2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2019-06-06 14:21:15 +02:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2019-06-06 14:21:15 +02:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 16.10.2017.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/LegacyIndexReduceOp.h>
|
|
|
|
#include <helpers/ShapeUtils.h>
|
|
|
|
#include <helpers/TAD.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <graph/Status.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
LegacyIndexReduceOp::LegacyIndexReduceOp() : LegacyOp::LegacyOp(1){
|
|
|
|
//
|
|
|
|
}
|
|
|
|
|
|
|
|
LegacyIndexReduceOp::LegacyIndexReduceOp(int opNum) : LegacyOp::LegacyOp(1, opNum) {
|
|
|
|
//
|
|
|
|
}
|
|
|
|
|
|
|
|
LegacyOp* LegacyIndexReduceOp::clone() {
|
|
|
|
return new LegacyIndexReduceOp(this->_opNum);
|
|
|
|
}
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
ShapeList *LegacyIndexReduceOp::calculateOutputShape(ShapeList *inputShape, sd::graph::Context &block) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto inShape = inputShape->at(0);
|
|
|
|
|
|
|
|
if (block.getAxis()->size() == 0 && block.width() == 1) {
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong *newShape;
|
2019-06-06 14:21:15 +02:00
|
|
|
// in this case we just return scalar
|
|
|
|
ALLOCATE(newShape, block.getWorkspace(), shape::shapeInfoLength(2), Nd4jLong);
|
|
|
|
newShape[0] = 2;
|
|
|
|
newShape[1] = 1;
|
|
|
|
newShape[2] = 1;
|
|
|
|
newShape[3] = 1;
|
|
|
|
newShape[4] = 1;
|
|
|
|
newShape[6] = 1;
|
|
|
|
newShape[7] = 99;
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
auto result = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(newShape, DataType::INT64));
|
2019-06-06 14:21:15 +02:00
|
|
|
RELEASE(newShape, block.getWorkspace());
|
|
|
|
return SHAPELIST(result);
|
|
|
|
} else if (block.getAxis()->size()){
|
|
|
|
// in this case we're building proper shape for reduction
|
|
|
|
auto array = INPUT_VARIABLE(0); //new NDArray(nullptr, inShape, block.getWorkspace());
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto newShape = ShapeUtils::evalReduceShapeInfo('c', *block.getAxis(), *array, DataType::INT64, false, true, block.workspace());
|
2019-06-06 14:21:15 +02:00
|
|
|
return SHAPELIST(newShape);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
bool allAxes = false;
|
|
|
|
auto indices = INPUT_VARIABLE(1);
|
|
|
|
Nd4jLong rank = shape::rank(inShape);
|
|
|
|
if (indices->lengthOf() == rank)
|
|
|
|
allAxes = true;
|
|
|
|
|
|
|
|
std::vector<int> axis(indices->lengthOf());
|
|
|
|
for (int e = 0; e < indices->lengthOf(); e++) {
|
|
|
|
// lol otherwise we segfault on macOS
|
|
|
|
int f = indices->e<int>(e);
|
|
|
|
axis[e] = f >= 0 ? f : f += rank;
|
|
|
|
}
|
|
|
|
if (allAxes){
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong *newShape;
|
2019-06-06 14:21:15 +02:00
|
|
|
// in this case we just return scalar
|
|
|
|
ALLOCATE(newShape, block.getWorkspace(), shape::shapeInfoLength(2), Nd4jLong);
|
|
|
|
newShape[0] = 2;
|
|
|
|
newShape[1] = 1;
|
|
|
|
newShape[2] = 1;
|
|
|
|
newShape[3] = 1;
|
|
|
|
newShape[4] = 1;
|
|
|
|
newShape[6] = 1;
|
|
|
|
newShape[7] = 99;
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
auto result = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(newShape, DataType::INT64));
|
2019-06-06 14:21:15 +02:00
|
|
|
RELEASE(newShape, block.getWorkspace());
|
|
|
|
return SHAPELIST(result);
|
|
|
|
} else {
|
|
|
|
// in this case we're building proper shape for reduction
|
|
|
|
auto array = INPUT_VARIABLE(0); //new NDArray(nullptr, inShape, block.getWorkspace());
|
2020-05-09 07:06:14 +02:00
|
|
|
return SHAPELIST(ShapeUtils::evalReduceShapeInfo('c', axis, *array, DataType::INT64, false, true, block.workspace()));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* For all reductions rules are simple: either you return scalar, or you return reduced NDArray.
