<T>(i)) < almostZero || math::nd4j_abs<T>(colVec0->template e<T>(i)) < almostZero))
--i;
for(; i > 1; --i) {
if( (diagInterval->template e<T>(i) - diagInterval->template e<T>(i-1)) < DataTypeUtils::eps<T>()*maxElem ) {
if (math::nd4j_abs<T>(diagInterval->template e<T>(i) - diagInterval->template e<T>(i-1)) >= epsBig)
throw std::runtime_error("ops::helpers::SVD::deflation: diagonal elements are not properly sorted !");
deflation2(col1, col1 + shift, row1W, col1W, i-1, i, len);
}
}
}
delete colVec0;
delete diagInterval;
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
T SVD<T>::secularEq(const T diff, const NDArray& col0, const NDArray& diag, const NDArray& permut, const NDArray& diagShifted, const T shift) {
auto len = permut.lengthOf();
T res = 1.;
T item;
for(int i=0; i<len; ++i) {
auto j = permut.e<int>(i);
item = col0.e<T>(j) / ((diagShifted.e<T>(j) - diff) * (diag.e<T>(j) + shift + diff));
res += item * col0.e<T>(j);
}
return res;
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void SVD<T>::calcSingVals(const NDArray& col0, const NDArray& diag, const NDArray& permut, NDArray& singVals, NDArray& shifts, NDArray& mus) {
auto len = col0.lengthOf();
auto curLen = len;
while(curLen > 1 && col0.e<T>(curLen-1) == (T)0.f)
--curLen;
for (int k = 0; k < len; ++k) {
if (col0.e<T>(k) == (T)0.f || curLen==1) {
singVals.p(k, k==0 ? col0.e<T>(0) : diag.e<T>(k));
mus.p(k, 0.f);
shifts.p(k, k==0 ? col0.e<T>(0) : diag.e<T>(k));
continue;
}
T left = diag.e<T>(k);
T right;
if(k==curLen-1)
right = diag.e<T>(curLen-1) + col0.reduceNumber(reduce::Norm2).e<T>(0);
else {
int l = k+1;
while(col0.e<T>(l) == (T)0.f) {
++l;
if(l >= curLen)
throw std::runtime_error("ops::helpers::SVD::calcSingVals method: l >= curLen !");
}
right = diag.e<T>(l);
}
T mid = left + (right - left) / (T)2.;
T fMid = secularEq(mid, col0, diag, permut, diag, 0.);
T shift = (k == curLen-1 || fMid > (T)0.) ? left : right;
auto diagShifted = diag - shift;
T muPrev, muCur;
if (shift == left) {
muPrev = (right - left) * 0.1;
if (k == curLen-1)
muCur = right - left;
else
muCur = (right - left) * 0.5;
}
else {
muPrev = -(right - left) * 0.1;
muCur = -(right - left) * 0.5;
}
T fPrev = secularEq(muPrev, col0, diag, permut, diagShifted, shift);
T fCur = secularEq(muCur, col0, diag, permut, diagShifted, shift);
if (math::nd4j_abs<T>(fPrev) < math::nd4j_abs<T>(fCur)) {
math::nd4j_swap<T>(fPrev, fCur);
math::nd4j_swap<T>(muPrev, muCur);
}
bool useBisection = fPrev * fCur > (T)0.;
while (fCur != (T).0 &&
math::nd4j_abs<T>(muCur - muPrev) > (T)8. * DataTypeUtils::eps<T>() * math::nd4j_max<T>(math::nd4j_abs<T>(muCur), math::nd4j_abs<T>(muPrev))
&& math::nd4j_abs<T>(fCur - fPrev) > DataTypeUtils::eps<T>() && !useBisection) {
T a = (fCur - fPrev) / ((T)1./muCur - (T)1./muPrev);
T jac = fCur - a / muCur;
T muZero = -a/jac;
T fZero = secularEq(muZero, col0, diag, permut, diagShifted, shift);
muPrev = muCur;
fPrev = fCur;
muCur = muZero;
fCur = fZero;
if (shift == left && (muCur < (T)0. || muCur > right - left))
useBisection = true;
if (shift == right && (muCur < -(right - left) || muCur > (T)0.))
