cavis/libnd4j/include/ops/declarable/helpers/cpu/roll.cpp

160 lines
6.4 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/roll.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static void rollFunctorLinear_(NDArray* input, NDArray* output, int shift, bool inplace){
auto source = input;
if (!inplace)
output->assign(input);
int fullLen = source->lengthOf();
int actualShift = shift; // % fullLen; // shift already non-negative then
if (actualShift < 0) {
actualShift -= fullLen * (actualShift / fullLen - 1);
}
else
actualShift %= fullLen;
if (actualShift) {
int shiftCount = fullLen / actualShift - 1;
int remainShift = fullLen % actualShift;
// stage 1) swap last actualShift elements with first ones.
PRAGMA_OMP_PARALLEL_FOR_IF(actualShift > Environment::getInstance()->elementwiseThreshold())
for (int e = 0; e < actualShift; ++e) {
int sourceIndex = fullLen - actualShift + e;
auto _e0 = output->e<T>(e);
auto _e1 = output->e<T>(sourceIndex);
//nd4j::math::nd4j_swap((*output)(e), (*output)(sourceIndex));
output->p<T>(e, _e1);
output->p<T>(sourceIndex, _e0);
}
// stage 2) swap swapped actualShift elements with rest remainShiftCount times.
PRAGMA_OMP_PARALLEL_FOR_IF(shiftCount > Environment::getInstance()->tadThreshold())
for (int count = 1; count < shiftCount; ++count) {
for (int e = 0; e < actualShift; ++e) {
int destinationIndex = fullLen - (count + 1) * actualShift + e;
int sourceIndex = fullLen - count * actualShift + e;
auto _e0 = output->e<T>(destinationIndex);
auto _e1 = output->e<T>(sourceIndex);
//nd4j::math::nd4j_swap((*output)(destinationIndex), (*output)(sourceIndex));
output->p<T>(destinationIndex, _e1);
output->p<T>(sourceIndex, _e0);
}
}
// stage 3) swap remainer of items.
if (remainShift && shiftCount)
for (int i = actualShift; i < 2 * actualShift; ++i) {
auto _e0 = output->e<T>(i);
auto _e1 = output->e<T>(i + remainShift);
//nd4j::math::nd4j_swap((*output)(i), (*output)(i + remainShift));
output->p<T>(i, _e1);
output->p<T>(i + remainShift, _e0);
}
}
}
void rollFunctorFull(nd4j::LaunchContext * context, NDArray* input, NDArray* output, int shift, std::vector<int> const& axes, bool inplace){
if (!inplace)
output->assign(input);
auto source = input;
for (int axe: axes) {
if (axe == source->rankOf() - 1) {// last dimension
std::unique_ptr<ResultSet> listOfTensors(source->allTensorsAlongDimension({axe}));
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension({axe}));
int fullLen = listOfTensors->size();
int theShift = shift;
if (theShift > 0) {
theShift %= fullLen;
}
else {
theShift -= fullLen * (theShift / fullLen - 1);
}
for (int k = 0; k < fullLen; k++) {
rollFunctorLinear(context, listOfTensors->at(k), listOfOutTensors->at(k), theShift, true);
}
}
else {
std::vector<int> dims(source->rankOf() - axe - 1);
for (int i = 0; i < dims.size(); ++i)
dims[i] = axe + 1 + i;
std::unique_ptr<ResultSet> listOfTensors(source->allTensorsAlongDimension({dims}));
std::unique_ptr<ResultSet> listOfOutTensors(output->allTensorsAlongDimension({dims}));
int fullLen = listOfTensors->size();
int sizeAt = input->sizeAt(axe);
int theShift = shift;
if (theShift > 0) {
theShift %= sizeAt;
}
else {
theShift -= sizeAt * (theShift / sizeAt - 1);
}
if (theShift) {
for (int dim = 0; dim < fullLen / sizeAt; ++dim) {
for (int e = theShift; e < sizeAt - theShift; ++e) {
auto sourceM = listOfTensors->at(dim * sizeAt + e - theShift);
auto targetM = listOfOutTensors->at(dim * sizeAt + e);
sourceM->swapUnsafe(*targetM);
}
for (int e = 0; e < theShift; ++e) {
int sourceIndex = dim * sizeAt + sizeAt - theShift + e;
auto sourceM = listOfTensors->at(sourceIndex);
auto targetM = listOfOutTensors->at(dim * sizeAt + e);
sourceM->swapUnsafe(*targetM);
}
}
}
}
if (!inplace)
source = output;
}
}
void rollFunctorLinear(nd4j::LaunchContext * context, NDArray* input, NDArray* output, int shift, bool inplace){
BUILD_SINGLE_SELECTOR(input->dataType(), rollFunctorLinear_, (input, output, shift, inplace), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void rollFunctorLinear_, (NDArray* input, NDArray* output, int shift, bool inplace), LIBND4J_TYPES);
}
}
}