716 lines
35 KiB
Plaintext
716 lines
35 KiB
Plaintext
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author GS <sgazeos@gmail.com>
|
||
|
//
|
||
|
|
||
|
#include <ops/declarable/helpers/segment.h>
|
||
|
#include <NDArrayFactory.h>
|
||
|
#include <helpers/ShapeUtils.h>
|
||
|
#include <helpers/TAD.h>
|
||
|
#include <exceptions/cuda_exception.h>
|
||
|
#include <PointersManager.h>
|
||
|
#include <ConstantTadHelper.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
template <typename T, typename I>
|
||
|
static __global__ void segmentMaxLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
|
||
|
__shared__ T* val;
|
||
|
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
|
||
|
__shared__ T* x;
|
||
|
__shared__ T* z;
|
||
|
__shared__ int threadsPerSegment, start, finish;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
|
||
|
segment = blockIdx.x / threadsPerSegment;
|
||
|
x = reinterpret_cast<T*>(input);
|
||
|
z = reinterpret_cast<T*>(output);
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
val = reinterpret_cast<T*>(shmem);
|
||
|
xLen = shape::length(inputShape);
|
||
|
zLen = shape::length(outputShape);
|
||
|
|
||
|
//[zIndex] =
|
||
|
if (segment < numOfClasses) {
|
||
|
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
|
||
|
start = starts[segment];
|
||
|
finish = start + lengths[segment];
|
||
|
//val[segment] = ;
|
||
|
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
|
||
|
val[segment] = z[zIndex];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
__syncthreads();
|
||
|
// auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
// auto step = blockDim.x * gridDim.x;
|
||
|
|
||
|
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
|
||
|
//val[segment] = nd4j::math::nd4j_max<T>(x[xIndex], val[segment]);
|
||
|
// if (val[segment] < x[xIndex])
|
||
|
// val[segment] = x[xIndex];
|
||
|
// nd4j::math::atomics::nd4j_atomicMax(&z[zIndex], x[xIndex]);
|
||
|
}
|
||
|
// __syncthreads();
|
||
|
// for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
||
|
// auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
|
||
|
// //val[segment] = nd4j::math::nd4j_max<T>(x[xIndex], val[segment]);
|
||
|
// if (val[segment] < x[xIndex])
|
||
|
// val[segment] = x[xIndex];
|
||
|
// }
|
||
|
// __syncthreads();
|
||
|
//
|
||
|
// if (threadIdx.x == 0) {
|
||
|
// z[zIndex] = val[segment];
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename T, typename I>
|
||
|
static __global__ void segmentMinLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
|
||
|
__shared__ T* val;
|
||
|
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
|
||
|
__shared__ T* x;
|
||
|
__shared__ T* z;
|
||
|
__shared__ int threadsPerSegment, start, finish;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
|
||
|
segment = blockIdx.x / threadsPerSegment;
|
||
|
x = reinterpret_cast<T*>(input);
|
||
|
z = reinterpret_cast<T*>(output);
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
val = reinterpret_cast<T*>(shmem);
|
||
|
xLen = shape::length(inputShape);
|
||
|
zLen = shape::length(outputShape);
|
||
|
|
||
|
//[zIndex] =
|
||
|
if (segment < numOfClasses) {
|
||
|
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
|
||
|
start = starts[segment];
|
||
|
finish = start + lengths[segment];
|
||
|
//val[segment] = ;
|
||
|
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
|
||
|
val[segment] = z[zIndex];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
__syncthreads();
|
||
|
// auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
// auto step = blockDim.x * gridDim.x;
|
||
|
|
||
|
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
|
||
|
//val[segment] = nd4j::math::nd4j_max<T>(x[xIndex], val[segment]);
|
||
|
// nd4j::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
|
||
|
// if (val[segment] > x[xIndex])
|
||
|
// val[segment] = x[xIndex];
|
||
|
// printf("%d(%lld): %lf > %lf\n", e, segment, x[xIndex], val[segment]);
|
||
|
}
|
||
|
// __syncthreads();
|
||
|
// for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
||
|
// auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
|
||
|
// //val[segment] = nd4j::math::nd4j_max<T>(x[xIndex], val[segment]);
|
||
|
// if (val[segment] > x[xIndex])
|
||
|
// val[segment] = x[xIndex];
|
||
|
// }
|
||
|
// __syncthreads();
|
||
|
//
|
||
|
// if (threadIdx.x == 0) {
|
||
|
// z[zIndex] = val[segment];
