cavis/libnd4j/include/ops/declarable/generic/transforms/cumsum.cpp

151 lines
5.1 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_cumsum)
#include <ops/declarable/helpers/prefix.h>
#include <ops/declarable/CustomOperations.h>
namespace nd4j {
namespace ops {
CONFIGURABLE_OP_IMPL(cumsum, 1, 1, true, 0, 2) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
const bool exclusive = INT_ARG(0) == 1;
const bool reverse = INT_ARG(1) == 1;
REQUIRE_TRUE(input->dataType() == output->dataType(), 0, "CumSum: input and output data types must be equal");
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
if(input->isEmpty()){
//No-op
return Status::OK();
}
2019-06-06 14:21:15 +02:00
if (block.getIArguments()->size() == 2 && block.width() == 1) {
// all at once case
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, input, output, exclusive, reverse);
}
else {
std::vector<int> dims(block.numI() - 2);
if (block.width() == 1) {
for (int e = 0; e < block.numI() - 2; e++)
dims[e] = INT_ARG(e + 2);
}
else {
auto ax = INPUT_VARIABLE(1);
dims = ax->template asVectorT<int>();
}
for (int e = 0; e < dims.size(); e++)
if (dims[e] < 0)
dims[e] += input->rankOf();
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, input, output, dims, exclusive, reverse);
}
return Status::OK();
}
DECLARE_TYPES(cumsum) {
getOpDescriptor()
->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS})
->setAllowedInputTypes(1, {ALL_INTS})
->setAllowedOutputTypes({ALL_FLOATS})
->setSameMode(false);
}
CUSTOM_OP_IMPL(cumsum_bp, 2, -1, true, 0, 2) {
auto input = INPUT_VARIABLE(0);
auto axis = block.width() == 3 ? INPUT_VARIABLE(1) : nullptr;
auto gradOut = block.width() == 3 ? INPUT_VARIABLE(2) : INPUT_VARIABLE(1);
auto output = OUTPUT_VARIABLE(0);
// output->assign(gradOut);
const bool exclusive = INT_ARG(0) == 1;
const bool reverse = INT_ARG(1) == 1;
std::vector<int> dims;
if (block.width() > 2) {
dims = axis->template asVectorT<int>();
OUTPUT_VARIABLE(1)->assign(1.0f);
} else if (int newSize = (block.numI() - 2)) {
dims.resize(newSize);
for (int e = 0; e < newSize; e++)
dims[e] = INT_ARG(e + 2);
}
if (!exclusive && !reverse) {
if (dims.size())
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, dims, false, true);
else
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, false, true);
}
else if (!exclusive && reverse){
if (dims.size())
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, dims, false, false);
else
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, false, false);
}
else if (exclusive && !reverse) {
if (dims.size())
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, dims, true, true);
else
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, true, true);
}
else {
if (dims.size())
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, dims, true, false);
else
nd4j::ops::helpers::_prefix(block.launchContext(), scalar::Add, gradOut, output, true, false);
}
return Status::OK();
}
DECLARE_TYPES(cumsum_bp) {
getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS});
getOpDescriptor()->setAllowedInputTypes(1, {ALL_FLOATS, ALL_INTS}); // axes can be set as the second param
getOpDescriptor()->setAllowedInputTypes(2, {ALL_FLOATS});
getOpDescriptor()->setAllowedOutputTypes(0, {ALL_FLOATS});
}
DECLARE_SHAPE_FN(cumsum_bp) {
auto inp = inputShape->at(0);
Nd4jLong *newShapeX = nullptr;
COPY_SHAPE(inp, newShapeX);
if (block.width() == 2) {
return SHAPELIST(CONSTANT(newShapeX));
} else {
Nd4jLong *newShapeA = nullptr;
COPY_SHAPE(inputShape->at(1), newShapeA);
return SHAPELIST(CONSTANT(newShapeX), CONSTANT(newShapeA));
}
}
}
}
#endif