|
|
|
|
* It solely depends on input shape, and requested dimensions
|
|
|
|
*/
|
|
|
|
Nd4jStatus LegacyIndexReduceOp::validateAndExecute(Context &block) {
|
|
|
|
auto x = INPUT_VARIABLE(0);
|
|
|
|
auto z = OUTPUT_VARIABLE(0);
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({z}, {x});
|
|
|
|
|
|
|
|
if (z->dataType() != INT64) {
|
|
|
|
throw std::runtime_error("IndexReduce operations require output to be INT64");
|
|
|
|
}
|
|
|
|
|
|
|
|
int opNum = block.opNum() < 0 ? this->_opNum : block.opNum();
|
|
|
|
|
|
|
|
bool allAxes = false;
|
|
|
|
|
|
|
|
ExtraArguments extras(*block.getTArguments());
|
|
|
|
PointersManager manager(block.launchContext(), "LegacyIndexReduceOp");
|
|
|
|
|
|
|
|
if (block.width() == 1) {
|
|
|
|
if (block.getAxis()->size() == 0) {
|
|
|
|
// scalar
|
2020-05-09 07:06:14 +02:00
|
|
|
NativeOpExecutioner::execIndexReduceScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(),
|
|
|
|
x->specialBuffer(), x->specialShapeInfo(),
|
2019-06-06 14:21:15 +02:00
|
|
|
extras.argumentsAsT(x->dataType()),
|
2020-05-09 07:06:14 +02:00
|
|
|
z->buffer(), z->shapeInfo(),
|
|
|
|
z->specialBuffer(), z->specialShapeInfo());
|
2019-06-06 14:21:15 +02:00
|
|
|
} else {
|
|
|
|
// TAD
|
|
|
|
std::vector<int> dims(block.getAxis()->size());
|
|
|
|
for (size_t e = 0; e < dims.size(); e++) {
|
|
|
|
auto axe = block.getAxis()->at(e);
|
|
|
|
dims[e] = axe < 0 ? axe + x->rankOf(): axe;
|
|
|
|
}
|
|
|
|
if (dims.size() > 1)
|
|
|
|
std::sort(dims.begin(), dims.end());
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), dims);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
NativeOpExecutioner::execIndexReduce(block.launchContext(), opNum, x->buffer(), x->shapeInfo(),
|
|
|
|
x->specialBuffer(), x->specialShapeInfo(),
|
2019-06-06 14:21:15 +02:00
|
|
|
extras.argumentsAsT(x->dataType()),
|
2020-05-09 07:06:14 +02:00
|
|
|
reinterpret_cast<Nd4jLong *>(z->buffer()), z->shapeInfo(),
|
|
|
|
z->specialBuffer(), z->specialShapeInfo(),
|
2019-06-06 14:21:15 +02:00
|
|
|
nullptr, (int) dims.size(),
|
2020-06-06 14:26:55 +02:00
|
|
|
Environment::getInstance().isCPU() ? tadPack.primaryShapeInfo() : tadPack.specialShapeInfo(), Environment::getInstance().isCPU() ? tadPack.primaryOffsets() : tadPack.specialOffsets());
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// TF mode
|
|
|
|
auto indices = INPUT_VARIABLE(1);
|
|
|
|
if (indices->lengthOf() == x->rankOf())
|
|
|
|
allAxes = true;
|
|
|
|
|
|
|
|
std::vector<int> axis(indices->lengthOf());
|
|
|
|
for (int e = 0; e < indices->lengthOf(); e++) {
|
|
|
|
// lol otherwise we segfault on macOS
|
|
|
|
int f = indices->e<int>(e);
|
|
|
|
axis[e] = f >= 0 ? f : f += x->rankOf();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (allAxes) {
|
2020-05-09 07:06:14 +02:00
|
|
|
NativeOpExecutioner::execIndexReduceScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(),
|
|
|
|
x->specialBuffer(), x->specialShapeInfo(),
|
2019-06-06 14:21:15 +02:00
|
|
|
extras.argumentsAsT(x->dataType()),
|
2020-05-09 07:06:14 +02:00
|
|
|
z->buffer(), z->shapeInfo(), z->specialBuffer(),
|
|
|
|
z->specialShapeInfo());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
} else {
|
|
|
|
if (indices->lengthOf() > 1)
|
|
|
|
std::sort(axis.begin(), axis.end());
|
|
|
|
|
|
|
|
REQUIRE_TRUE(axis.size() > 0, 0, "Some dimensions required for reduction!");
|
|
|
|
|
2020-06-06 14:26:55 +02:00
|
|
|
auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), axis);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NativeOpExecutioner::execIndexReduce(block.launchContext(), opNum,
|
2020-05-09 07:06:14 +02:00
|
|
|
x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(),
|
2019-06-06 14:21:15 +02:00
|
|
|
extras.argumentsAsT(x->dataType()),
|
2020-05-09 07:06:14 +02:00
|
|
|
reinterpret_cast<Nd4jLong *>(z->buffer()),
|
|
|
|
z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo(),
|
2019-06-06 14:21:15 +02:00
|
|
|
nullptr, (int) axis.size(),
|
2020-06-06 14:26:55 +02:00
|
|
|
Environment::getInstance().isCPU() ? tadPack.primaryShapeInfo() : tadPack.specialShapeInfo(),
|
|
|
|
Environment::getInstance().isCPU() ? tadPack.primaryOffsets() : tadPack.specialOffsets());
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
manager.synchronize();
|
|
|
|
STORE_RESULT(*z);
|
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|