useBisection = true;
if (math::nd4j_abs<T>(fCur) > math::nd4j_abs<T>(fPrev))
useBisection = true;
}
if (useBisection) {
T leftShifted, rightShifted;
if (shift == left) {
leftShifted = DataTypeUtils::min<T>();
rightShifted = (k==curLen-1) ? right : ((right - left) * (T)0.6);
}
else {
leftShifted = -(right - left) * (T)0.6;
rightShifted = -DataTypeUtils::min<T>();
}
T fLeft = secularEq(leftShifted, col0, diag, permut, diagShifted, shift);
T fRight = secularEq(rightShifted, col0, diag, permut, diagShifted, shift);
// if(fLeft * fRight >= (T)0.)
// throw "ops::helpers::SVD::calcSingVals method: fLeft * fRight >= (T)0. !";
while (rightShifted - leftShifted > (T)2.f * DataTypeUtils::eps<T>() * math::nd4j_max<T>(math::nd4j_abs<T>(leftShifted), math::nd4j_abs<T>(rightShifted))) {
T midShifted = (leftShifted + rightShifted) / (T)2.;
fMid = secularEq(midShifted, col0, diag, permut, diagShifted, shift);
if (fLeft * fMid < (T)0.)
rightShifted = midShifted;
else {
leftShifted = midShifted;
fLeft = fMid;
}
}
muCur = (leftShifted + rightShifted) / (T)2.;
}
singVals.p(k, shift + muCur);
shifts.p(k, shift);
mus.p(k, muCur);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void SVD<T>::perturb(const NDArray& col0, const NDArray& diag, const NDArray& permut, const NDArray& singVals, const NDArray& shifts, const NDArray& mus, NDArray& zhat) {
int n = col0.lengthOf();
int m = permut.lengthOf();
if(m==0) {
zhat.assign(0.);
return;
}
int last = permut.e<int>(m-1);
for (int k = 0; k < n; ++k) {
if (col0.e<T>(k) == (T)0.f)
zhat.p(k, (T)0.f);
else {
T dk = diag.e<T>(k);
T prod = (singVals.e<T>(last) + dk) * (mus.e<T>(last) + (shifts.e<T>(last) - dk));
for(int l = 0; l<m; ++l) {
int i = permut.e<int>(l);
if(i!=k) {
int j = i<k ? i : permut.e<int>(l-1);
prod *= ((singVals.e<T>(j)+dk) / ((diag.e<T>(i)+dk))) * ((mus.e<T>(j)+(shifts.e<T>(j)-dk)) / ((diag.e<T>(i)-dk)));
}
}
T tmp = math::nd4j_sqrt<T,T>(prod);
zhat.p(k, col0.e<T>(k) > (T)0.f ? tmp : -tmp);
}
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void SVD<T>::calcSingVecs(const NDArray& zhat, const NDArray& diag, const NDArray& perm, const NDArray& singVals,
const NDArray& shifts, const NDArray& mus, NDArray& U, NDArray& V) {
int n = zhat.lengthOf();
int m = perm.lengthOf();
for (int k = 0; k < n; ++k) {
auto colU = new NDArray(U({0,0, k,k+1}, true));
*colU = 0.;
NDArray* colV = nullptr;
if (_calcV) {
colV = new NDArray(V({0,0, k,k+1}, true));
*colV = 0.;
}
if (zhat.e<T>(k) == (T)0.f) {
colU->p(k, 1.f);
if (_calcV)
colV->p(k, 1.f);
}
else {
for(int l = 0; l < m; ++l) {
int i = perm.e<int>(l);
U.p(i,k, zhat.e<T>(i)/(((diag.e<T>(i) - shifts.e<T>(k)) - mus.e<T>(k)) )/( (diag.e<T>(i) + singVals.e<T>(k))));
}
U.p(n,k, 0.f);
*colU /= colU->reduceNumber(reduce::Norm2);
