cavis/libnd4j/include/ops/declarable/helpers/cuda/reverse.cu

232 lines
10 KiB
Plaintext
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 16.04.2018
//
#include <ops/declarable/helpers/reverse.h>
#include <helpers/ShapeUtils.h>
#include <array/ResultSet.h>
#include <TAD.h>
#include <PointersManager.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
inline void __device__ indexSwap(T* arr, Nd4jLong idx1, Nd4jLong idx2) {
T tmp = arr[idx1];
arr[idx1] = arr[idx2];
arr[idx2] = tmp;
}
// template <typename T>
// void reverseArray(nd4j::LaunchContext * context, void* inArr, Nd4jLong *inShapeBuffer, void *result, Nd4jLong *zShapeBuffer, int numOfElemsToReverse = 0);
/////////////////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void reverseArrayInplaceKernel(void *input, Nd4jLong *inputShape, Nd4jLong numOfElemsToReverse) {
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
__shared__ Nd4jLong length;
__shared__ int linearStatus;
__shared__ T* inputArr;
if (threadIdx.x == 0) {
length = shape::length(inputShape);
linearStatus = shape::elementWiseStride(inputShape);
inputArr = reinterpret_cast<T*>(input);
}
__syncthreads();
for (Nd4jLong e = tid; e < numOfElemsToReverse / 2; e += step) {
if (linearStatus == 1) {
auto idx = numOfElemsToReverse - e - 1;
indexSwap(inputArr, e, idx);
}
else if (linearStatus > 1) {
auto idx1 = (numOfElemsToReverse - e - 1) * linearStatus;
Nd4jLong idx2 = e * linearStatus;
indexSwap(inputArr, idx1, idx2);
}
else {
auto inOffset = shape::getIndexOffset(e, inputShape, length);
auto outOffset = shape::getIndexOffset(numOfElemsToReverse - e - 1, inputShape, length);
indexSwap(inputArr, inOffset, outOffset);
}
}
}
template <typename T>
static __global__ void reverseArrayKernel(void* input, Nd4jLong *inputShape, void* output, Nd4jLong *outputShape, Nd4jLong numOfElemsToReverse) {
const auto tid = blockIdx.x * gridDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
__shared__ Nd4jLong length;
__shared__ int linearStatus;
__shared__ T* inputArr;
__shared__ T* outputArr;
__shared__ char inputOrder, outputOrder;
if (threadIdx.x == 0) {
length = shape::length(inputShape);
linearStatus = (shape::elementWiseStride(inputShape) == shape::elementWiseStride(outputShape)) && (inputOrder == outputOrder)? shape::elementWiseStride(inputShape):0;
char inputOrder = shape::order(inputShape);
char outputOrder = shape::order(outputShape);
inputArr = reinterpret_cast<T*>(input);
outputArr = reinterpret_cast<T*>(output);
}
__syncthreads();
for (Nd4jLong e = tid; e < length; e += step) {
if (e < numOfElemsToReverse ) {
if (linearStatus == 1) {
auto idx = numOfElemsToReverse - e - 1;
outputArr[idx] = inputArr[e];
} else if (linearStatus > 1) {
auto idx1 = (numOfElemsToReverse - e - 1) * linearStatus;
Nd4jLong idx2 = e * linearStatus;
outputArr[idx1] = inputArr[idx2];
} else {
auto inOffset = shape::getIndexOffset(e, inputShape, length);
auto outOffset = shape::getIndexOffset(numOfElemsToReverse - e - 1, outputShape, length);
outputArr[outOffset] = inputArr[inOffset];
}
}
else {
if (linearStatus == 1) {
outputArr[e] = inputArr[e];
} else if (linearStatus > 1) {
auto idx1 = e * linearStatus;
Nd4jLong idx2 = e * linearStatus;
outputArr[idx1] = inputArr[idx2];
} else {
auto inOffset = shape::getIndexOffset(e, inputShape, length);
auto outOffset = shape::getIndexOffset(e, outputShape, length);
outputArr[outOffset] = inputArr[inOffset];
}
}
}
//printf("\n");
}
template<typename T>
static void reverseArray(nd4j::LaunchContext * context, NDArray* input, NDArray* output, int numOfElemsToReverse) {
auto stream = context->getCudaStream();
Nd4jLong numOfReverse = numOfElemsToReverse;
if (numOfElemsToReverse == 0)
numOfReverse = input->lengthOf();
if (input == output) {
