2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright ( c ) 2015 - 2018 Skymind , Inc .
*
* This program and the accompanying materials are made available under the
* terms of the Apache License , Version 2.0 which is available at
* https : //www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS , WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied . See the
* License for the specific language governing permissions and limitations
* under the License .
*
* SPDX - License - Identifier : Apache - 2.0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 05.09.2018
//
# include <op_boilerplate.h>
# if NOT_EXCLUDED(OP_deconv3d)
# include <ops/declarable/CustomOperations.h>
# include <ops/declarable/helpers/convolutions.h>
# include <MmulHelper.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL ( deconv3d , 2 , 1 , false , 0 , 13 ) {
auto input = INPUT_VARIABLE ( 0 ) ; // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE ( 1 ) ; // [kD, kH, kW, oC, iC] always
auto bias = block . width ( ) > 2 ? INPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
auto output = OUTPUT_VARIABLE ( 0 ) ; // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW)
REQUIRE_TRUE ( input - > rankOf ( ) = = 5 , 0 , " CUSTOM DECONV3D OP: rank of input array must be equal to 5, but got %i instead ! " , input - > rankOf ( ) ) ;
REQUIRE_TRUE ( weights - > rankOf ( ) = = 5 , 0 , " CUSTOM DECONV3D OP: rank of weights array must be equal to 5, but got %i instead ! " , weights - > rankOf ( ) ) ;
int kD = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( weights - > sizeAt ( 0 ) ) ; // filter(kernel) depth
int kH = INT_ARG ( 1 ) > 0 ? INT_ARG ( 1 ) : static_cast < int > ( weights - > sizeAt ( 1 ) ) ; // filter(kernel) height
int kW = INT_ARG ( 2 ) > 0 ? INT_ARG ( 2 ) : static_cast < int > ( weights - > sizeAt ( 2 ) ) ; // filter(kernel) width
int sD = INT_ARG ( 3 ) ; // strides depth
int sH = INT_ARG ( 4 ) ; // strides height
int sW = INT_ARG ( 5 ) ; // strides width
int pD = INT_ARG ( 6 ) ; // paddings depth
int pH = INT_ARG ( 7 ) ; // paddings height
int pW = INT_ARG ( 8 ) ; // paddings width
int dD = INT_ARG ( 9 ) ; // dilations depth
int dH = INT_ARG ( 10 ) ; // dilations height
int dW = INT_ARG ( 11 ) ; // dilations width
int isSameMode = INT_ARG ( 12 ) ; // 0-SAME, 1-VALID
int isNCDHW = block . getIArguments ( ) - > size ( ) > 13 ? ! INT_ARG ( 13 ) : 1 ; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int bS , iC , iD , iH , iW , oC , oD , oH , oW ; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC , indIOioD , indWoC , indWiC , indWkD ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv3d ( isNCDHW , * input , * output , bS , iC , iD , iH , iW , oC , oD , oH , oW , indIOioC , indIOioD , indWoC , indWiC , indWkD ) ;
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kD , kH , kW , oC , iC } ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weights ) , 0 , " CUSTOM DECONV3D OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weights ) . c_str ( ) ) ;
if ( bias )
REQUIRE_TRUE ( bias - > rankOf ( ) < = 2 & & oC = = bias - > lengthOf ( ) , 0 , " CUSTOM DECONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , bias - > rankOf ( ) , bias - > lengthOf ( ) ) ;
if ( ! isNCDHW )
output = output - > permute ( { 0 , 4 , 1 , 2 , 3 } ) ; // [bS, oD, oH, oW, oC] -> [bS, oC, oD, oH, oW]
if ( isSameMode ) // SAME
ConvolutionUtils : : calcPadding3D ( pD , pH , pW , oD , oH , oW , iD , iH , iW , kD , kH , kW , sD , sH , sW , dD , dH , dW ) ;
auto columns = NDArrayFactory : : create ( input - > ordering ( ) , { bS , oC , kD , kH , kW , iD , iH , iW } , input - > dataType ( ) , block . launchContext ( ) ) ;
//----- calculation of output -----//
