2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/pointercast.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <types/types.h>
|
|
|
|
#include <types/float16.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/op_boilerplate.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <loops/summarystatsreduce.h>
|
|
|
|
#include <helpers/shape.h>
|
|
|
|
#include <helpers/TAD.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/dll.h>
|
|
|
|
#include <system/Environment.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <cuda.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <helpers/DebugHelper.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <ops/specials_cuda.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
using namespace simdOps;
|
|
|
|
|
|
|
|
namespace functions {
|
|
|
|
namespace summarystats {
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
2020-05-09 07:06:14 +02:00
|
|
|
void _CUDA_G summaryStatsReduceT(int op, void const* dx, Nd4jLong const* xShapeInfo, int xRank, void *extraParams, void *z, Nd4jLong const* zShapeInfo, int zRank, int *dimension, int dimensionLength, int postProcessOrNot,bool biasCorrected,int *allocationBuffer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets) {
|
2019-09-11 19:12:09 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
functions::summarystats::SummaryStatsReduce<X,Z>::transform(op,dx,xShapeInfo,extraParams,z,zShapeInfo,dimension,dimensionLength,biasCorrected,allocationBuffer,reductionBuffer,tadOnlyShapeInfo,tadOffsets);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
*
|
|
|
|
* @param sPartialsRef
|
|
|
|
* @param tid
|
|
|
|
* @param extraParams
|
|
|
|
*/
|
|
|
|
template<typename X, typename Z>
|
|
|
|
template<typename OpType>
|
2020-07-26 14:59:27 +02:00
|
|
|
_CUDA_D void SummaryStatsReduce<X,Z>::aggregatePartials(SummaryStatsData<X> *sPartials, Nd4jLong tid, Nd4jLong numElements, void *vextraParams) {
|
2019-06-06 14:21:15 +02:00
|
|
|
// start the shared memory loop on the next power of 2 less
|
|
|
|
// than the block size. If block size is not a power of 2,
|
|
|
|
// accumulate the intermediate sums in the remainder range.
|
2020-07-26 14:59:27 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto extraParams = static_cast<Z*>(vextraParams);
|
|
|
|
Nd4jLong floorPow2 = blockDim.x;
|
|
|
|
|
|
|
|
if (floorPow2 & (floorPow2 - 1)) {
|
|
|
|
while (floorPow2 & (floorPow2 - 1)) {
|
|
|
|
floorPow2 &= floorPow2 - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tid >= floorPow2) {
|
|
|
|
SummaryStatsData<X> prev = sPartials[tid - floorPow2];
|
|
|
|
SummaryStatsData<X> curr = sPartials[tid];
|
|
|
|
sPartials[tid - floorPow2] = update(prev, curr, extraParams);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
|
|
|
|
if (tid < activeThreads && tid + activeThreads < numElements) {
|
|
|
|
SummaryStatsData<X> curr = sPartials[tid];
|
|
|
|
SummaryStatsData<X> next = sPartials[tid + activeThreads];
|
|
|
|
sPartials[tid] = update(curr, next, extraParams);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @param n n is the number of
|
|
|
|
* elements to loop through
|
|
|
|
* @param dx the data to operate on
|
|
|
|
* @param xVectorInfo the meta data for the vector:
|
|
|
|
* 0 is the offset
|
|
|
|
* 1 is the increment/stride
|
|
|
|
* 2 is the real length of the buffer (n and dx.length won't always be the same)
|
|
|
|
* 3 is the element wise stride for the buffer
|
|
|
|
* 4 is the number of elements it takes to get to the next row/column/tensor
|
|
|
|
* @param gpuInformation
|
|
|
|
* 0 is the block size
|
|
|
|
* 1 is the grid size
|
|
|
|
* 2 is the shared memory size
|
|
|
|
* @param problemDefinition
|
|
|
|
* 0 is the number of elements per vector
|
|
|
|
* 1 is the number of vectors
