86 lines
3.3 KiB
Java
86 lines
3.3 KiB
Java
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
package org.deeplearning4j;
|
||
|
|
||
|
import org.deeplearning4j.nn.api.Layer;
|
||
|
import org.deeplearning4j.nn.layers.convolution.ConvolutionLayer;
|
||
|
import org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer;
|
||
|
import org.deeplearning4j.nn.layers.normalization.BatchNormalization;
|
||
|
import org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization;
|
||
|
import org.deeplearning4j.nn.layers.recurrent.LSTM;
|
||
|
import org.nd4j.base.Preconditions;
|
||
|
|
||
|
import java.lang.reflect.Field;
|
||
|
|
||
|
/**
|
||
|
* Test utility methods specific to CuDNN
|
||
|
*
|
||
|
* @author Alex Black
|
||
|
*/
|
||
|
public class CuDNNTestUtils {
|
||
|
|
||
|
private CuDNNTestUtils(){ }
|
||
|
|
||
|
public static void removeHelpers(Layer[] layers) throws Exception {
|
||
|
for(Layer l : layers){
|
||
|
|
||
|
if(l instanceof ConvolutionLayer){
|
||
|
Field f1 = ConvolutionLayer.class.getDeclaredField("helper");
|
||
|
f1.setAccessible(true);
|
||
|
f1.set(l, null);
|
||
|
} else if(l instanceof SubsamplingLayer){
|
||
|
Field f2 = SubsamplingLayer.class.getDeclaredField("helper");
|
||
|
f2.setAccessible(true);
|
||
|
f2.set(l, null);
|
||
|
} else if(l instanceof BatchNormalization) {
|
||
|
Field f3 = BatchNormalization.class.getDeclaredField("helper");
|
||
|
f3.setAccessible(true);
|
||
|
f3.set(l, null);
|
||
|
} else if(l instanceof LSTM){
|
||
|
Field f4 = LSTM.class.getDeclaredField("helper");
|
||
|
f4.setAccessible(true);
|
||
|
f4.set(l, null);
|
||
|
} else if(l instanceof LocalResponseNormalization){
|
||
|
Field f5 = LocalResponseNormalization.class.getDeclaredField("helper");
|
||
|
f5.setAccessible(true);
|
||
|
f5.set(l, null);
|
||
|
}
|
||
|
|
||
|
|
||
|
if(l.getHelper() != null){
|
||
|
throw new IllegalStateException("Did not remove helper for layer: " + l.getClass().getSimpleName());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static void assertHelpersPresent(Layer[] layers) throws Exception {
|
||
|
for(Layer l : layers){
|
||
|
//Don't use instanceof here - there are sub conv subclasses
|
||
|
if(l.getClass() == ConvolutionLayer.class || l instanceof SubsamplingLayer || l instanceof BatchNormalization || l instanceof LSTM){
|
||
|
Preconditions.checkNotNull(l.getHelper(), l.conf().getLayer().getLayerName());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static void assertHelpersAbsent(Layer[] layers) throws Exception {
|
||
|
for(Layer l : layers){
|
||
|
Preconditions.checkState(l.getHelper() == null, l.conf().getLayer().getLayerName());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|