// NDHWC: [kD, kH, kW, oC, iC] x [bS, iD, iH, iW, iC] = [kD, kH, kW, oC, bS, iD, iH, iW]
// NCDHW: [iC, oC, kD, kH, kW] x [bS, iC, iD, iH, iW] = [oC, kD, kH, kW, bS, iD, iH, iW]
nd4j : : MmulHelper : : tensorDot ( weights , input , & columns , { indWiC } , { indIOioC } , { 2 , 3 , 4 , 1 , 0 , 5 , 6 , 7 } ) ; // [bS, oC, kD, kH, kW, iD, iH, iW] -> [kD, kH, kW, oC, bS, iD, iH, iW]
2019-06-15 13:34:34 +02:00
ConvolutionUtils : : col2vol ( block , columns , * output , sD , sH , sW , pD , pH , pW , dD , dH , dW ) ; // [bS, oC, kD, kH, kW, iD, iH, iW] is de-convoluted to [bS, oC, oD, oH, oW]
2019-06-06 14:21:15 +02:00
//----- add biases if required -----//
if ( bias )
output - > applyBroadcast ( broadcast : : Add , { 1 } , bias ) ;
if ( ! isNCDHW )
delete output ;
return Status : : OK ( ) ;
}
DECLARE_TYPES ( deconv3d ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( 0 , nd4j : : DataType : : ANY )
- > setAllowedInputTypes ( 1 , { ALL_FLOATS } )
- > setAllowedInputTypes ( 2 , { ALL_FLOATS } )
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
DECLARE_SHAPE_FN ( deconv3d ) {
auto inputShapeInfo = inputShape - > at ( 0 ) ; // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NDCHW)
auto weightsShapeInfo = inputShape - > at ( 1 ) ; // [kD, kH, kW, oC, iC] always
auto biasShapeInfo = block . width ( ) > 2 ? inputShape - > at ( 2 ) : nullptr ; // [oC]
const int rank = 5 ;
REQUIRE_TRUE ( inputShapeInfo [ 0 ] = = rank , 0 , " CUSTOM DECONV3D OP: rank of input array must be equal to %i, but got %i instead ! " , rank , inputShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( weightsShapeInfo [ 0 ] = = rank , 0 , " CUSTOM DECONV3D OP: rank of weights array must be equal to %i, but got %i instead ! " , rank , weightsShapeInfo [ 0 ] ) ;
int kD = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 0 ) ) ; // filter(kernel) depth
int kH = INT_ARG ( 1 ) > 0 ? INT_ARG ( 1 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 1 ) ) ; // filter(kernel) height
int kW = INT_ARG ( 2 ) > 0 ? INT_ARG ( 2 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 2 ) ) ; // filter(kernel) width
int sD = INT_ARG ( 3 ) ; // strides depth
int sH = INT_ARG ( 4 ) ; // strides height
int sW = INT_ARG ( 5 ) ; // strides width
int pD = INT_ARG ( 6 ) ; // paddings depth
int pH = INT_ARG ( 7 ) ; // paddings height
int pW = INT_ARG ( 8 ) ; // paddings width
int dD = INT_ARG ( 9 ) ; // dilations depth
int dH = INT_ARG ( 10 ) ; // dilations height
int dW = INT_ARG ( 11 ) ; // dilations width
int isSameMode = INT_ARG ( 12 ) ; // 0-SAME, 1-VALID
int isNCDHW = block . getIArguments ( ) - > size ( ) > 13 ? ! INT_ARG ( 13 ) : 1 ; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int indIOioC , indIiD , indWoC ( 3 ) ;
if ( ! isNCDHW ) {
indIOioC = 4 ; indIiD = 1 ;
}
else {
indIOioC = 1 ; indIiD = 2 ;
}
const int bS = inputShapeInfo [ 1 ] ; // batch size
const int iD = inputShapeInfo [ indIiD + 1 ] ; // input depth
const int iH = inputShapeInfo [ indIiD + 2 ] ; // input height
const int iW = inputShapeInfo [ indIiD + 3 ] ; // input width
const int iC = inputShapeInfo [ indIOioC + 1 ] ; // input channels
const int oC = weightsShapeInfo [ indWoC + 1 ] ; // output channels
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kD , kH , kW , oC , iC } ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weightsShapeInfo ) , 0 , " CUSTOM DECONV3D OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weightsShapeInfo ) . c_str ( ) ) ;
if ( biasShapeInfo )
REQUIRE_TRUE ( biasShapeInfo [ 0 ] < = 2 & & oC = = shape : : length ( biasShapeInfo ) , 0 , " CUSTOM DECONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , biasShapeInfo [ 0 ] , shape : : length ( biasShapeInfo ) ) ;