if (_calcV) {
for(int l = 1; l < m; ++l){
int i = perm.e<T>(l);
V.p(i,k, diag.e<T>(i) * zhat.e<T>(i) / (((diag.e<T>(i) - shifts.e<T>(k)) - mus.e<T>(k)) )/( (diag.e<T>(i) + singVals.e<T>(k))));
}
V.p(0,k, -1.f);
*colV /= colV->reduceNumber(reduce::Norm2);
}
}
delete colU;
if (_calcV)
delete colV;
}
auto colU = U({0,0, n,n+1}, true);
colU = 0.;
colU.p(n, 1.);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void SVD<T>::calcBlockSVD(int col1, int size, NDArray& U, NDArray& singVals, NDArray& V) {
const T almostZero = DataTypeUtils::min<T>();
auto col0 = _m({col1, col1+size, col1, col1+1}, true);
auto diagP = _m({col1, col1+size, col1, col1+size}, true).diagonal('c');
auto diag = *diagP;
delete diagP;
diag.p(Nd4jLong(0), T(0));
singVals = NDArrayFactory::create<T>(_m.ordering(), {size, 1}, _m.getContext());
U = NDArrayFactory::create<T>(_u.ordering(), {size+1, size+1}, _u.getContext());
if (_calcV)
V = NDArrayFactory::create<T>(_v.ordering(), {size, size}, _v.getContext());
int curSize = size;
while(curSize > 1 && diag.template e<T>(curSize-1) == (T)0.f)
--curSize;
int m = 0;
std::vector<T> indices;
for(int k = 0; k < curSize; ++k)
if(math::nd4j_abs<T>(col0.template e<T>(k)) > almostZero)
indices.push_back((T)k);
auto permut = NDArrayFactory::create<T>(_m.ordering(), {1, (int)indices.size()}, indices, _m.getContext());
auto shifts = NDArrayFactory::create<T>(_m.ordering(), {size, 1}, _m.getContext());
auto mus = NDArrayFactory::create<T>(_m.ordering(), {size, 1}, _m.getContext());
auto zhat = NDArrayFactory::create<T>(_m.ordering(), {size, 1}, _m.getContext());
calcSingVals(col0, diag, permut, singVals, shifts, mus);
perturb(col0, diag, permut, singVals, shifts, mus, zhat);
calcSingVecs(zhat, diag, permut, singVals, shifts, mus, U, V);
for(int i=0; i<curSize-1; ++i) {
if(singVals.e<T>(i) > singVals.e<T>(i+1)) {
T _e0 = singVals.e<T>(i);
T _e1 = singVals.e<T>(i+1);
//math::nd4j_swap<T>(singVals(i),singVals(i+1));
singVals.p(i, _e1);
singVals.p(i+1, _e0);
auto temp1 = U({0,0, i,i+1}, true);
auto temp2 = U({0,0, i+1,i+2}, true);
auto temp3 = temp1;
temp1.assign(temp2);
temp2.assign(temp3);
if(_calcV) {
auto temp1 = V({0,0, i,i+1}, true);
auto temp2 = V({0,0, i+1,i+2}, true);
auto temp3 = temp1;
temp1.assign(temp2);
temp2.assign(temp3);
}
}
}
auto temp1 = singVals({0,curSize, 0,0}, true);
for (int e = 0; e < curSize / 2; ++e) {
T tmp = temp1.e<T>(e);
temp1.p(e, temp1.e<T>(curSize-1-e));
temp1.p(curSize-1-e, tmp);
}
auto temp2 = U({0,0, 0,curSize}, true);
for(int i = 0; i < curSize/2; ++i) {
auto temp3 = temp2({0,0, i,i+1}, true);
auto temp4 = temp2({0,0, curSize-1-i,curSize-i}, true);
auto temp5 = temp3;
temp3.assign(temp4);
temp4.assign(temp5);
}
if (_calcV) {
