160 lines
6.4 KiB
C++
160 lines
6.4 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author sgazeos@gmail.com
|
||
|
//
|
||
|
|
||
|
#include <ops/declarable/helpers/roll.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
template <typename T>
|
||
|
static void rollFunctorLinear_(NDArray* input, NDArray* output, int shift, bool inplace){
|
||
|
auto source = input;
|
||
|
if (!inplace)
|
||
|
output->assign(input);
|
||
|
|
||
|
int fullLen = source->lengthOf();
|
||
|
int actualShift = shift; // % fullLen; // shift already non-negative then
|
||
|
if (actualShift < 0) {
|
||
|
actualShift -= fullLen * (actualShift / fullLen - 1);
|
||
|
}
|
||
|
else
|
||
|
actualShift %= fullLen;
|
||
|
|
||
|
if (actualShift) {
|
||
|
int shiftCount = fullLen / actualShift - 1;
|
||
|
int remainShift = fullLen % actualShift;
|
||
|
|
||
|
// stage 1) swap last actualShift elements with first ones.
|
||
|
PRAGMA_OMP_PARALLEL_FOR_IF(actualShift > Environment::getInstance()->elementwiseThreshold())
|
||
|
for (int e = 0; e < actualShift; ++e) {
|
||
|
int sourceIndex = fullLen - actualShift + e;
|
||
|
|
||
|
auto _e0 = output->e<T>(e);
|
||
|
auto _e1 = output->e<T>(sourceIndex);
|
||
|
|
||
|
//nd4j::math::nd4j_swap((*output)(e), (*output)(sourceIndex));
|
||
|
output->p<T>(e, _e1);
|
||
|
output->p<T>(sourceIndex, _e0);
|
||
|
}
|
||
|
|
||
|
// stage 2) swap swapped actualShift elements with rest remainShiftCount times.
|
||
|
PRAGMA_OMP_PARALLEL_FOR_IF(shiftCount > Environment::getInstance()->tadThreshold())
|
||
|
for (int count = 1; count < shiftCount; ++count) {
|
||
|
for (int e = 0; e < actualShift; ++e) {
|
||
|
int destinationIndex = fullLen - (count + 1) * actualShift + e;
|
||
|
int sourceIndex = fullLen - count * actualShift + e;
|
||
|
|
||
|
auto _e0 = output->e<T>(destinationIndex);
|
||
|
auto _e1 = output->e<T>(sourceIndex);
|
||
|
|
||
|
//nd4j::math::nd4j_swap((*output)(destinationIndex), (*output)(sourceIndex));
|
||
|
output->p<T>(destinationIndex, _e1);
|
||
|
output->p<T>(sourceIndex, _e0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// stage 3) swap remainer of items.
|
||
|
if (remainShift && shiftCount)
|
||
|
for (int i = actualShift; i < 2 * actualShift; ++i) {
|
||
|
auto _e0 = output->e<T>(i);
|
||
|
auto _e1 = output->e<T>(i + remainShift);
|
||
|
|
||
|
//nd4j::math::nd4j_swap((*output)(i), (*output)(i + remainShift));
|
||
|
|
||
|
output->p<T>(i, _e1);
|
||
|
output->p<T>(i + remainShift, _e0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void rollFunctorFull(nd4j::LaunchContext * context, NDArray* input, NDArray* output, int shift, std::vector<int> const& axes, bool inplace){
|
||
|
|
||
|
if (!inplace)
|
||
|
output->assign(input);
|
||
|
|
||
|
auto source = input;
|
||
|
for (int axe: axes) {
|
||
|
if (axe == source->rankOf() - 1) {// last dimension
|
||
|
std::unique_ptr<ResultSet> listOfTensors(source->allTensorsAlongDimension({axe}));
|
||
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension({axe}));
|
||
|
int fullLen = listOfTensors->size();
|
||
|
int theShift = shift;
|
||
|
if (theShift > 0) {
|
||
|
theShift %= fullLen;
|
||
|
}
|
||
|
else {
|
||
|
theShift -= fullLen * (theShift / fullLen - 1);
|
||
|
}
|
||
|
for (int k = 0; k < fullLen; k++) {
|
||
|
rollFunctorLinear(context, listOfTensors->at(k), listOfOutTensors->at(k), theShift, true);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
std::vector<int> dims(source->rankOf() - axe - 1);
|
||
|
for (int i = 0; i < dims.size(); ++i)
|
||
|
dims[i] = axe + 1 + i;
|
||
|
|
||
|
std::unique_ptr<ResultSet> listOfTensors(source->allTensorsAlongDimension({dims}));
|
||
|
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension({dims}));
|
||
|
|
||
|
int fullLen = listOfTensors->size();
|
||
|
int sizeAt = input->sizeAt(axe);
|
||
|
|
||
|
int theShift = shift;
|
||
|
|
||
|
if (theShift > 0) {
|
||
|
theShift %= sizeAt;
|
||
|
}
|
||
|
else {
|
||
|
theShift -= sizeAt * (theShift / sizeAt - 1);
|
||
|
}
|
||
|
|
||
|
if (theShift) {
|
||
|
for (int dim = 0; dim < fullLen / sizeAt; ++dim) {
|
||
|
for (int e = theShift; e < sizeAt - theShift; ++e) {
|
||
|
auto sourceM = listOfTensors->at(dim * sizeAt + e - theShift);
|
||
|
auto targetM = listOfOutTensors->at(dim * sizeAt + e);
|
||
|
sourceM->swapUnsafe(*targetM);
|
||
|
}
|
||
|
|
||
|
for (int e = 0; e < theShift; ++e) {
|
||
|
int sourceIndex = dim * sizeAt + sizeAt - theShift + e;
|
||
|
auto sourceM = listOfTensors->at(sourceIndex);
|
||
|
auto targetM = listOfOutTensors->at(dim * sizeAt + e);
|
||
|
|
||
|
sourceM->swapUnsafe(*targetM);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (!inplace)
|
||
|
source = output;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void rollFunctorLinear(nd4j::LaunchContext * context, NDArray* input, NDArray* output, int shift, bool inplace){
|
||
|
BUILD_SINGLE_SELECTOR(input->dataType(), rollFunctorLinear_, (input, output, shift, inplace), LIBND4J_TYPES);
|
||
|
}
|
||
|
|
||
|
BUILD_SINGLE_TEMPLATE(template void rollFunctorLinear_, (NDArray* input, NDArray* output, int shift, bool inplace), LIBND4J_TYPES);
|
||
|
}
|
||
|
}
|
||
|
}
|