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
template <typename T, typename I>
|
||
|
static __global__ void segmentSumLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
|
||
|
__shared__ T* val;
|
||
|
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
|
||
|
__shared__ T* x;
|
||
|
__shared__ T* z;
|
||
|
__shared__ int threadsPerSegment, start, finish;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
|
||
|
segment = blockIdx.x / threadsPerSegment;
|
||
|
x = reinterpret_cast<T*>(input);
|
||
|
z = reinterpret_cast<T*>(output);
|
||
|
|
||
|
xLen = shape::length(inputShape);
|
||
|
zLen = shape::length(outputShape);
|
||
|
|
||
|
|
||
|
if (segment < numOfClasses) {
|
||
|
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
|
||
|
start = starts[segment];
|
||
|
finish = start + lengths[segment];
|
||
|
//val[segment] = ;
|
||
|
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
|
||
|
// val[segment] = z[zIndex];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
|
||
|
// nd4j::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex]);
|
||
|
}
|
||
|
}
|
||
|
template <typename T, typename I>
|
||
|
static __global__ void segmentMeanLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
|
||
|
__shared__ T* val;
|
||
|
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
|
||
|
__shared__ T* x;
|
||
|
__shared__ T* z;
|
||
|
__shared__ int threadsPerSegment, start, finish;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
|
||
|
segment = blockIdx.x / threadsPerSegment;
|
||
|
x = reinterpret_cast<T*>(input);
|
||
|
z = reinterpret_cast<T*>(output);
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
val = reinterpret_cast<T*>(shmem);
|
||
|
xLen = shape::length(inputShape);
|
||
|
zLen = shape::length(outputShape);
|
||
|
|
||
|
//[zIndex] =
|
||
|
if (segment < numOfClasses) {
|
||
|
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
|
||
|
start = starts[segment];
|
||
|
finish = start + lengths[segment];
|
||
|
//val[segment] = ;
|
||
|
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
|
||
|
val[segment] = z[zIndex];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
__syncthreads();
|
||
|
// auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
// auto step = blockDim.x * gridDim.x;
|
||
|
|
||
|
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
|
||
|
//val[segment] = nd4j::math::nd4j_max<T>(x[xIndex], val[segment]);
|
||
|
// nd4j::math::atomics::nd4j_atomicAdd(&val[segment], x[xIndex]);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
z[zIndex] = val[segment] / lengths[segment];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T, typename I>
|
||
|
static __global__ void segmentProdLinearKernel(void* input, Nd4jLong* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong* outputShape) {
|
||
|
__shared__ T* val;
|
||
|
__shared__ Nd4jLong xLen, zLen, segment, zIndex;
|
||
|
__shared__ T* x;
|
||
|
__shared__ T* z;
|
||
|
__shared__ int threadsPerSegment, start, finish;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
|
||
|
segment = blockIdx.x / threadsPerSegment;
|
||
|
x = reinterpret_cast<T*>(input);
|
||
|
z = reinterpret_cast<T*>(output);
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
val = reinterpret_cast<T*>(shmem);
|
||
|
xLen = shape::length(inputShape);
|
||
|
zLen = shape::length(outputShape);
|
||
|
|
||
|
if (segment < numOfClasses) {
|
||
|
zIndex = shape::getIndexOffset(segment, outputShape, zLen);
|
||
|
start = starts[segment];
|
||
|
finish = start + lengths[segment];
|
||
|
//val[segment] = ;
|
||
|
z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
|
||
|
val[segment] = z[zIndex];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
__syncthreads();
|
||
|
// auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
// auto step = blockDim.x * gridDim.x;
|
||
|
|
||
|
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputShape, xLen);
|
||
|
// nd4j::math::atomics::nd4j_atomicMul(&val[segment], x[xIndex]);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
z[zIndex] = val[segment];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename I>
|
||
|
static __global__ void fillUpSegmentsKernel(void* indices, Nd4jLong* indexShape, int numClasses, int* classesRangesStart, int* classesRangesLenghts) {
|
||
|
__shared__ I* idxBuf;
|
||
|
__shared__ Nd4jLong idxLen;
|
||
|
__shared__ int* result;
|
||
|
if (threadIdx.x == 0) {
|
||
|