auto temp2 = V({0,0, 0,curSize}, true);
for(int i = 0; i < curSize/2; ++i) {
auto temp3 = temp2({0,0, i,i+1}, true);
auto temp4 = temp2({0,0, curSize-1-i,curSize-i}, true);
auto temp5 = temp3;
temp3.assign(temp4);
temp4.assign(temp5);
}
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
void SVD<T>::DivideAndConquer(int col1, int col2, int row1W, int col1W, int shift) {
// requires rows = cols + 1;
const int n = col2 - col1 + 1;
const int k = n/2;
const T almostZero = DataTypeUtils::min<T>();
T alphaK;
T betaK;
T r0;
T lambda, phi, c0, s0;
auto l = NDArrayFactory::create<T>(_u.ordering(), {1, k}, _u.getContext());
auto f = NDArrayFactory::create<T>(_u.ordering(), {1, n-k-1}, _u.getContext());
if(n < _switchSize) {
JacobiSVD<T> jac(_m({col1,col1+n+1, col1,col1+n}, true), _calcU, _calcV, _fullUV);
if (_calcU) {
auto temp = _u({col1,col1+n+1, col1,col1+n+1}, true);
temp.assign(jac._u);
}
else {
auto temp1 = _u({0,1, col1,col1+n+1}, true);
temp1.assign(jac._u({0,1, 0,0}, true));
auto temp2 = _u({1,2, col1,col1+n+1}, true);
temp2.assign(jac._u({n,n+1, 0,0}, true));
}
if (_calcV) {
auto temp = _v({row1W,row1W+n, col1W,col1W+n}, true);
temp.assign(jac._v);
}
auto temp = _m({col1+shift,col1+shift+n+1, col1+shift,col1+shift+n}, true);
temp.assign(0.);
auto diag = _m.diagonal('c');
(*diag)({col1+shift, col1+shift+n, 0,0}, true).assign(jac._s({0,n, 0,0}, true));
delete diag;
return;
}
alphaK = _m.e<T>(col1 + k, col1 + k);
betaK = _m.e<T>(col1 + k + 1, col1 + k);
DivideAndConquer(k + 1 + col1, col2, k + 1 + row1W, k + 1 + col1W, shift);
DivideAndConquer(col1, k - 1 + col1, row1W, col1W + 1, shift + 1);
if (_calcU) {
lambda = _u.e<T>(col1 + k, col1 + k);
phi = _u.e<T>(col1 + k + 1, col2 + 1);
}
else {
lambda = _u.e<T>(1, col1 + k);
phi = _u.e<T>(0, col2 + 1);
}
r0 = math::nd4j_sqrt<T, T>((math::nd4j_abs<T>(alphaK * lambda) * math::nd4j_abs<T>(alphaK * lambda)) + math::nd4j_abs<T>(betaK * phi) * math::nd4j_abs<T>(betaK * phi));
if(_calcU) {
l.assign(_u({col1+k, col1+k+1, col1,col1+k}, true));
f.assign(_u({col1+k+1,col1+k+2, col1+k+1,col1+n}, true));
}
else {
l.assign(_u({1,2, col1, col1+k}, true));
f.assign(_u({0,1, col1+k+1, col1+n}, true));
}
// UofSVD.printIndexedBuffer();
// VofSVD.printIndexedBuffer();
// singVals.printIndexedBuffer();
// printf("!! \n");
if (_calcV)
_v.p(row1W+k, col1W, 1.f);
if (r0 < almostZero){
c0 = 1.;
s0 = 0.;
}
else {
c0 = alphaK * lambda / r0;
s0 = betaK * phi / r0;
}
if (_calcU) {
auto temp = _u({col1,col1+k+1, col1+k,col1+k+1}, true);
NDArray q1(temp);
for (int i = col1 + k - 1; i >= col1; --i) {
auto temp = _u({col1,col1+k+1, i+1,i+2}, true);
temp.assign(_u({col1, col1+k+1, i, i+1}, true));
}
auto temp1 = _u({col1,col1+k+1, col1,col1+1}, true);
