cavis/libnd4j/include/graph/RandomGenerator.h

307 lines
10 KiB
C
Raw Normal View History

2021-02-01 13:31:45 +01:00
/* ******************************************************************************
*
2019-06-06 14:21:15 +02:00
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
2021-02-01 13:31:45 +01:00
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
2019-06-06 14:21:15 +02:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@protonmail.com
//
#ifndef LIBND4J_GRAPH_RNG_H
#define LIBND4J_GRAPH_RNG_H
#include <types/u64.h>
#include <types/u32.h>
#include <system/pointercast.h>
#include <system/op_boilerplate.h>
#include <system/dll.h>
2019-06-06 14:21:15 +02:00
#include <chrono>
#include <array/DataTypeUtils.h>
#include <helpers/logger.h>
#include <stdexcept>
#include <math/templatemath.h>
2019-06-06 14:21:15 +02:00
#ifdef __CUDACC__
#include <cuda.h>
#include <cuda_runtime.h>
#endif
namespace sd {
2019-06-06 14:21:15 +02:00
namespace graph {
#ifdef __CUDACC__
class ND4J_EXPORT CudaManagedRandomGenerator {
private:
protected:
void *devHolder;
public:
void *operator new(size_t len) {
void *ptr;
auto res = cudaHostAlloc(&ptr, len, cudaHostAllocDefault);
if (res != 0)
throw std::runtime_error("CudaManagedRandomGenerator: failed to allocate memory");
2019-06-06 14:21:15 +02:00
return ptr;
}
void operator delete(void *ptr) {
cudaFreeHost(ptr);
}
};
class ND4J_EXPORT RandomGenerator : public CudaManagedRandomGenerator {
#else
class ND4J_EXPORT RandomGenerator {
#endif
private:
#ifndef __CUDACC__
void *placeHolder;
#endif
// GRAPH-LEVEL STATE
u64 _rootState;
// NODE-LEVEL STATE
u64 _nodeState;
/**
* Utility method, returns number of milliseconds since 1970
* Leave this static if possible to avoid problems in constructor
*/
static FORCEINLINE Nd4jLong currentMilliseconds();
public:
FORCEINLINE _CUDA_HD uint32_t xoroshiro32(uint64_t index);
FORCEINLINE _CUDA_HD uint64_t xoroshiro64(uint64_t index);
2019-06-06 14:21:15 +02:00
/**
* This method returns integer value between 0 and MAX_UINT
*/
//uint32_t relativeUInt32(Nd4jLong index);
public:
FORCEINLINE RandomGenerator(Nd4jLong rootSeed = 0, Nd4jLong nodeSeed = 0);
/**
* This method allows to change graph-level state in runtime.
* PLEASE NOTE: this method will change state of node as well.
*/
FORCEINLINE _CUDA_H void setStates(Nd4jLong rootSeed, Nd4jLong nodeState = 0);
/**
* This method returns T value between from and to
*/
template <typename T>
FORCEINLINE _CUDA_HD T relativeT(Nd4jLong index, T from, T to);
/**
* This method returns T value between 0 and MAX_T
*/
template <typename T>
FORCEINLINE _CUDA_HD T relativeT(Nd4jLong index);
/**
* These two methods are made for JVM
* @param index
* @return
*/
FORCEINLINE _CUDA_HD int relativeInt(Nd4jLong index);
FORCEINLINE _CUDA_HD Nd4jLong relativeLong(Nd4jLong index);
FORCEINLINE _CUDA_HD void rewindH(uint64_t steps);
2019-06-06 14:21:15 +02:00
/**
* These methods set up only node states, with non-changed root ones
*/
FORCEINLINE _CUDA_H void setSeed(int seed) {
_nodeState._ulong = static_cast<uint64_t>(seed);
}
FORCEINLINE _CUDA_H void setSeed(uint64_t seed) {
_nodeState._ulong = seed;
}
FORCEINLINE _CUDA_HD Nd4jLong rootState() {
return _rootState._long;
}
FORCEINLINE _CUDA_HD Nd4jLong nodeState() {
return _nodeState._long;
}
};
FORCEINLINE RandomGenerator::RandomGenerator(Nd4jLong rootSeed, Nd4jLong nodeSeed) {
// this seed is used graph-level state
if (rootSeed == 0)
rootSeed = currentMilliseconds();
// graph-level state is just first seed
_rootState._long = rootSeed;
// used to build second, node state
_nodeState._long = (nodeSeed != 0 ? nodeSeed: 1298567341LL);
}
FORCEINLINE void RandomGenerator::setStates(Nd4jLong rootSeed, Nd4jLong nodeSeed) {
// this seed is used graph-level state
if (rootSeed == 0)
rootSeed = currentMilliseconds();
// graph-level state is just first seed
_rootState._long = rootSeed;
// used to build second, node state
_nodeState._long = (nodeSeed != 0 ? nodeSeed: 1298567341LL);
}
FORCEINLINE Nd4jLong RandomGenerator::currentMilliseconds() {
auto s = std::chrono::system_clock::now().time_since_epoch();