|
|
|
|
*/
|
|
|
|
template<typename X, typename Z>
|
|
|
|
template<typename OpType>
|
2020-05-09 07:06:14 +02:00
|
|
|
_CUDA_D void SummaryStatsReduce<X,Z>::transform(void const* vx, Nd4jLong const* xShapeInfo,
|
2019-09-11 19:12:09 +02:00
|
|
|
void *vextraParams,
|
2020-05-09 07:06:14 +02:00
|
|
|
void *vz, Nd4jLong const* zShapeInfo,
|
2019-09-11 19:12:09 +02:00
|
|
|
int *dimension, int dimensionLength,
|
|
|
|
int postProcessOrNot,
|
|
|
|
int *allocationBuffer, void *vreductionBuffer,
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto dx = static_cast<X const*>(vx);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = static_cast<Z*>(vz);
|
|
|
|
auto extraParams = static_cast<Z*>(vextraParams);
|
|
|
|
auto reductionBuffer = static_cast<Z*>(vreductionBuffer);
|
|
|
|
|
|
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
__shared__ volatile int resultScalar;
|
|
|
|
|
|
|
|
__shared__ int xElementWiseStride;
|
|
|
|
|
|
|
|
int numElements = blockDim.x;
|
|
|
|
//shared memory space for storing intermediate results
|
2020-07-26 14:59:27 +02:00
|
|
|
__shared__ SummaryStatsData<X> sPartials[CUDA_BLOCK_SIZE];
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
Z startingVal = startingValue(dx);
|
|
|
|
|
|
|
|
SummaryStatsData<X> val;
|
|
|
|
val.initWithValue(startingVal);
|
|
|
|
val.n = 0;
|
|
|
|
sPartials[threadIdx.x] = val;
|
|
|
|
|
|
|
|
|
|
|
|
//length for the tad
|
|
|
|
__shared__ volatile int xLength;
|
|
|
|
|
|
|
|
__shared__ volatile int resultLength;
|
|
|
|
|
|
|
|
|
|
|
|
SummaryStatsData<X> reduction;
|
|
|
|
reduction.initWithValue(0.0);
|
|
|
|
reduction.n = 0;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
if (zShapeInfo != nullptr)
|
|
|
|
resultLength = shape::length(zShapeInfo);
|
|
|
|
else resultLength = 1;
|
|
|
|
|
|
|
|
|
|
|
|
if (dimensionLength == 1) {
|
|
|
|
if (resultLength == 1 && (dimension == nullptr || dimension[0] == MAX_DIMENSION))
|
|
|
|
resultScalar = 1;
|
|
|
|
else
|
|
|
|
resultScalar = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
resultScalar = 0;
|
|
|
|
|
|
|
|
if (resultLength == 1)
|
|
|
|
resultScalar = 1;
|
|
|
|
|
|
|
|
auto xStride = shape::stride(xShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
|
|
|
|
|
|
if (dimension != nullptr && (dimension[0] != MAX_DIMENSION && dimensionLength == 1)) {
|
|
|
|
xElementWiseStride = xStride[dimension[0]];
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
xElementWiseStride = shape::elementWiseStride(xShapeInfo);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
xLength = shape::length(xShapeInfo);
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (!resultScalar) {
|
|
|
|
|
|
|
|
__shared__ int tadLength;
|
|
|
|
__shared__ int tadEWS;
|
|
|
|
__shared__ int numTads;
|
|
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
tadLength = shape::length(tadOnlyShapeInfo);//shape::tadLength(xShapeInfo, dimension, dimensionLength);
|
|
|
|
tadEWS = shape::elementWiseStride(tadOnlyShapeInfo);
|
|
|
|
numTads = shape::length(xShapeInfo) / tadLength;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (tadEWS == 0) {
|
|
|
|
|
|
|
|
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
|
|
|
|
auto tadOffsetForBlock = tadOffsets[r];
|
|
|
|
|
|
|
|
val.initWithValue(startingVal);
|
|
|
|
val.n = 0;
|
|
|
|
sPartials[threadIdx.x] = val;
|
|
|
|
|
|
|
|
for (int i = threadIdx.x; i < tadLength; i += blockDim.x) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
SummaryStatsData<X> indexVal2;
|
|
|
|
indexVal2.initWithValue(dx[xOffset]);
|
|
|
|
|
|
|
|
sPartials[threadIdx.x] = update(sPartials[threadIdx.x], OpType::op(indexVal2, extraParams), extraParams);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
2020-07-26 14:59:27 +02:00
|