int oD , oH , oW ; // output depth, height, width
ConvolutionUtils : : calcOutSizeDeconv3D ( oD , oH , oW , kD , kH , kW , sD , sH , sW , pD , pH , pW , dD , dH , dW , iD , iH , iW , isSameMode ) ;
Nd4jLong * outputShapeInfo = nullptr ;
ALLOCATE ( outputShapeInfo , block . getWorkspace ( ) , shape : : shapeInfoLength ( inputShapeInfo ) , Nd4jLong ) ;
outputShapeInfo [ 0 ] = rank ;
outputShapeInfo [ 1 ] = bS ;
if ( isNCDHW ) {
outputShapeInfo [ 2 ] = oC ;
outputShapeInfo [ 3 ] = oD ;
outputShapeInfo [ 4 ] = oH ;
outputShapeInfo [ 5 ] = oW ;
} else {
outputShapeInfo [ 2 ] = oD ;
outputShapeInfo [ 3 ] = oH ;
outputShapeInfo [ 4 ] = oW ;
outputShapeInfo [ 5 ] = oC ;
}
ShapeUtils : : updateStridesAndType ( outputShapeInfo , weightsShapeInfo , shape : : order ( inputShapeInfo ) ) ;
return SHAPELIST ( CONSTANT ( outputShapeInfo ) ) ;
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL ( deconv3d_bp , 3 , 2 , false , 0 , 13 ) {
auto input = INPUT_VARIABLE ( 0 ) ; // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE ( 1 ) ; // [kD, kH, kW, oC, iC] always
auto bias = block . width ( ) > 3 ? INPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
auto gradO = block . width ( ) > 3 ? INPUT_VARIABLE ( 3 ) : INPUT_VARIABLE ( 2 ) ; // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE ( 0 ) ; // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), gradI
auto gradW = OUTPUT_VARIABLE ( 1 ) ; // [kD, kH, kW, oC, iC] always
auto gradB = block . width ( ) > 3 ? OUTPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
REQUIRE_TRUE ( input - > rankOf ( ) = = 5 , 0 , " CUSTOM DECONV3D_BP OP: rank of input array must be equal to 5, but got %i instead ! " , input - > rankOf ( ) ) ;
REQUIRE_TRUE ( weights - > rankOf ( ) = = 5 , 0 , " CUSTOM DECONV3D_BP OP: rank of weights array must be equal to 5 , but got %i instead ! " , weights - > rankOf ( ) ) ;
REQUIRE_TRUE ( gradO - > rankOf ( ) = = 5 , 0 , " CUSTOM DECONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to 5, but got %i instead ! " , gradO - > rankOf ( ) ) ;
int kD = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( weights - > sizeAt ( 0 ) ) ; // filter(kernel) depth
int kH = INT_ARG ( 1 ) > 0 ? INT_ARG ( 1 ) : static_cast < int > ( weights - > sizeAt ( 1 ) ) ; // filter(kernel) height
int kW = INT_ARG ( 2 ) > 0 ? INT_ARG ( 2 ) : static_cast < int > ( weights - > sizeAt ( 2 ) ) ; // filter(kernel) width
int sD = INT_ARG ( 3 ) ; // strides depth
int sH = INT_ARG ( 4 ) ; // strides height
int sW = INT_ARG ( 5 ) ; // strides width
int pD = INT_ARG ( 6 ) ; // paddings depth
int pH = INT_ARG ( 7 ) ; // paddings height
int pW = INT_ARG ( 8 ) ; // paddings width
int dD = INT_ARG ( 9 ) ; // dilations depth
int dH = INT_ARG ( 10 ) ; // dilations height
int dW = INT_ARG ( 11 ) ; // dilations width
int isSameMode = INT_ARG ( 12 ) ; // 0-SAME, 1-VALID
int isNCDHW = block . getIArguments ( ) - > size ( ) > 13 ? ! INT_ARG ( 13 ) : 1 ; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int bS , iC , iD , iH , iW , oC , oD , oH , oW ; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC , indIOioD , indWoC , indWiC , indWkD ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv3d ( isNCDHW , * input , * gradO , bS , iC , iD , iH , iW , oC , oD , oH , oW , indIOioC , indIOioD , indWoC , indWiC , indWkD ) ;
int trueoD , trueoH , trueoW ; // true output height, width
ConvolutionUtils : : calcOutSizeDeconv3D ( trueoD , trueoH , trueoW , kD , kH , kW , sD , sH , sW , pD , pH , pW , dD , dH , dW , iD , iH , iW , isSameMode ) ;
std : : string expectedGradOShape = ShapeUtils : : shapeAsString ( ShapeUtils : : composeShapeUsingDimsAndIdx ( { bS , oC , trueoD , trueoH , trueoW , 0 , indIOioC , indIOioD , indIOioD + 1 , indIOioD + 2 } ) ) ;