temp1.assign(q1 * c0);
auto temp2 = _u({col1,col1+k+1, col2+1,col2+2}, true);
temp2.assign(q1 * (-s0));
auto temp3 = _u({col1+k+1,col1+n+1, col1, col1+1}, true);
temp3.assign(_u({col1+k+1, col1+n+1, col2+1, col2+2}, true) * s0);
auto temp4 =_u({col1+k+1,col1+n+1, col2+1,col2+2}, true);
temp4 *= c0;
}
else {
T q1 = _u.e<T>(0, col1 + k);
for (int i = col1 + k - 1; i >= col1; --i)
_u.p(0, i+1, _u.e<T>(0, i));
_u.p(0, col1, q1 * c0);
_u.p(0, col2+1, -q1*s0);
_u.p(1, col1, _u.e<T>(1, col2+1) * s0);
_u.p(1, col2 + 1, _u.e<T>(1, col2 + 1) * c0);
_u({1,2, col1+1, col1+k+1}, true) = 0.f;
_u({0,1, col1+k+1, col1+n}, true) = 0.f;
}
_m.p(col1 + shift, col1 + shift, r0);
auto temp1 = _m({col1+shift+1,col1+shift+k+1, col1+shift,col1+shift+1}, true);
temp1.assign(l*alphaK);
auto temp2 = _m({col1+shift+k+1,col1+shift+n, col1+shift,col1+shift+1}, true);
temp2.assign(f*betaK);
deflation(col1, col2, k, row1W, col1W, shift);
NDArray UofSVD, VofSVD, singVals;
calcBlockSVD(col1 + shift, n, UofSVD, singVals, VofSVD);
if(_calcU) {
auto pTemp = _u({col1, col1+n+1, col1,col1+n+1}, true);
auto temp = pTemp;
pTemp.assign(mmul(temp, UofSVD));
}
else {
auto pTemp = _u({0,0, col1,col1+n+1}, true);
auto temp = pTemp;
pTemp.assign(mmul(temp, UofSVD));
}
if (_calcV) {
auto pTemp = _v({row1W,row1W+n, row1W,row1W+n}, true);
auto temp = pTemp;
pTemp.assign(mmul(temp, VofSVD));
}
auto blockM = _m({col1+shift,col1+shift+n, col1+shift,col1+shift+n}, true);
blockM = 0.f;
auto diag = blockM.diagonal('c');
diag->assign(singVals);
delete diag;
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
void SVD<T>::exchangeUV(const HHsequence& hhU, const HHsequence& hhV, const NDArray& U, const NDArray& V) {
if (_calcU) {
int colsU = _fullUV ? hhU.rows() : _diagSize;
auto temp1 = NDArrayFactory::create<T>(_u.ordering(), {hhU.rows(), colsU}, _u.getContext());
temp1.setIdentity();
_u = temp1;
auto temp2 = _u({0,_diagSize, 0,_diagSize}, true);
temp2.assign(V({0,_diagSize, 0,_diagSize}, true));
const_cast<HHsequence&>(hhU).mulLeft(_u);
}
if (_calcV) {
int colsV = _fullUV ? hhV.rows() : _diagSize;
auto temp1 = NDArrayFactory::create<T>(_v.ordering(), {hhV.rows(), colsV}, _v.getContext());
temp1.setIdentity();
_v = temp1;
auto temp2 = _v({0,_diagSize, 0,_diagSize}, true);
temp2.assign(U({0,_diagSize, 0,_diagSize}, true));
const_cast<HHsequence&>(hhV).mulLeft(_v);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
void SVD<T>::evalData(const NDArray& matrix) {
const T almostZero = DataTypeUtils::min<T>();
if(matrix.sizeAt(1) < _switchSize) {
JacobiSVD<T> jac(matrix, _calcU, _calcV, _fullUV);
if(_calcU)
_u = jac._u;
if(_calcV)
_v = jac._v;
_s.assign(jac._s);
return;
}
T scale = matrix.reduceNumber(reduce::AMax).e<T>(0);
if(scale == (T)0.)