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, tadLength), extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
z[r] = OpType::getValue(postProcessOrNot, sPartials[threadIdx.x]);
|
|
|
|
}
|
2019-08-20 17:28:43 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
for (int i = blockIdx.x; i < numTads; i += gridDim.x) {
|
|
|
|
auto tadOffsetForBlock = tadOffsets[i];
|
|
|
|
|
|
|
|
val.initWithValue(startingVal);
|
|
|
|
val.n = 0;
|
|
|
|
sPartials[threadIdx.x] = val;
|
|
|
|
|
|
|
|
for (int x = threadIdx.x; x < tadLength; x += blockDim.x) {
|
|
|
|
auto indexX = tadOffsetForBlock + x * tadEWS;
|
|
|
|
SummaryStatsData<X> indexVal2;
|
|
|
|
indexVal2.initWithValue(dx[indexX]);
|
|
|
|
sPartials[threadIdx.x] = update(sPartials[threadIdx.x], OpType::op(indexVal2, extraParams), extraParams);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
2020-07-26 14:59:27 +02:00
|
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, sd::math::nd4j_min<int>(blockDim.x, tadLength), extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
z[i] = OpType::getValue(postProcessOrNot, sPartials[threadIdx.x]); //postProcess(sPartials[0],tadLength ,extraParams);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (resultScalar) {
|
|
|
|
__shared__ int n;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
xElementWiseStride = shape::elementWiseStride(xShapeInfo);
|
|
|
|
n = shape::length(xShapeInfo);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (xElementWiseStride >= 1) {
|
|
|
|
for (Nd4jLong i = tid; i < n; i += (blockDim.x * gridDim.x)) {
|
|
|
|
SummaryStatsData<X> indexVal2;
|
|
|
|
indexVal2.initWithValue(dx[i * xElementWiseStride]);
|
|
|
|
reduction = update(reduction, indexVal2, extraParams);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
for (Nd4jLong i = tid; i < n; i += blockDim.x * gridDim.x) {
|
2019-09-11 19:12:09 +02:00
|
|
|
|
|
|
|
auto offset = shape::getIndexOffset(i, xShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
SummaryStatsData<X> indexVal2;
|
|
|
|
indexVal2.initWithValue(dx[offset]);
|
|
|
|
reduction = update(reduction, indexVal2, extraParams);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sPartials[threadIdx.x] = reduction;
|
|
|
|
|
|
|
|
__syncthreads();
|
2020-07-26 14:59:27 +02:00
|
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, blockDim.x, extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (gridDim.x > 1) {
|
|
|
|
__shared__ bool amLast;
|
2019-09-11 19:12:09 +02:00
|
|
|
unsigned int *tc = (unsigned int *)reductionBuffer;
|
2019-06-06 14:21:15 +02:00
|
|
|
tid = threadIdx.x;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
SummaryStatsData<X> *pBuffer = (SummaryStatsData<X>*) reductionBuffer;
|
|
|
|
pBuffer[blockIdx.x] = sPartials[0];
|
|
|
|
}
|
|
|
|
__threadfence();
|
2019-08-20 17:28:43 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
if (tid == 0) {
|
|
|
|
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
|
|
|
|
amLast = (ticket == gridDim.x - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (amLast) {
|
|
|
|
tc[16384] = 0;
|
|
|
|
SummaryStatsData<X>* pBuffer = (SummaryStatsData<X>*) reductionBuffer;
|
|
|
|
|
|
|
|
Z startingVal = startingValue(dx);
|
|
|
|
|
|
|
|
SummaryStatsData<X> val;
|
|
|
|
val.initWithValue(startingVal);
|
|
|
|
val.n = 0;
|
|
|
|
sPartials[threadIdx.x] = val;
|
|
|
|
|
|
|
|
for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x) {
|
|
|
|
sPartials[threadIdx.x] = update(sPartials[threadIdx.x], pBuffer[i], extraParams);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
2020-07-26 14:59:27 +02:00
|
|
|
aggregatePartials<OpType>(sPartials, threadIdx.x, gridDim.x, extraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (tid == 0) {
|
|
|
|