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kD , kH , kW , oC , iC } ) ;
REQUIRE_TRUE ( expectedGradOShape = = ShapeUtils : : shapeAsString ( gradO ) , 0 , " CUSTOM DECONV3D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead ! " , expectedGradOShape . c_str ( ) , ShapeUtils : : shapeAsString ( gradO ) . c_str ( ) ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weights ) , 0 , " CUSTOM DECONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weights ) . c_str ( ) ) ;
if ( bias )
REQUIRE_TRUE ( bias - > rankOf ( ) < = 2 & & oC = = bias - > lengthOf ( ) , 0 , " CUSTOM DECONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , bias - > rankOf ( ) , bias - > lengthOf ( ) ) ;
if ( isSameMode ) // SAME
ConvolutionUtils : : calcPadding3D ( pD , pH , pW , oD , oH , oW , iD , iH , iW , kD , kH , kW , sD , sH , sW , dD , dH , dW ) ;
// ----- calculation of gradI -> pass it through conv3d_ff ----- //
nd4j : : ops : : conv3dnew conv3d ;
const Nd4jStatus status = conv3d . execute ( { gradO , weights } , { gradI } , { } , { kD , kH , kW , sD , sH , sW , pD , pH , pW , dD , dH , dW , isSameMode , ! isNCDHW } , { } ) ;
if ( status ! = ND4J_STATUS_OK )
return status ;
// -----prepare permutation arrays and axes for dot product ----- //
std : : vector < int > inputAxesForDot ;
if ( ! isNCDHW ) {
gradO = gradO - > permute ( { 0 , 4 , 1 , 2 , 3 } ) ; // [bS, oD, oH, oW, oC] -> [bS, oC, oD, oH, oW]
inputAxesForDot = { 0 , 1 , 2 , 3 } ; // bS, iD, iH, iW
}
else
inputAxesForDot = { 0 , 2 , 3 , 4 } ; // bS, iD, iH, iW
// ----- calculation of gradW ----- //
auto columns = NDArrayFactory : : create ( input - > ordering ( ) , { bS , oC , kD , kH , kW , iD , iH , iW } , input - > dataType ( ) , block . launchContext ( ) ) ;
2019-06-15 13:34:34 +02:00
ConvolutionUtils : : vol2col ( block , * gradO , columns , sD , sH , sW , pD , pH , pW , dD , dH , dW ) ; // [bS, oC, oD, oH, oW] is deconvoluted to [bS, oC, kD, kH, kW, iD, iH, iW]
2019-06-06 14:21:15 +02:00
MmulHelper : : tensorDot ( input , & columns , gradW , inputAxesForDot , { 0 , 5 , 6 , 7 } , { 4 , 3 , 0 , 1 , 2 } ) ; // [bS, iC, iD, iH, iW]/[bS, iD, iH, iW, iC] x [bS, oC, kD, kH, kW, iD, iH, iW] = [iC, oC, kD, kH, kW]
// ----- calculation of gradB ----- //
if ( gradB ) {
if ( gradB - > rankOf ( ) = = 2 )
gradB = gradB - > reshape ( gradB - > ordering ( ) , { ( int ) gradB - > lengthOf ( ) } ) ;
gradO - > reduceAlongDimension ( reduce : : Sum , gradB , { 0 , 2 , 3 , 4 } ) ; // sum over bS, oD, oH, oW
if ( gradB ! = OUTPUT_VARIABLE ( 2 ) )
delete gradB ;
}
if ( ! isNCDHW )
delete gradO ;
return ND4J_STATUS_OK ;
}
DECLARE_TYPES ( deconv3d_bp ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( 0 , nd4j : : DataType : : ANY )
- > setAllowedInputTypes ( 1 , { ALL_FLOATS } )
- > setAllowedInputTypes ( 2 , { ALL_FLOATS } )
- > setAllowedInputTypes ( 3 , { ALL_FLOATS } )
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
DECLARE_SHAPE_FN ( deconv3d_bp ) {
auto inputShapeInfo = inputShape - > at ( 0 ) ; // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weightsShapeInfo = inputShape - > at ( 1 ) ; // [kD, kH, kW, oC, iC] always
Nd4jLong * biasShapeInfo = block . width ( ) > 3 ? inputShape - > at ( 2 ) : nullptr ; // [oC]
Nd4jLong * gradOShapeInfo = block . width ( ) > 3 ? inputShape - > at ( 3 ) : inputShape - > at ( 2 ) ; // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
const int rank = 5 ;