idxBuf = reinterpret_cast<I*>(indices);
|
||
|
idxLen = shape::length(indexShape);
|
||
|
//extern __shared__ unsigned char shmem[];
|
||
|
//result = reinterpret_cast<int*>(shmem);
|
||
|
//result[0] = 0; //idxBuf[0];
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
auto tid = threadIdx.x + blockDim.x * blockIdx.x;
|
||
|
auto step = blockDim.x * gridDim.x;
|
||
|
|
||
|
for (auto j = tid; j < idxLen; j += step) {
|
||
|
auto pos = idxBuf[j];
|
||
|
// if (classesRangesStart[pos] == idxLen)
|
||
|
// classesRangesStart[pos] = j;
|
||
|
// result[pos] = nd4j::math::nd4j_min<int>(classesRangesStart[pos], j);
|
||
|
//atomicMin(&classesRangesStart[pos], j);
|
||
|
// nd4j::math::atomics::nd4j_atomicMin(&classesRangesStart[pos], (int)j);
|
||
|
// = nd4j::math::nd4j_min<int>(classesRangesStart[pos], result[pos]);
|
||
|
// nd4j::math::atomics::nd4j_atomicAdd(&classesRangesLenghts[pos], 1);
|
||
|
}
|
||
|
}
|
||
|
// segment max
|
||
|
template <typename T, typename I>
|
||
|
static __global__ void segmentMaxTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads, Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets) {
|
||
|
__shared__ T* val;
|
||
|
__shared__ Nd4jLong len, segment, zIndex, total;
|
||
|
__shared__ T* z;
|
||
|
__shared__ int threadsPerSegment, start, finish;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
//threadsPerSegment = (gridDim.x / numOfClasses) + gridDim.x % numOfClasses;
|
||
|
segment = indices[blockIdx.x]; // / threadsPerSegment;
|
||
|
//x = reinterpret_cast<T*>(input) + inputTadOffsets[segment];
|
||
|
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
|
||
|
len = shape::length(inputTads);
|
||
|
// = shape::length(outputShape);
|
||
|
|
||
|
// if (segment < numOfClasses) {
|
||
|
// zIndex = shape::getIndexOffset(segment, outputShape, zLen);
|
||
|
start = starts[segment];
|
||
|
finish = start + lengths[segment];
|
||
|
//val[segment] = ;
|
||
|
// if (lengths[segment] > 0) {
|
||
|
// z[zIndex] = x[shape::getIndexOffset(start, inputShape, xLen)];
|
||
|
// }
|
||
|
//val[segment] = z[zIndex];
|
||
|
// auto x = reinterpret_cast<T*>(inputBuf) + inputTadOffsets[segment];
|
||
|
|
||
|
// }
|
||
|
//printf("Segment is %d\n", segment);
|
||
|
total = shape::sizeAt(inputShape, 0);
|
||
|
// printf("Current segment is %lld, %u.\n", segment, blockIdx.x);
|
||
|
// auto x = reinterpret_cast<T*>(inputBuf) + inputTadOffsets[starts[segment]];
|
||
|
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
// for (auto idx = start + blockIdx.x; idx < finish; idx += gridDim.x ){
|
||
|
// printf("Segment: %d; Idx: %d (%d)\n", segment, idx, starts[segment]);
|
||
|
// auto x = reinterpret_cast<T*>(inputBuf) + inputTadOffsets[idx];
|
||
|
// //auto currentSegment = indices[idx];
|
||
|
// if (idx == starts[segment]) {
|
||
|
// x = reinterpret_cast<T*>(inputBuf) + inputTadOffsets[start];
|
||
|
// for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
||
|
// auto xIndex = shape::getIndexOffset(e, inputTads, len);
|
||
|
// auto zIndex = shape::getIndexOffset(e, outputTads, len);
|
||
|
//
|
||
|
// z[zIndex] = x[xIndex];
|
||
|
// }
|
||
|
// }
|
||
|
// else
|
||
|
// for (auto idx = start + blockIdx.x; idx < finish; idx += gridDim.x) {
|
||
|
// if (segment < numOfClasses) {
|
||
|
// auto idx = blockIdx.x;
|
||
|
// auto x = reinterpret_cast<T*>(inputBuf) + inputTadOffsets[idx];
|
||
|
//// printf("Segment: %lld; Idx: %llu (%d)\n", (long long)segment, (unsigned long long)blockIdx.x, start);
|
||
|
// //if (idx == start)
|
||
|
// printf("Init segment %d, %d\n", idx, starts[segment]);
|
||
|
// for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
||
|
// auto xIndex = shape::getIndexOffset(e, inputTads, len);
|
||
|
// auto zIndex = shape::getIndexOffset(e, outputTads, len);
|
||
|
// z[xIndex] = x[xIndex];
|
||
|
// }
|
||
|
// else if (idx > start && idx < finish)
|
||
|
auto idx = blockIdx.x;
|
||
|
if (blockIdx.x <= total) {
|
||
|
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
|
||
|
if (blockIdx.x == start) {
|
||
|
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputTads, len);
|
||
|
auto zIndex = shape::getIndexOffset(e, outputTads, len);
|
||
|
z[zIndex] = x[xIndex];
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputTads, len);
|
||
|
auto zIndex = shape::getIndexOffset(e, outputTads, len);
|
||
|
// nd4j::math::atomics::nd4j_atomicMax(&z[zIndex], x[xIndex]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// }
