2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 17.05.2018
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/percentile.h>
|
|
|
|
#include <NDArrayFactory.h>
|
|
|
|
#include "ResultSet.h"
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
|
|
static void _percentile(const NDArray& input, NDArray& output, std::vector<int>& axises, const float q, const int interpolation) {
|
|
|
|
|
|
|
|
const int inputRank = input.rankOf();
|
|
|
|
|
|
|
|
if(axises.empty())
|
|
|
|
for(int i=0; i<inputRank; ++i)
|
|
|
|
axises.push_back(i);
|
|
|
|
else
|
|
|
|
shape::checkDimensions(inputRank, axises); // check, sort dimensions and remove duplicates if they are present
|
|
|
|
|
|
|
|
|
|
|
|
auto listOfSubArrs = input.allTensorsAlongDimension(axises);
|
|
|
|
|
|
|
|
std::vector<Nd4jLong> shapeOfSubArr(listOfSubArrs->at(0)->rankOf());
|
|
|
|
for(int i=0; i<shapeOfSubArr.size(); ++i)
|
|
|
|
shapeOfSubArr[i] = listOfSubArrs->at(0)->shapeOf()[i];
|
|
|
|
|
|
|
|
auto flattenedArr = NDArrayFactory::create('c', shapeOfSubArr, input.dataType(), input.getContext());
|
|
|
|
const int len = flattenedArr.lengthOf();
|
|
|
|
|
|
|
|
const float fraction = 1.f - q / 100.;
|
|
|
|
Nd4jLong position = 0;
|
|
|
|
|
|
|
|
switch(interpolation) {
|
|
|
|
case 0: // lower
|
|
|
|
position = static_cast<Nd4jLong>(math::nd4j_ceil<float,T>((len - 1) * fraction));
|
|
|
|
break;
|
|
|
|
case 1: // higher
|
|
|
|
position = static_cast<Nd4jLong>(math::nd4j_floor<float,T>((len - 1) * fraction));
|
|
|
|
break;
|
|
|
|
case 2: // nearest
|
|
|
|
position = static_cast<Nd4jLong>(math::nd4j_round<float,T>((len - 1) * fraction));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
position = len - position - 1;
|
|
|
|
|
|
|
|
// FIXME: our sort impl should be used instead, so this operation might be implemented as generic
|
2019-11-13 15:15:18 +01:00
|
|
|
// FIXME: parallelism !
|
2019-06-06 14:21:15 +02:00
|
|
|
for(int i=0; i<listOfSubArrs->size(); ++i) {
|
|
|
|
|
|
|
|
T* buff = reinterpret_cast<T *>(flattenedArr.getBuffer());
|
|
|
|
flattenedArr.assign(listOfSubArrs->at(i));
|
|
|
|
std::sort(buff, buff + len);
|
|
|
|
output.p(i, flattenedArr.e<T>(position));
|
|
|
|
}
|
|
|
|
|
|
|
|
delete listOfSubArrs;
|
|
|
|
}
|
|
|
|
|
|
|
|
void percentile(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, std::vector<int>& axises, const float q, const int interpolation) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), _percentile, (input, output, axises, q, interpolation), LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void _percentile, (const NDArray& input, NDArray& output, std::vector<int>& axises, const float q, const int interpolation), LIBND4J_TYPES);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|