121 lines
4.9 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.weights;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.junit.Test;
import org.nd4j.linalg.activations.impl.ActivationIdentity;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertEquals;
/**
* Test cases for {@link WeightInitIdentity}
*
* @author Christian Skarby
*/
public class WeightInitIdentityTest {
/**
* Test identity mapping for 1d convolution
*/
@Test
public void testIdConv1D() {
final INDArray input = Nd4j.randn(DataType.FLOAT, 1,5,7);
final String inputName = "input";
final String conv = "conv";
final String output = "output";
final ComputationGraph graph = new ComputationGraph(new NeuralNetConfiguration.Builder()
.graphBuilder()
.setInputTypes(InputType.inferInputType(input))
.addInputs(inputName)
.setOutputs(output)
.layer(conv, new Convolution1DLayer.Builder(7)
.convolutionMode(ConvolutionMode.Same)
.nOut(input.size(1))
.weightInit(new WeightInitIdentity())
.activation(new ActivationIdentity())
.build(), inputName)
.layer(output, new RnnLossLayer.Builder().activation(new ActivationIdentity()).build(), conv)
.build());
graph.init();
assertEquals("Mapping was not identity!", input, graph.outputSingle(input).reshape(input.shape()));
}
/**
* Test identity mapping for 2d convolution
*/
@Test
public void testIdConv2D() {
final INDArray input = Nd4j.randn(DataType.FLOAT,1,5,7,11);
final String inputName = "input";
final String conv = "conv";
final String output = "output";
final ComputationGraph graph = new ComputationGraph(new NeuralNetConfiguration.Builder()
.graphBuilder()
.setInputTypes(InputType.inferInputType(input))
.addInputs(inputName)
.setOutputs(output)
.layer(conv, new ConvolutionLayer.Builder(3,5)
.convolutionMode(ConvolutionMode.Same)
.nOut(input.size(1))
.weightInit(new WeightInitIdentity())
.activation(new ActivationIdentity())
.build(), inputName)
.layer(output, new CnnLossLayer.Builder().activation(new ActivationIdentity()).build(), conv)
.build());
graph.init();
assertEquals("Mapping was not identity!", input, graph.outputSingle(input));
}
/**
* Test identity mapping for 3d convolution
*/
@Test
public void testIdConv3D() {
final INDArray input = Nd4j.randn(DataType.FLOAT, 1,5,7,11,13);
final String inputName = "input";
final String conv = "conv";
final String output = "output";
final ComputationGraph graph = new ComputationGraph(new NeuralNetConfiguration.Builder()
.graphBuilder()
.setInputTypes(InputType.inferInputType(input))
.addInputs(inputName)
.setOutputs(output)
.layer(conv, new Convolution3D.Builder(3,7,5)
.convolutionMode(ConvolutionMode.Same)
.dataFormat(Convolution3D.DataFormat.NCDHW)
.nOut(input.size(1))
.weightInit(new WeightInitIdentity())
.activation(new ActivationIdentity())
.build(), inputName)
.layer(output, new Cnn3DLossLayer.Builder(Convolution3D.DataFormat.NCDHW).activation(new ActivationIdentity()).build(), conv)
.build());
graph.init();
assertEquals("Mapping was not identity!", input, graph.outputSingle(input));
}
}