scale = 1.;
NDArray copy;
if(_transp) {
copy = NDArrayFactory::create<T>(matrix.ordering(), {matrix.sizeAt(1), matrix.sizeAt(0)}, matrix.getContext());
for(int i = 0; i < copy.sizeAt(0); ++i)
for(int j = 0; j < copy.sizeAt(1); ++j)
copy.p<T>(i, j, matrix.e<T>(j,i) / scale);
}
else
copy = matrix / scale;
BiDiagonalUp biDiag(copy);
_u = 0.;
_v = 0.;
auto temp1 = biDiag._HHbidiag.transpose();
auto temp2 = _m({0,_diagSize, 0,0}, true);
temp2.assign(temp1);
delete temp1;
auto temp3 = _m({_m.sizeAt(0)-1,_m.sizeAt(0), 0,0}, true);
temp3.assign(0.);
DivideAndConquer(0, _diagSize - 1, 0, 0, 0);
for (int i = 0; i < _diagSize; ++i) {
T a = math::nd4j_abs<T>(_m.e<T>(i, i));
_s.p(i, a * scale);
if (a < almostZero) {
auto temp = _s({i+1,_diagSize, 0,0}, true);
temp.assign(0.);
break;
}
else if (i == _diagSize-1)
break;
}
if(_transp)
exchangeUV(biDiag.makeHHsequence('v'), biDiag.makeHHsequence('u'), _v, _u);
else
exchangeUV(biDiag.makeHHsequence('u'), biDiag.makeHHsequence('v'), _u, _v);
}
BUILD_SINGLE_TEMPLATE(template class ND4J_EXPORT SVD,,FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
// svd operation, this function is not method of SVD class, it is standalone function
template <typename T>
static void svd_(const NDArray* x, const std::vector<NDArray*>& outArrs, const bool fullUV, const bool calcUV, const int switchNum) {
auto s = outArrs[0];
auto u = outArrs[1];
auto v = outArrs[2];
const int rank = x->rankOf();
const int sRank = rank - 1;
auto listX = x->allTensorsAlongDimension({rank-2, rank-1});
auto listS = s->allTensorsAlongDimension({sRank-1});
ResultSet* listU(nullptr), *listV(nullptr);
if(calcUV) {
listU = u->allTensorsAlongDimension({rank-2, rank-1});
listV = v->allTensorsAlongDimension({rank-2, rank-1});
}
for(int i = 0; i < listX->size(); ++i) {
// NDArray<T> matrix(x->ordering(), {listX->at(i)->sizeAt(0), listX->at(i)->sizeAt(1)}, block.getContext());
// matrix.assign(listX->at(i));
helpers::SVD<T> svdObj(*(listX->at(i)), switchNum, calcUV, calcUV, fullUV);
listS->at(i)->assign(svdObj._s);
if(calcUV) {
listU->at(i)->assign(svdObj._u);
listV->at(i)->assign(svdObj._v);
}
}
delete listX;
delete listS;
if(calcUV) {
delete listU;
delete listV;
}
}
void svd(nd4j::LaunchContext * context, const NDArray* x, const std::vector<NDArray*>& outArrs, const bool fullUV, const bool calcUV, const int switchNum) {
BUILD_SINGLE_SELECTOR(x->dataType(), svd_, (x, outArrs, fullUV, calcUV, switchNum), FLOAT_TYPES);
}
}
}
}