z[0] = OpType::getValue(postProcessOrNot, sPartials[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (tid == 0) {
|
|
|
|
unsigned int *tc = (unsigned *)reductionBuffer;
|
|
|
|
tc[16384] = 0;
|
|
|
|
z[0] = z[0] = OpType::getValue(postProcessOrNot, sPartials[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template <typename X, typename Y>
|
2020-05-09 07:06:14 +02:00
|
|
|
_CUDA_D void SummaryStatsReduce<X,Y>::transform(const int opNum, void const* dx, Nd4jLong const* xShapeInfo, void *extraParams, void *z, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets) {
|
2019-06-06 14:21:15 +02:00
|
|
|
DISPATCH_BY_OPNUM_TT(transform, PARAMS(dx, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationBuffer, reductionBuffer, tadOnlyShapeInfo, tadOffsets), SUMMARY_STATS_OPS);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
2020-05-09 07:06:14 +02:00
|
|
|
_CUDA_H void SummaryStatsReduce<X,Z>::execSummaryStatsReduceScalar(dim3& launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, Nd4jLong const* hxShapeInfo, void *vextraParams, void *vz, Nd4jLong const* zShapeInfo, Nd4jLong const* hzShapeInfo, Nd4jLong const* tadShapeInfo, Nd4jLong const* tadOffsets, bool biasCorrected, void *reductionBuffer) {
|
2019-09-11 19:12:09 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = static_cast<X const*>(vx);
|
2019-09-11 19:12:09 +02:00
|
|
|
auto extraParams = static_cast<Z*>(vextraParams);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
auto reductionPointerA = reinterpret_cast<Z*>(reductionBuffer);
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
if (sd::Environment::getInstance().isDebugAndVerbose())
|
2019-06-06 14:21:15 +02:00
|
|
|
printf("D16 opNum:[%i]\n", opNum);
|
|
|
|
|
|
|
|
summaryStatsReduceT<X,Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
|
|
|
|
opNum,
|
|
|
|
x,
|
|
|
|
xShapeInfo, shape::rank(hxShapeInfo),
|
|
|
|
extraParams,
|
|
|
|
z,
|
|
|
|
zShapeInfo, shape::rank(hzShapeInfo),
|
|
|
|
nullptr,
|
|
|
|
1,
|
|
|
|
1,biasCorrected, nullptr, reductionPointerA, tadShapeInfo, tadOffsets);
|
|
|
|
|
|
|
|
// this is blocking method since method should return scalar
|
2020-03-02 10:49:41 +01:00
|
|
|
sd::DebugHelper::checkErrorCode(stream, "execSSReduceScalar(...) failed");
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
2020-05-09 07:06:14 +02:00
|
|
|
_CUDA_H void SummaryStatsReduce<X,Z>::execSummaryStatsReduce(dim3& launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, Nd4jLong const* hxShapeInfo, void *vextraParams, void *vz, Nd4jLong const* zShapeInfo, Nd4jLong const* hzShapeInfo, Nd4jLong const* tadShapeInfo, Nd4jLong const* tadOffsets, bool biasCorrected, void *reductionBuffer) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = static_cast<X const*>(vx);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = static_cast<Z*>(vz);
|
|
|
|
auto extraParams = static_cast<Z*>(vextraParams);
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
if (sd::Environment::getInstance().isDebugAndVerbose())
|
2019-06-06 14:21:15 +02:00
|
|
|
printf("F17 opNum:[%i]\n", opNum);
|
|
|
|
|
|
|
|
auto reductionPointerA = reinterpret_cast<Z*>(reductionBuffer);
|
|
|
|
|
|
|
|
summaryStatsReduceT<X,Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
|
|
|
|
opNum,
|
|
|
|
x,
|
|
|
|
xShapeInfo, shape::rank(hxShapeInfo),
|
|
|
|
extraParams,
|
|
|
|
z,
|
|
|
|
zShapeInfo, shape::rank(hzShapeInfo),
|
|
|
|
nullptr,
|
|
|
|
1,
|
|
|
|
1,biasCorrected, nullptr, reductionPointerA, tadShapeInfo, tadOffsets);
|
|
|
|
|
|
|
|
DEBUG_KERNEL(stream, opNum);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename X, typename Z>
|
2020-05-09 07:06:14 +02:00
|
|
|
