2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author sgazeos@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/axis.h>
|
2019-11-13 15:15:18 +01:00
|
|
|
#include <execution/Threads.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static void _extractPatches(NDArray* images, NDArray* output, int sizeRow, int sizeCol, int strideRow, int strideCol, int rateRow, int rateCol, bool theSame){
|
|
|
|
std::vector<int> restDims({1, 2, 3}); // the first and the last dims
|
2019-12-20 20:35:39 +01:00
|
|
|
ResultSet listOfMatricies = images->allTensorsAlongDimension(restDims);
|
|
|
|
ResultSet listOfOutputs = output->allTensorsAlongDimension(restDims);
|
2019-06-06 14:21:15 +02:00
|
|
|
// 3D matricies - 2D matricies of vectors (if last dim is greater than 1)
|
|
|
|
//int e = 0;
|
|
|
|
const int ksizeRowsEffective = sizeRow + (sizeRow - 1) * (rateRow - 1);
|
|
|
|
const int ksizeColsEffective = sizeCol + (sizeCol - 1) * (rateCol - 1);
|
|
|
|
const int ksize = ksizeRowsEffective * ksizeColsEffective;
|
2019-12-20 20:35:39 +01:00
|
|
|
int batchCount = listOfMatricies.size(); //lengthOf() / ksize;
|
2019-06-06 14:21:15 +02:00
|
|
|
Nd4jLong lastDim = images->sizeAt(3);
|
|
|
|
Nd4jLong outLastDim = output->sizeAt(3);
|
|
|
|
Nd4jLong rowDim = images->sizeAt(1);
|
|
|
|
Nd4jLong colDim = images->sizeAt(2);
|
|
|
|
Nd4jLong outRowDim = output->sizeAt(1);
|
|
|
|
Nd4jLong outColDim = output->sizeAt(2);
|
|
|
|
auto rowCast = 1; //(sizeRow - 1)*rateRow < outRowDim/sizeRow ?0:1;///(ksize * lastDim > rowDim * ksizeColsEffective + lastDim?1:0);
|
|
|
|
auto colCast = 1; //colDim / ksizeColsEffective +2 <= sizeCol?0:1;//(ksize * lastDim > ksizeRowsEffective * colDim + lastDim?1:0);
|
|
|
|
if (sizeRow * rateRow < 3)
|
|
|
|
rowCast = 0;
|
|
|
|
if (sizeCol * rateCol < 3)
|
|
|
|
colCast = 0;
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
for (auto batch = 0; batch < stop; batch += increment) {
|
2019-12-20 20:35:39 +01:00
|
|
|
auto patch = listOfMatricies.at(batch);
|
|
|
|
auto outMatrix = listOfOutputs.at(batch);
|
2019-11-13 15:15:18 +01:00
|
|
|
|
|
|
|
for (Nd4jLong i = 0; i < outRowDim; i++) {
|
|
|
|
for (Nd4jLong j = 0; j < outColDim; j++) {
|
|
|
|
Nd4jLong pos = 0;
|
|
|
|
//for (Nd4jLong k = 0; k < outputLastDim; k++) {
|
|
|
|
auto rowStart = i * strideRow - (theSame ? rowCast : 0);
|
|
|
|
auto colStart = j * strideCol - (theSame ? colCast : 0);
|
|
|
|
auto rowEnd = rowStart + sizeRow * rateRow;
|
|
|
|
auto colEnd = colStart + sizeCol * rateCol;
|
|
|
|
if (!theSame) {
|
|
|
|
rowEnd = math::nd4j_min(rowStart + sizeRow * rateRow, rowDim);
|
|
|
|
colEnd = math::nd4j_min(colStart + sizeCol * rateCol, colDim);
|
|
|
|
}
|
|
|
|
//auto pixel = 0LL;
|
|
|
|
for (auto row = rowStart; row < rowEnd; row += rateRow)
|
|
|
|
for (auto col = colStart; col < colEnd; col += rateCol)
|
|
|
|
for (auto pixel = 0; pixel < lastDim; pixel++) {
|
|
|
|
bool setUp = (theSame && row >= 0 && col >= 0 && row < rowDim && col < colDim) ||
|
|
|
|
(!theSame);
|
|
|
|
if (setUp) {
|
|
|
|
outMatrix->t<T>(i, j, pos) = patch->e<T>(row, col, pixel);
|
|
|
|
}
|
|
|
|
pos++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
samediff::Threads::parallel_tad(func, 0, batchCount);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void extractPatches(nd4j::LaunchContext * context, NDArray* images, NDArray* output, int sizeRow, int sizeCol, int stradeRow, int stradeCol, int rateRow, int rateCol, bool theSame){
|
|
|
|
auto xType = images->dataType();
|
|
|
|
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, _extractPatches, (images, output, sizeRow, sizeCol, stradeRow, stradeCol, rateRow, rateCol, theSame), LIBND4J_TYPES);
|
|
|
|
}
|
|
|
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void _extractPatches, (NDArray* input, NDArray* output, int sizeRow, int sizeCol, int stradeRow, int stradeCol, int rateRow, int rateCol, bool theSame), LIBND4J_TYPES);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|