179 lines
7.1 KiB
C++
179 lines
7.1 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 04.06.2018
|
||
|
//
|
||
|
|
||
|
|
||
|
#include <ops/declarable/CustomOperations.h>
|
||
|
#include <ops/declarable/helpers/axis.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////
|
||
|
CUSTOM_OP_IMPL(reduce_variance, 1, 1, false, 0, 0) {
|
||
|
auto input = INPUT_VARIABLE(0);
|
||
|
auto output = OUTPUT_VARIABLE(0);
|
||
|
|
||
|
bool keepDims = false;//block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false;
|
||
|
bool biasCorrected = false;//block.getTArguments()->size() > 1 ? (bool)T_ARG(1) : false;
|
||
|
|
||
|
auto dimensions = *block.getIArguments();
|
||
|
if (block.width() > 1) {
|
||
|
auto axesVector = INPUT_VARIABLE(1);
|
||
|
helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
|
||
|
}
|
||
|
|
||
|
if (block.getBArguments()->size()) {
|
||
|
keepDims = B_ARG(0);
|
||
|
if (block.getBArguments()->size() > 1)
|
||
|
biasCorrected = B_ARG(1);
|
||
|
}
|
||
|
else if (block.getTArguments()->size()) {
|
||
|
keepDims = (bool)T_ARG(0);
|
||
|
if (block.getTArguments()->size() > 1)
|
||
|
biasCorrected = (bool)T_ARG(1);
|
||
|
}
|
||
|
|
||
|
REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_VARIANCE OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
||
|
|
||
|
for(const auto& item : dimensions)
|
||
|
REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_VARIANCE OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
|
||
|
|
||
|
input->varianceAlongDimension(variance::SummaryStatsVariance, output, biasCorrected, dimensions);
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
DECLARE_SHAPE_FN(reduce_variance) {
|
||
|
|
||
|
bool keepDims = false;//block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false;
|
||
|
auto dimensions = *block.getIArguments();
|
||
|
if (block.width() > 1) {
|
||
|
auto axesVector = INPUT_VARIABLE(1);
|
||
|
helpers::adjustAxis(INPUT_VARIABLE(0)->rankOf(), axesVector, dimensions);
|
||
|
}
|
||
|
|
||
|
if (block.getBArguments()->size()) {
|
||
|
keepDims = B_ARG(0);
|
||
|
}
|
||
|
else if (block.getTArguments()->size()) {
|
||
|
keepDims = (bool)T_ARG(0);
|
||
|
}
|
||
|
|
||
|
REQUIRE_TRUE(dimensions.size() <= INPUT_VARIABLE(0)->rankOf(), 0, "REDUCE_VARIANCE OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
||
|
|
||
|
for(const auto& item : dimensions)
|
||
|
REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_VARIANCE OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item);
|
||
|
|
||
|
auto outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(inputShape->at(0)), dimensions, inputShape->at(0), keepDims, false, block.getWorkspace());
|
||
|
|
||
|
return SHAPELIST(outShapeInfo);
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(reduce_variance) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS});
|
||
|
}
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////
|
||
|
CUSTOM_OP_IMPL(reduce_variance_bp, 2, 1, false, 0, 0) {
|
||
|
auto input = INPUT_VARIABLE(0);
|
||
|
auto gradO = INPUT_VARIABLE(1);
|
||
|
|
||
|
auto gradI = OUTPUT_VARIABLE(0);
|
||
|
|
||
|
bool keepDims = false;//block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false;
|
||
|
bool biasCorrected = false;//block.getTArguments()->size() > 1 ? (bool)T_ARG(1) : false;
|
||
|
|
||
|
auto dimensions = *block.getIArguments();
|
||
|
if (block.width() > 2) {
|
||
|
auto axesVector = INPUT_VARIABLE(2);
|
||
|
helpers::adjustAxis(input->rankOf(), axesVector, dimensions);
|
||
|
}
|
||
|
// else if (block.getIArguments()->size())
|
||
|
if (block.getBArguments()->size()) {
|
||
|
keepDims = B_ARG(0);
|
||
|
if (block.getBArguments()->size() > 1)
|
||
|
biasCorrected = B_ARG(1);
|
||
|
}
|
||
|
else if (block.getTArguments()->size()) {
|
||
|
keepDims = (bool)T_ARG(0);
|
||
|
if (block.getTArguments()->size() > 1)
|
||
|
biasCorrected = (bool)T_ARG(1);
|
||
|
}
|
||
|
|
||
|
REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_VARIANCE_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
||
|
|
||
|
for(const auto& item : dimensions)
|
||
|
REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_VARIANCE_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);
|
||
|
|
||
|
const Nd4jLong N = input->lengthOf() / gradO->lengthOf();
|
||
|
const Nd4jLong NminusOne = biasCorrected ? N - 1 : N;
|
||
|
const double factor1 = 2.0 / NminusOne;
|
||
|
const double factor2 = 2.0 / (N * NminusOne);
|
||
|
|
||
|
auto mean = input->reduceAlongDims(reduce::Mean, dimensions, true);
|
||
|
|
||
|
gradI->assign( (*input - mean) * (2.0f / NminusOne)); // automatic broadcasting happens here
|
||
|
|
||
|
if(!keepDims) {
|
||
|
auto gradOShapeKeepDims = ShapeUtils::evalReduceShapeInfo(gradO->ordering(), dimensions, *input, true, false, block.getWorkspace());
|
||
|
gradO = gradO->reshape(gradO->ordering(), ShapeUtils::pullShapeFromShapeInfo(gradOShapeKeepDims)); // for example could be something like [a,b] -> [1,a,1,b]
|
||
|
}
|
||
|
|
||
|
*gradI *= *gradO; // automatic broadcasting happens here
|
||
|
|
||
|
if(!keepDims)
|
||
|
delete gradO;
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
|
||
|
DECLARE_SHAPE_FN(reduce_variance_bp) {
|
||
|
auto in = inputShape->at(0);
|
||
|
auto rank = shape::rank(in);
|
||
|
auto dimensions = *block.getIArguments();
|
||
|
if (block.width() > 2) {
|
||
|
auto axesVector = INPUT_VARIABLE(2);
|
||
|
helpers::adjustAxis(rank, axesVector, dimensions);
|
||
|
}
|
||
|
|
||
|
REQUIRE_TRUE(dimensions.size() <= rank, 0, "REDUCE_VARIANCE_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size());
|
||
|
|
||
|
for(const auto& item : dimensions)
|
||
|
REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_VARIANCE_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item);
|
||
|
|
||
|
Nd4jLong* gradIshapeInfo(nullptr);
|
||
|
COPY_SHAPE(in, gradIshapeInfo);
|
||
|
|
||
|
return SHAPELIST(CONSTANT(gradIshapeInfo));
|
||
|
}
|
||
|
|
||
|
|
||
|
DECLARE_TYPES(reduce_variance_bp) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS});
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|