_CUDA_H void SummaryStatsReduce<X,Z>::execSummaryStatsReduce(dim3& launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, Nd4jLong const* hxShapeInfo, void *vextraParams, void *vz, Nd4jLong const* zShapeInfo, Nd4jLong const* hzShapeInfo, int *dimension, int dimensionLength, Nd4jLong const* tadShapeInfo, Nd4jLong const* tadOffsets, bool biasCorrected, void *reductionBuffer) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = static_cast<X const*>(vx);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = static_cast<Z*>(vz);
|
|
|
|
auto extraParams = static_cast<Z*>(vextraParams);
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
if (sd::Environment::getInstance().isDebugAndVerbose())
|
2019-06-06 14:21:15 +02:00
|
|
|
printf("D18 opNum:[%i]\n", opNum);
|
|
|
|
|
|
|
|
summaryStatsReduceT<X, Z><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
|
|
|
|
opNum,
|
|
|
|
x,
|
|
|
|
xShapeInfo, shape::rank(hxShapeInfo),
|
|
|
|
extraParams,
|
|
|
|
z,
|
|
|
|
zShapeInfo, shape::rank(hzShapeInfo),
|
|
|
|
dimension,
|
|
|
|
dimensionLength,
|
|
|
|
1, biasCorrected, nullptr, reinterpret_cast<Z*>(reductionBuffer), tadShapeInfo, tadOffsets);
|
|
|
|
|
|
|
|
DEBUG_KERNEL(stream, opNum);
|
|
|
|
}
|
|
|
|
|
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* launch context reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* per-device LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Fix functions of OpaqueVariablesSet
* thread-local buffers/affinity
Signed-off-by: raver119 <raver119@gmail.com>
* thread safety for LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* more of thread safety
Signed-off-by: raver119 <raver119@gmail.com>
* one more multi threaded test
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* round robin affinity test
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy CudaContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy ContextPool classes/methods
Signed-off-by: raver119 <raver119@gmail.com>
* one legacy test removed
Signed-off-by: raver119 <raver119@gmail.com>
* few more fields rearranged
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext++
Signed-off-by: raver119 <raver119@gmail.com>
* more of OpaqueLaunchContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext -> CudaContext
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handles
Signed-off-by: raver119 <raver119@gmail.com>
* typo
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver method
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handle propagated
Signed-off-by: raver119 <raver119@gmail.com>
* blas/solver handles
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* legacy concat implementations replaced with new CustomOp
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* concat now uses way more blocks
Signed-off-by: raver119 <raver119@gmail.com>
* print
Signed-off-by: raver119 <raver119@gmail.com>
* no more triple template mmul
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bitonic sort reorganized
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* type conversions moved to generic impl
Signed-off-by: raver119 <raver119@gmail.com>
* cpu data types pass
Signed-off-by: raver119 <raver119@gmail.com>
* non_max_suppression
Signed-off-by: raver119 <raver119@gmail.com>
* sortByValue fix
Signed-off-by: raver119 <raver119@gmail.com>
* ignore all mixed datatype tests for mmul
Signed-off-by: raver119 <raver119@gmail.com>
* special handling of OpProfiler exceptions
Signed-off-by: raver119 <raver119@gmail.com>
* - one failing concat test in cpp
- Nd4j.tile now uses op internally
Signed-off-by: raver119 <raver119@gmail.com>
* get back dtype exception for legacy arrays deserialization
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 15:52:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT SummaryStatsReduce, , LIBND4J_TYPES, FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
}
|