2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef LIBND4J_SPECIAL_ACCUMULATION_OPS_H
|
|
|
|
#define LIBND4J_SPECIAL_ACCUMULATION_OPS_H
|
|
|
|
|
|
|
|
#include <templatemath.h>
|
|
|
|
#include <helpers/TAD.h>
|
|
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
//#include <ops/ops.h>
|
|
|
|
//#include <loops/reduce.h>
|
|
|
|
|
|
|
|
namespace simdOps {
|
|
|
|
|
|
|
|
template<typename T, typename Z>
|
|
|
|
class LogSumExp {
|
|
|
|
public:
|
|
|
|
static const bool requiresSpecialAccumulation = true;
|
|
|
|
|
|
|
|
constexpr static functions::ReduceType reduceType = functions::ReduceType::SUM;
|
|
|
|
|
|
|
|
op_def static T startingValue(const T *input) {
|
|
|
|
return (T) 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
op_def static Z merge(T old, T opOutput, Z *extraParams) {
|
|
|
|
return opOutput + old;
|
|
|
|
}
|
|
|
|
|
|
|
|
op_def static T update(T old, T opOutput, Z *extraParams) {
|
|
|
|
return opOutput + old;
|
|
|
|
}
|
|
|
|
|
|
|
|
op_def static Z op(T d1, T d2) {
|
|
|
|
return nd4j::math::nd4j_exp<T, Z>(d1 - d2);
|
|
|
|
}
|
|
|
|
|
|
|
|
op_def static Z op(T d1, Z* extraParams) {
|
|
|
|
return nd4j::math::nd4j_exp<Z, Z>(static_cast<Z>(d1) - extraParams[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
op_def static Z postProcess(T reduction, Nd4jLong n, Z *extraParams) {
|
|
|
|
return extraParams[0] + nd4j::math::nd4j_log<T, Z>(reduction);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef __CUDACC__
|
|
|
|
__device__ static inline void aggregatePartials(Z *sPartials, int tid, int numItems, Z *extraParams) {
|
|
|
|
// start the shared memory loop on the next power of 2 less
|
|
|
|
// than the block size. If block size is not a power of 2,
|
|
|
|
// accumulate the intermediate sums in the remainder range.
|
|
|
|
int floorPow2 = numItems;
|
|
|
|
|
|
|
|
if (floorPow2 & (floorPow2 - 1)) {
|
|
|
|
while (floorPow2 & (floorPow2 - 1)) {
|
|
|
|
floorPow2 &= floorPow2 - 1;
|
|
|
|
}
|
|
|
|
if (tid >= floorPow2) {
|
|
|
|
sPartials[tid - floorPow2] = update(sPartials[tid - floorPow2], sPartials[tid], extraParams);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
for (int activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
|
|
|
|
if (tid < activeThreads && tid + activeThreads < numItems) {
|
|
|
|
sPartials[tid] = update(sPartials[tid], sPartials[tid + activeThreads], extraParams);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline __device__ void execSpecialCuda(
|
|
|
|
T *dx,
|
|
|
|
Nd4jLong *xShapeInfo,
|
|
|
|
Z *extraParams,
|
|
|
|
Z *result,
|
|
|
|
Nd4jLong *resultShapeInfo,
|
|
|
|
int *dimension,
|
|
|
|
int dimensionLength,
|
|
|
|
Z *reductionBuffer,
|
|
|
|
Nd4jLong *tadOnlyShapeInfo,
|
|
|
|
Nd4jLong *tadOffsets) {
|
|
|
|
|
|
|
|
// we assume that RESULT already holds max values
|
|
|
|
|
|
|
|
//shared memory space for storing intermediate results
|
|
|
|
__shared__ Z *sPartials;
|
|
|
|
|
|
|
|
// __shared__ shape::TAD *tad;
|
|
|
|
__shared__ Nd4jLong tadLength;
|
|
|
|
__shared__ Nd4jLong numTads;
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
|
|
sPartials = (Z *) shmem;
|
|
|
|
tadLength = shape::length(tadOnlyShapeInfo);//shape::tadLength(xShapeInfo, dimension, dimensionLength);
|
|
|
|
numTads = shape::length(xShapeInfo) / tadLength;
|
|
|
|
}
|
2019-09-11 19:12:09 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