REQUIRE_TRUE ( inputShapeInfo [ 0 ] = = rank , 0 , " CUSTOM DECONV3D_BP OP: rank of input array must be equal to %i, but got %i instead ! " , rank , inputShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( weightsShapeInfo [ 0 ] = = rank , 0 , " CUSTOM DECONV3D_BP OP: rank of weights array must be equal to %i , but got %i instead ! " , rank , weightsShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( gradOShapeInfo [ 0 ] = = rank , 0 , " CUSTOM DECONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead ! " , rank , gradOShapeInfo [ 0 ] ) ;
int kD = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 0 ) ) ; // filter(kernel) depth
int kH = INT_ARG ( 1 ) > 0 ? INT_ARG ( 1 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 1 ) ) ; // filter(kernel) height
int kW = INT_ARG ( 2 ) > 0 ? INT_ARG ( 2 ) : static_cast < int > ( shape : : sizeAt ( weightsShapeInfo , 2 ) ) ; // filter(kernel) width
int sD = INT_ARG ( 3 ) ; // strides depth
int sH = INT_ARG ( 4 ) ; // strides height
int sW = INT_ARG ( 5 ) ; // strides width
int pD = INT_ARG ( 6 ) ; // paddings depth
int pH = INT_ARG ( 7 ) ; // paddings height
int pW = INT_ARG ( 8 ) ; // paddings width
int dD = INT_ARG ( 9 ) ; // dilations depth
int dH = INT_ARG ( 10 ) ; // dilations height
int dW = INT_ARG ( 11 ) ; // dilations width
int isSameMode = INT_ARG ( 12 ) ; // 0-SAME, 1-VALID
int isNCDHW = block . getIArguments ( ) - > size ( ) > 13 ? ! INT_ARG ( 13 ) : 1 ; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int indIOioC , indIiD , indWoC ( 3 ) ;
if ( ! isNCDHW ) {
indIOioC = 4 ; indIiD = 1 ;
}
else {
indIOioC = 1 ; indIiD = 2 ;
}
const int bS = inputShapeInfo [ 1 ] ; // batch size
const int iD = inputShapeInfo [ indIiD + 1 ] ; // input depth
const int iH = inputShapeInfo [ indIiD + 2 ] ; // input height
const int iW = inputShapeInfo [ indIiD + 3 ] ; // input width
const int iC = inputShapeInfo [ indIOioC + 1 ] ; // input channels
const int oC = weightsShapeInfo [ indWoC + 1 ] ; // output channels
int trueoD , trueoH , trueoW ; // true output depth, height, width
ConvolutionUtils : : calcOutSizeDeconv3D ( trueoD , trueoH , trueoW , kD , kH , kW , sD , sH , sW , pD , pH , pW , dD , dH , dW , iD , iH , iW , isSameMode ) ;
std : : string expectedGradOShape = ShapeUtils : : shapeAsString ( ShapeUtils : : composeShapeUsingDimsAndIdx ( { bS , oC , trueoD , trueoH , trueoW , 0 , indIOioC , indIiD , indIiD + 1 , indIiD + 2 } ) ) ;
std : : string expectedWeightsShape = ShapeUtils : : shapeAsString ( { kD , kH , kW , oC , iC } ) ;
REQUIRE_TRUE ( expectedGradOShape = = ShapeUtils : : shapeAsString ( gradOShapeInfo ) , 0 , " CUSTOM DECONV3D_BP OP: wrong shape of output gradients next epsilon) array, expected is %s, but got %s instead ! " , expectedGradOShape . c_str ( ) , ShapeUtils : : shapeAsString ( gradOShapeInfo ) . c_str ( ) ) ;
REQUIRE_TRUE ( expectedWeightsShape = = ShapeUtils : : shapeAsString ( weightsShapeInfo ) , 0 , " CUSTOM DECONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead ! " , expectedWeightsShape . c_str ( ) , ShapeUtils : : shapeAsString ( weightsShapeInfo ) . c_str ( ) ) ;
if ( biasShapeInfo )
REQUIRE_TRUE ( biasShapeInfo [ 0 ] < = 2 & & oC = = shape : : length ( biasShapeInfo ) , 0 , " CUSTOM DECONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , biasShapeInfo [ 0 ] , shape : : length ( biasShapeInfo ) ) ;
auto gradIShapeInfo = ShapeBuilders : : copyShapeInfoAndType ( inputShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
auto gradWShapeInfo = ShapeBuilders : : copyShapeInfoAndType ( weightsShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
auto shapes = SHAPELIST ( CONSTANT ( gradIShapeInfo ) , CONSTANT ( gradWShapeInfo ) ) ;
if ( biasShapeInfo ! = nullptr ) {
auto gradBShapeInfo = ShapeBuilders : : copyShapeInfoAndType ( biasShapeInfo , gradOShapeInfo , false , block . getWorkspace ( ) ) ;
shapes - > push_back ( CONSTANT ( gradBShapeInfo ) ) ;
}
return shapes ;
}
}
}
# endif