|
||
|
}
|
||
|
|
||
|
// SegmentMin kernel
|
||
|
template <typename T, typename I>
|
||
|
static __global__ void segmentMinTadKernel(void* inputBuf, Nd4jLong* inputShape, Nd4jLong* inputTads, Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong* outputShape, Nd4jLong* outputTads, Nd4jLong* outputTadOffsets) {
|
||
|
__shared__ T* val;
|
||
|
__shared__ Nd4jLong len, segment, zIndex, total;
|
||
|
__shared__ T* z;
|
||
|
__shared__ int threadsPerSegment, start, finish;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
segment = indices[blockIdx.x]; // / threadsPerSegment;
|
||
|
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
|
||
|
len = shape::length(inputTads);
|
||
|
start = starts[segment];
|
||
|
finish = start + lengths[segment];
|
||
|
total = shape::sizeAt(inputShape, 0);
|
||
|
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
auto idx = blockIdx.x;
|
||
|
if (blockIdx.x <= total) {
|
||
|
auto x = reinterpret_cast<T *>(inputBuf) + inputTadOffsets[idx];
|
||
|
if (blockIdx.x == start) {
|
||
|
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputTads, len);
|
||
|
auto zIndex = shape::getIndexOffset(e, outputTads, len);
|
||
|
z[zIndex] = x[xIndex];
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
||
|
auto xIndex = shape::getIndexOffset(e, inputTads, len);
|
||
|
auto zIndex = shape::getIndexOffset(e, outputTads, len);
|
||
|
// nd4j::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T, typename I>
|
||
|
static void segmentMaxFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
//int numClasses = output->sizeAt(0);
|
||
|
// if input is a vector: (as if in doc sample)
|
||
|
//Nd4jLong idx = indices->e<Nd4jLong>(0);
|
||
|
auto stream = context->getCudaStream();
|
||
|
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
|
||
|
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
|
||
|
classesRangesBegs.assign(indices->lengthOf());
|
||
|
classesRangesLens.assign(0);
|
||
|
|
||
|
dim3 dims(256, 512, 256);
|
||
|
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
|
||
|
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
|
||
|
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
|
||
|
|
||
|
if (input->isVector()) {
|
||
|
segmentMaxLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
|
||
|
}
|
||
|
else {
|
||
|
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
||
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
|
||
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
|
||
|
Nd4jLong* inputTads = packX.specialShapeInfo();
|
||
|
Nd4jLong* inputTadOffsets = packX.specialOffsets();
|
||
|
Nd4jLong* outputTads = packZ.specialShapeInfo();
|
||
|
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
|
||
|
segmentMaxTadKernel<T,I><<<input->sizeAt(0) + 1, 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// segmen min
|
||
|
template <typename T, typename I>
|
||
|
static void segmentMinFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
auto stream = context->getCudaStream();
|
||
|
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
|
||
|
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
|
||
|
classesRangesBegs.assign(indices->lengthOf());
|
||
|
classesRangesLens.assign(0);
|
||
|
|
||
|
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
|
||
|
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
|
||
|
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
|
||
|
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
|
||
|
|
||
|
if (input->isVector()) {
|
||
|
segmentMinLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
|
||
|
}
|
||
|
else {
|
||
|
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
||
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
|
||
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimensions);
|
||
|
Nd4jLong* inputTads = packX.specialShapeInfo();
|
||
|
Nd4jLong* inputTadOffsets = packX.specialOffsets();
|
||
|
Nd4jLong* outputTads = packZ.specialShapeInfo();
|
||
|
Nd4jLong* outputTadOffsets = packZ.specialOffsets();
|
||
|
segmentMinTadKernel<T,I><<<input->sizeAt(0) + 1, 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// segmen mean
|
||
|
template <typename T, typename I>
|
||
|
static void segmentMeanFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
auto stream = context->getCudaStream();
|
||
|
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
|
||
|