reverseArrayInplaceKernel<T><<<256, 512, 8192, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), numOfReverse);
}
else {
reverseArrayKernel<T><<<256, 512, 8192, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), numOfReverse);
}
}
///////////////////////////////////////////////////////////////////
template <typename T>
static void _reverseSequence(nd4j::LaunchContext * context, const NDArray* input, const NDArray* seqLengths, NDArray* output, int seqDim, const int batchDim){
int posOfNonUnityDim = -1;
seqLengths->syncToHost();
auto stream = context->getCudaStream();
if (!input->isActualOnDeviceSide())
input->syncToDevice();
if(input->isVector() || shape::isLikeVector(input->getShapeInfo(), posOfNonUnityDim) || seqLengths->lengthOf() == 1) {
int numOfElemsToReverse = seqLengths->e<int>(0);
// printf("Length %d\n", numOfElemsToReverse);
// input->printBuffer("INPUT");
if((seqDim == 0 && input->sizeAt(0) == 1) || (batchDim == posOfNonUnityDim))
output->assign(input);
else
reverseArrayKernel<T><<<256, 512, 8192, *stream>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), numOfElemsToReverse);//helpers::reverseArray<T>(context, const_cast<NDArray*>(input), output, numOfElemsToReverse);
}
else {
if(seqDim > batchDim)
--seqDim;
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {batchDim});
auto inSubArrsSet = input->allTensorsAlongDimension(dimensions);
auto outSubArrsSet = output->allTensorsAlongDimension(dimensions);
// #pragma omp parallel for schedule(guided) if(inSubArrsSet->size() > Environment::getInstance()->elementwiseThreshold())
for(int i = 0; i < inSubArrsSet->size(); ++i) {
int numOfElemsToReverse = seqLengths->e<int>(i);
if(numOfElemsToReverse == 0 || numOfElemsToReverse == 1) {
outSubArrsSet->at(i)->assign(inSubArrsSet->at(i));
}
else {
auto inInnerSet = inSubArrsSet->at(i)->allTensorsAlongDimension({seqDim});
auto outInnerSet = outSubArrsSet->at(i)->allTensorsAlongDimension({seqDim});
for(int j = 0; j < inInnerSet->size(); ++j)
reverseArray<T>(context, inInnerSet->at(j), outInnerSet->at(j), numOfElemsToReverse);
delete inInnerSet;
delete outInnerSet;
}
}
delete inSubArrsSet;
delete outSubArrsSet;
}
input->tickReadDevice();
output->tickWriteDevice();
}
void reverseSequence(nd4j::LaunchContext * context, const NDArray* input, const NDArray* seqLengths, NDArray* output, int seqDim, const int batchDim) {
BUILD_SINGLE_SELECTOR(input->dataType(), _reverseSequence, (context, input, seqLengths, output, seqDim, batchDim), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
void reverse(nd4j::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs, bool isBackProp) {
// we need to reverse axis only if that's new op
std::vector<int> dimensions = isBackProp ? ShapeUtils::evalDimsToExclude(input->rankOf(), *intArgs) : *intArgs;
std::vector<int> axis = ShapeUtils::evalDimsToExclude(input->rankOf(), dimensions);
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), axis);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), axis);
auto listOut = output->allTensorsAlongDimension(dimensions);
auto listIn = input->allTensorsAlongDimension(dimensions);
NDArray *subArrIn, *subArrOut;
for(int i = 0; i < listIn->size(); ++i) { // listIn->size() = listOut->size()
subArrIn = listIn->at(i);
subArrOut = listOut->at(i);
BUILD_SINGLE_SELECTOR(input->dataType(), reverseArray, (context, subArrIn, subArrOut, 0), LIBND4J_TYPES);
}
//BUILD_SINGLE_SELECTOR(input->dataType(), reverseArray, (context, const_cast<NDArray*>(input), output, (int)0), LIBND4J_TYPES);
input->tickReadDevice();
output->tickWriteDevice();
delete listOut;
delete listIn;
}
BUILD_SINGLE_TEMPLATE(template void reverseArray, (nd4j::LaunchContext * context, NDArray *inArr, NDArray *outArr, int numOfElemsToReverse), LIBND4J_TYPES);
}
}
}