161 lines
6.8 KiB
Java
161 lines
6.8 KiB
Java
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
package org.deeplearning4j.zoo.model;
|
||
|
|
||
|
import lombok.AllArgsConstructor;
|
||
|
import lombok.Builder;
|
||
|
import lombok.NoArgsConstructor;
|
||
|
import org.deeplearning4j.common.resources.DL4JResources;
|
||
|
import org.deeplearning4j.nn.api.Model;
|
||
|
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
|
||
|
import org.deeplearning4j.nn.conf.*;
|
||
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||
|
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
|
||
|
import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
||
|
import org.deeplearning4j.nn.conf.layers.OutputLayer;
|
||
|
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
|
||
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||
|
import org.deeplearning4j.nn.weights.WeightInit;
|
||
|
import org.deeplearning4j.zoo.ModelMetaData;
|
||
|
import org.deeplearning4j.zoo.PretrainedType;
|
||
|
import org.deeplearning4j.zoo.ZooModel;
|
||
|
import org.deeplearning4j.zoo.ZooType;
|
||
|
import org.nd4j.linalg.activations.Activation;
|
||
|
import org.nd4j.linalg.learning.config.AdaDelta;
|
||
|
import org.nd4j.linalg.learning.config.IUpdater;
|
||
|
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
||
|
|
||
|
/**
|
||
|
* LeNet was an early promising achiever on the ImageNet dataset.
|
||
|
* References:<br>
|
||
|
* - <a href="http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf">http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf</a><br>
|
||
|
* - <a href="https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt">https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt</a><br>
|
||
|
*
|
||
|
* <p>MNIST weights for this model are available and have been converted from <a href="https://github.com/f00-/mnist-lenet-keras">https://github.com/f00-/mnist-lenet-keras</a>.</p>
|
||
|
*
|
||
|
* @author kepricon
|
||
|
* @author Justin Long (crockpotveggies)
|
||
|
*/
|
||
|
@AllArgsConstructor
|
||
|
@Builder
|
||
|
public class LeNet extends ZooModel {
|
||
|
|
||
|
@Builder.Default private long seed = 1234;
|
||
|
@Builder.Default private int[] inputShape = new int[] {3, 224, 224};
|
||
|
@Builder.Default private int numClasses = 0;
|
||
|
@Builder.Default private IUpdater updater = new AdaDelta();
|
||
|
@Builder.Default private CacheMode cacheMode = CacheMode.NONE;
|
||
|
@Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
|
||
|
@Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;
|
||
|
|
||
|
private LeNet() {}
|
||
|
|
||
|
@Override
|
||
|
public String pretrainedUrl(PretrainedType pretrainedType) {
|
||
|
if (pretrainedType == PretrainedType.MNIST)
|
||
|
return DL4JResources.getURLString("models/lenet_dl4j_mnist_inference.zip");
|
||
|
else
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public long pretrainedChecksum(PretrainedType pretrainedType) {
|
||
|
if (pretrainedType == PretrainedType.MNIST)
|
||
|
return 1906861161L;
|
||
|
else
|
||
|
return 0L;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public Class<? extends Model> modelType() {
|
||
|
return MultiLayerNetwork.class;
|
||
|
}
|
||
|
|
||
|
public MultiLayerConfiguration conf() {
|
||
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(seed)
|
||
|
.activation(Activation.IDENTITY)
|
||
|
.weightInit(WeightInit.XAVIER)
|
||
|
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
|
||
|
.updater(updater)
|
||
|
.cacheMode(cacheMode)
|
||
|
.trainingWorkspaceMode(workspaceMode)
|
||
|
.inferenceWorkspaceMode(workspaceMode)
|
||
|
.cudnnAlgoMode(cudnnAlgoMode)
|
||
|
.convolutionMode(ConvolutionMode.Same)
|
||
|
.list()
|
||
|
// block 1
|
||
|
.layer(new ConvolutionLayer.Builder()
|
||
|
.name("cnn1")
|
||
|
.kernelSize(5, 5)
|
||
|
.stride(1, 1)
|
||
|
.nIn(inputShape[0])
|
||
|
.nOut(20)
|
||
|
.activation(Activation.RELU)
|
||
|
.build())
|
||
|
.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
|
||
|
.name("maxpool1")
|
||
|
.kernelSize(2, 2)
|
||
|
.stride(2, 2)
|
||
|
.build())
|
||
|
// block 2
|
||
|
.layer(new ConvolutionLayer.Builder()
|
||
|
.name("cnn2")
|
||
|
.kernelSize(5, 5)
|
||
|
.stride(1, 1)
|
||
|
.nOut(50)
|
||
|
.activation(Activation.RELU).build())
|
||
|
.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
|
||
|
.name("maxpool2")
|
||
|
.kernelSize(2, 2)
|
||
|
.stride(2, 2)
|
||
|
.build())
|
||
|
// fully connected
|
||
|
.layer(new DenseLayer.Builder()
|
||
|
.name("ffn1")
|
||
|
.activation(Activation.RELU)
|
||
|
.nOut(500)
|
||
|
.build())
|
||
|
// output
|
||
|
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||
|
.name("output")
|
||
|
.nOut(numClasses)
|
||
|
.activation(Activation.SOFTMAX) // radial basis function required
|
||
|
.build())
|
||
|
.setInputType(InputType.convolutionalFlat(inputShape[2], inputShape[1], inputShape[0]))
|
||
|
.build();
|
||
|
|
||
|
return conf;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public Model init() {
|
||
|
MultiLayerNetwork network = new MultiLayerNetwork(conf());
|
||
|
network.init();
|
||
|
return network;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public ModelMetaData metaData() {
|
||
|
return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN);
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public void setInputShape(int[][] inputShape) {
|
||
|
this.inputShape = inputShape[0];
|
||
|
}
|
||
|
}
|