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
|
||
|
classesRangesBegs.assign(indices->lengthOf());
|
||
|
classesRangesLens.assign(0);
|
||
|
|
||
|
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
|
||
|
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
|
||
|
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
|
||
|
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
|
||
|
|
||
|
if (input->isVector()) {
|
||
|
segmentMeanLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename T, typename I>
|
||
|
static void segmentSumFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
auto stream = context->getCudaStream();
|
||
|
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
|
||
|
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
|
||
|
classesRangesBegs.assign(indices->lengthOf());
|
||
|
classesRangesLens.assign(0);
|
||
|
|
||
|
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
|
||
|
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
|
||
|
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
|
||
|
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
|
||
|
|
||
|
if (input->isVector()) {
|
||
|
segmentSumLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename T, typename I>
|
||
|
static void segmentProdFunctor_(nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
auto stream = context->getCudaStream();
|
||
|
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
|
||
|
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses});
|
||
|
|
||
|
classesRangesBegs.assign(indices->lengthOf());
|
||
|
classesRangesLens.assign(0);
|
||
|
|
||
|
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
|
||
|
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
|
||
|
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
|
||
|
fillUpSegmentsKernel<I><<<dims.x, dims.y, dims.z, *stream>>>(indices->specialBuffer(), indices->specialShapeInfo(), numClasses, begins, lengths);
|
||
|
|
||
|
if (input->isVector()) {
|
||
|
segmentProdLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename T, typename I>
|
||
|
static bool segmentIndicesValidate_(NDArray* indices, NDArray& aexpected, NDArray& aoutput) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void segmentMaxFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentMaxFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
}
|
||
|
|
||
|
void segmentMinFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentMinFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
}
|
||
|
|
||
|
void segmentMeanFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), segmentMeanFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
}
|
||
|
|
||
|
void segmentSumFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentSumFunctor_, (context, input, indices, output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
}
|
||
|
|
||
|
void segmentProdFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
|
||
|
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), segmentProdFunctor_, (context, input, indices, output), FLOAT_TYPES, INTEGER_TYPES);
|
||
|
}
|
||
|
|
||
|
bool segmentIndicesValidate(nd4j::LaunchContext * context, NDArray* indices, NDArray& expected, NDArray& output) {
|
||
|
BUILD_DOUBLE_SELECTOR(output.dataType(), indices->dataType(), return segmentIndicesValidate_, (indices, expected, output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
}
|
||
|
|
||
|
BUILD_DOUBLE_TEMPLATE(template bool segmentIndicesValidate_, (NDArray*, NDArray&, NDArray&), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
BUILD_DOUBLE_TEMPLATE(template void segmentProdFunctor_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), FLOAT_TYPES, INTEGER_TYPES);
|
||
|
BUILD_DOUBLE_TEMPLATE(template void segmentSumFunctor_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
BUILD_DOUBLE_TEMPLATE(template void segmentMeanFunctor_, (nd4j::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
BUILD_DOUBLE_TEMPLATE(template void segmentMinFunctor_, (nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
BUILD_DOUBLE_TEMPLATE(template void segmentMaxFunctor_, (LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output), NUMERIC_TYPES, INTEGER_TYPES);
|
||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||
|
// Unsorted segment ops
|
||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||
|
|
||
|