auto v = std::chrono::duration_cast<std::chrono::milliseconds>(s).count();
return v;
}
template <>
_CUDA_HD FORCEINLINE float RandomGenerator::relativeT<float>(Nd4jLong index) {
u32 u;
u._u32 = (0x3f800000 | (this->xoroshiro32(index) >> 9));
return u._f32 - 1.0f;
}
template <>
_CUDA_HD FORCEINLINE double RandomGenerator::relativeT<double>(Nd4jLong index) {
#ifdef __DOUBLE_RNG__
u64 u;
u._ulong = ((UINT64_C(0x3FF) << 52) | (this->xoroshiro64(index) >> 12));
return u._double - 1.0;
#else
return (double) relativeT<float>(index);
#endif
}
2019-06-06 14:21:15 +02:00
template <>
_CUDA_HD FORCEINLINE uint64_t RandomGenerator::relativeT<uint64_t>(Nd4jLong index) {
return this->xoroshiro64(index);
}
template <>
_CUDA_HD FORCEINLINE uint32_t RandomGenerator::relativeT<uint32_t>(Nd4jLong index) {
return this->xoroshiro32(index);
}
template <>
_CUDA_HD FORCEINLINE int RandomGenerator::relativeT<int>(Nd4jLong index) {
auto r = relativeT<uint32_t>(index);
return r <= DataTypeUtils::max<int>() ? r : r % DataTypeUtils::max<int>();
2019-06-06 14:21:15 +02:00
}
template <>
_CUDA_HD FORCEINLINE Nd4jLong RandomGenerator::relativeT<Nd4jLong>(Nd4jLong index) {
auto r = relativeT<uint64_t>(index);
return r <= DataTypeUtils::max<Nd4jLong>() ? r : r % DataTypeUtils::max<Nd4jLong>();
2019-06-06 14:21:15 +02:00
}
template <typename T>
_CUDA_HD FORCEINLINE T RandomGenerator::relativeT(Nd4jLong index, T from, T to) {
auto t = this->relativeT<T>(index);
auto z = from + T(t * (to - from));
return z;
}
template <>
_CUDA_HD FORCEINLINE Nd4jLong RandomGenerator::relativeT(Nd4jLong index, Nd4jLong from, Nd4jLong to) {
auto t = this->relativeT<double>(index);
auto z = from + Nd4jLong(t * (to - from));
return z;
}
template <>
_CUDA_HD FORCEINLINE int RandomGenerator::relativeT(Nd4jLong index, int from, int to) {
auto t = this->relativeT<float>(index);
auto z = from + float(t * (to - from));
2019-06-06 14:21:15 +02:00
return z;
}
template <typename T>
_CUDA_HD FORCEINLINE T RandomGenerator::relativeT(Nd4jLong index) {
// This is default implementation for floating point types
return static_cast<T>(relativeT<float>(index));
2019-06-06 14:21:15 +02:00
}
_CUDA_HD FORCEINLINE int RandomGenerator::relativeInt(Nd4jLong index) {
auto r = relativeT<uint32_t>(index);
return r <= DataTypeUtils::max<int>() ? r : r % DataTypeUtils::max<int>();
2019-06-06 14:21:15 +02:00
}
_CUDA_HD FORCEINLINE Nd4jLong RandomGenerator::relativeLong(Nd4jLong index) {
auto r = relativeT<uint64_t>(index);
return r <= DataTypeUtils::max<Nd4jLong>() ? r : r % DataTypeUtils::max<Nd4jLong>();
2019-06-06 14:21:15 +02:00
}
//////
static FORCEINLINE _CUDA_HD uint32_t rotl(const uint32_t x, int k) {
return (x << k) | (x >> (32 - k));
}
static FORCEINLINE _CUDA_HD uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
static FORCEINLINE _CUDA_HD uint32_t next(uint32_t s0, uint32_t s1, uint32_t s2, uint32_t s3) {
const uint32_t result = rotl(s0 + s3, 7) + s0;
return result;
}
2019-06-06 14:21:15 +02:00
_CUDA_HD FORCEINLINE uint32_t RandomGenerator::xoroshiro32(uint64_t index) {
auto s0 = _rootState._ulong;
2019-06-06 14:21:15 +02:00
auto s1 = _nodeState._ulong;
// xor by idx
s0 |= ((index + 2) * (s1 + 24243287));
2019-06-06 14:21:15 +02:00
s1 ^= ((index + 2) * (s0 + 723829));
2019-06-06 14:21:15 +02:00
unsigned long val = 0;
val = s1 ^ s0;
int* pHalf = reinterpret_cast<int*>(&val);
return rotl(*pHalf * 0x9E3779BB, 5) * 5;
}
_CUDA_HD FORCEINLINE uint64_t RandomGenerator::xoroshiro64(uint64_t index) {
uint64_t upper = ((uint64_t) xoroshiro32(index)) << 32;
uint32_t lower = xoroshiro32(sd::math::nd4j_rotl<uint64_t>(index, 32));
return upper + lower;
2019-06-06 14:21:15 +02:00
}
_CUDA_HD FORCEINLINE void RandomGenerator::rewindH(uint64_t steps) {
// we only update node state, if any
auto s0 = _nodeState._du32._v0;
auto s1 = _nodeState._du32._v1;
2019-06-06 14:21:15 +02:00
s1 ^= s0;
_nodeState._du32._v0 = rotl(s0, 26) ^ s1 ^ (s1 << 9); // a, b
_nodeState._du32._v1 = rotl(s1, 13); // c
2019-06-06 14:21:15 +02:00
_nodeState._long ^= (steps ^ 0xdeadbeef);
2019-06-06 14:21:15 +02:00
}
}
}
#endif