|
|
|
|
auto tadOffsetForBlock = tadOffsets[r];
|
|
|
|
|
|
|
|
sPartials[threadIdx.x] = startingValue(dx + tadOffsetForBlock);
|
|
|
|
|
2019-09-11 19:12:09 +02:00
|
|
|
for (int i = threadIdx.x; i < tadLength; i += blockDim.x) {
|
|
|
|
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
sPartials[threadIdx.x] = update(sPartials[threadIdx.x], op(dx[xOffset], result[r]), extraParams);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// aggregate. do NOT reduce for elements > tadLength
|
|
|
|
aggregatePartials(sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength), &result[r]);
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
result[r] = postProcess(sPartials[threadIdx.x], tadLength, &result[r]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void execSpecial(T *x,
|
|
|
|
Nd4jLong *xShapeInfo,
|
|
|
|
Z *extraParams,
|
|
|
|
Z *result,
|
|
|
|
Nd4jLong *resultShapeInfoBuffer,
|
|
|
|
int *dimension,
|
|
|
|
int dimensionLength,
|
|
|
|
Nd4jLong *tadShapeInfo,
|
|
|
|
Nd4jLong *tadOffset) {
|
|
|
|
Nd4jLong resultLength = shape::length(resultShapeInfoBuffer);
|
|
|
|
|
|
|
|
auto tadOnlyShapeInfo = tadShapeInfo;
|
|
|
|
auto tadOffsets = tadOffset;
|
|
|
|
|
|
|
|
if (tadOnlyShapeInfo == nullptr || tadOffsets == nullptr) {
|
|
|
|
if (dimensionLength < 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
|
|
|
|
tadOnlyShapeInfo = tadPack.primaryShapeInfo();
|
|
|
|
tadOffsets = tadPack.primaryOffsets();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const Nd4jLong tadLength = shape::length(tadOnlyShapeInfo);//shape::tadLength(xShapeInfo, dimension, dimensionLength);
|
|
|
|
auto numTads = shape::length(xShapeInfo) / tadLength;
|
|
|
|
auto tadEWS = shape::elementWiseStride(tadOnlyShapeInfo);
|
|
|
|
|
|
|
|
int tadsPerThread = resultLength / TAD_THRESHOLD;
|
|
|
|
int num_threads = nd4j::math::nd4j_max<int>(1, tadsPerThread);
|
|
|
|
num_threads = nd4j::math::nd4j_min<int>(num_threads, omp_get_max_threads());
|
|
|
|
|
|
|
|
if (tadEWS > 0 && (numTads == 1 || shape::isVector(tadOnlyShapeInfo) || shape::isScalar(tadOnlyShapeInfo))) {
|
|
|
|
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_THREADS(num_threads)
|
|
|
|
for (int i = 0; i < resultLength; i++) {
|
|
|
|
|
|
|
|
T *iter = x + tadOffsets[i];
|
|
|
|
T start = startingValue(iter);
|
|
|
|
if (tadEWS == 1) {
|
|
|
|
for (int j = 0; j < tadLength; j++) {
|
|
|
|
start = update(start, op(iter[j], result[i]), extraParams);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
for (int j = 0; j < tadLength; j++) {
|
|
|
|
start = update(start, op(iter[j * tadEWS], result[i]), extraParams);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result[i] = postProcess(start, tadLength, &result[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_THREADS(num_threads)
|
|
|
|
for (int i = 0; i < resultLength; i++) {
|
|
|
|
|
|
|
|
auto offset = tadOffsets[i];
|
|
|
|
T start = startingValue(x + offset);
|
|
|
|
|
2019-09-11 19:12:09 +02:00
|
|
|
for (int j = 0; j < tadLength; j++) {
|
|
|
|
auto xOffset = offset + shape::getIndexOffset(j, tadOnlyShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
start = update(start, op(x[xOffset], result[i]), extraParams);
|
|
|
|
}
|
|
|
|
|
|
|
|
result[i] = postProcess(start, tadLength, &result[i]);;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif //LIBND4J_SPECIAL_ACCUMULATION_OPS_H
|