bool unsortedSegmentIndicesValidate(nd4j::LaunchContext * context, NDArray* indices, Nd4jLong expected, Nd4jLong& output) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static void unsortedSegmentMaxFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
|
||
|
}
|
||
|
|
||
|
void unsortedSegmentMaxFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentMaxFunctor_, (input, indices, numOfClasses, output), NUMERIC_TYPES);
|
||
|
}
|
||
|
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentMaxFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
||
|
|
||
|
template <typename T>
|
||
|
static void unsortedSegmentMinFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
|
||
|
}
|
||
|
|
||
|
void unsortedSegmentMinFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentMinFunctor_, (input, indices, numOfClasses, output),
|
||
|
NUMERIC_TYPES);
|
||
|
}
|
||
|
|
||
|
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentMinFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
||
|
|
||
|
void unsortedSegmentMeanFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
|
||
|
}
|
||
|
|
||
|
void unsortedSegmentSumFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
|
||
|
}
|
||
|
|
||
|
void unsortedSegmentProdFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
// BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentProdFunctor_, (input, indices, numOfClasses, output), NUMERIC_TYPES);
|
||
|
}
|
||
|
//BUILD_SINGLE_TEMPLATE(template void unsortedSegmentProdFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
||
|
|
||
|
void unsortedSegmentSqrtNFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||
|
// Backpropagate ops helpers
|
||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||
|
// Sorted backpropagate ops
|
||
|
//
|
||
|
|
||
|
// segment max
|
||
|
template <typename T>
|
||
|
int segmentMaxFunctorBP_(NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int segmentMaxFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
||
|
BUILD_SINGLE_SELECTOR(output->dataType(), return segmentMaxFunctorBP_, (input, indices, gradOut, output), NUMERIC_TYPES);
|
||
|
}
|
||
|
BUILD_SINGLE_TEMPLATE(template int segmentMaxFunctorBP_, (NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), NUMERIC_TYPES);
|
||
|
|
||
|
// segmen min
|
||
|
int segmentMinFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
// segmen mean
|
||
|
int segmentMeanFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int segmentSumFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||
|
// Unsorted backpropagate segment ops
|
||
|
// -------------------------------------------------------------------------------------------------------------- //
|
||
|
|
||
|
template <typename T>
|
||
|
static int unsortedSegmentMaxFunctorBP_(NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int unsortedSegmentMaxFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
BUILD_SINGLE_SELECTOR(output->dataType(), return unsortedSegmentMaxFunctorBP_, (input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES);
|
||
|
}
|
||
|
BUILD_SINGLE_TEMPLATE(template int unsortedSegmentMaxFunctorBP_, (NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
||
|
|
||
|
template <typename T>
|
||
|
static int unsortedSegmentMinFunctorBP_(NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int unsortedSegmentMinFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
BUILD_SINGLE_SELECTOR(output->dataType(), return unsortedSegmentMinFunctorBP_, (input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES);
|
||
|
}
|
||
|
BUILD_SINGLE_TEMPLATE(template int unsortedSegmentMinFunctorBP_, (NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
|
||
|
|
||
|
int unsortedSegmentMeanFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int unsortedSegmentSumFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int unsortedSegmentProdFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
// template <typename T>
|
||
|
int unsortedSegmentSqrtNFunctorBP(nd4j::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
// int unsortedSegmentSqrtNFunctorBP(NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
||
|
// BUILD_SINGLE_SELECTOR(output->dataType(), return unsortedSegmentSqrtNFunctorBP_, (input, indices, gradOut, numOfClasses, output), FLOAT_TYPES);
|
||
|
// }
|
||
|
// BUILD_SINGLE_TEMPLATE(template int unsortedSegmentSqrtNFunctorBP_, (NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), FLOAT_TYPES);
|
||
|
}
|
||
|
}
|
||
|
}
|