2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
2019-11-19 14:39:36 +01:00
* Copyright (c) 2019 Konduit K.K.
2019-06-06 14:21:15 +02:00
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <exceptions/cuda_exception.h>
#include <cublas_v2.h>
#include "../MmulHelper.h"
2020-03-02 10:49:41 +01:00
#include <ops/specials_cuda.h>
#include <helpers/ShapeUtils.h>
#include <helpers/PointersManager.h>
2019-11-19 14:39:36 +01:00
#include <numeric>
2019-06-06 14:21:15 +02:00
2020-03-02 10:49:41 +01:00
namespace sd {
2019-06-06 14:21:15 +02:00
//////////////////////////////////////////////////////////////////////////////
2019-11-19 14:39:36 +01:00
// MXK x KxN = MxN -> actual sequence of axes doesn't matter
2019-06-06 14:21:15 +02:00
template <typename T1, typename T2, typename T3>
2019-11-19 14:39:36 +01:00
static __global__ void usualCudaGemm(const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo,
const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis,
const double alpha, const double beta) {
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const T1* A = reinterpret_cast<const T1*>(vA);
const T2* B = reinterpret_cast<const T2*>(vB);
T3* C = reinterpret_cast< T3*>(vC);
2019-06-06 14:21:15 +02:00
2020-03-11 14:21:59 +01:00
__shared__ int K, *coords;
2019-11-19 14:39:36 +01:00
__shared__ bool betaPresent;
2020-03-11 14:21:59 +01:00
__shared__ Nd4jLong cLen, totalThreads;
2019-06-06 14:21:15 +02:00
__shared__ T3 alphaZ, betaZ;
2019-11-19 14:39:36 +01:00
if (threadIdx.x == 0) {
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
extern __shared__ unsigned char shmem[];
2020-03-11 14:21:59 +01:00
coords = reinterpret_cast<int*>(shmem);
2019-11-19 14:39:36 +01:00
cLen = shape::length(cShapeInfo);
K = shape::shapeOf(const_cast<Nd4jLong*>(aShapeInfo))[aKaxis];
betaPresent = beta;
totalThreads = gridDim.x * blockDim.x;
2019-06-06 14:21:15 +02:00
alphaZ = alpha;
betaZ = beta;
}
__syncthreads();
2019-11-19 14:39:36 +01:00
auto aCoords = coords + threadIdx.x * 6; // 6 = (aRank + bRank + cRank)
auto bCoords = aCoords + 2;
auto cCoords = bCoords + 2;
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < cLen; i += totalThreads) {
// evaluate C coordinates
shape::index2coords(i, cShapeInfo, cCoords);
// evaluate A coordinates
aCoords[aMaxis] = cCoords[cMaxis];
aCoords[aKaxis] = 0;
// evaluate B coordinates
bCoords[bKaxis] = 0;
bCoords[bNaxis] = cCoords[cNaxis];
auto aOffset = shape::getOffset(aShapeInfo, aCoords);
auto bOffset = shape::getOffset(bShapeInfo, bCoords);
T3 val = A[aOffset] * B[bOffset]; // first iteration
for (uint j = 1; j < K; ++j) { // rest iterations
aOffset += shape::stride(aShapeInfo)[aKaxis];
bOffset += shape::stride(bShapeInfo)[bKaxis];
val = val + A[aOffset] * B[bOffset];
}
auto cOffset = shape::getOffset(cShapeInfo, cCoords);
if(betaPresent)
C[cOffset] = alphaZ * val + betaZ * C[cOffset];
else
C[cOffset] = alphaZ * val;
}
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
2019-11-19 14:39:36 +01:00
__host__ static void usualGemm(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) {
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
usualCudaGemm<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vA, aShapeInfo, vB, bShapeInfo, vC, cShapeInfo, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta);
2019-06-06 14:21:15 +02:00
}
2019-11-19 14:39:36 +01:00
////////////////////////////////////////////////////////////////////////
// MXN x N = M -> actual sequence of {M,N} axes doesn't matter
2019-06-06 14:21:15 +02:00
template <typename T1, typename T2, typename T3>
2019-11-19 14:39:36 +01:00
static __global__ void usualCudaGemv(const void* vA, const Nd4jLong* aShapeInfo, const void* vX, const Nd4jLong* xShapeInfo, void* vY, const Nd4jLong* yShapeInfo,
const int incx, const int incy, const int aMaxis, const double alpha, const double beta) {
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const T1* A = reinterpret_cast<const T1*>(vA);
const T2* X = reinterpret_cast<const T2*>(vX);
T3* Y = reinterpret_cast< T3*>(vY);
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
__shared__ int M, N;
__shared__ bool betaPresent;
__shared__ Nd4jLong cLen, totalThreads, aNstride, aMstride;
2019-06-06 14:21:15 +02:00
__shared__ T3 alphaZ, betaZ;
2019-11-19 14:39:36 +01:00
if (threadIdx.x == 0) {
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
N = shape::length(xShapeInfo);
M = shape::length(yShapeInfo);
aMstride = shape::stride(aShapeInfo)[aMaxis];
aNstride = shape::stride(aShapeInfo)[aMaxis == 0 ? 1 : 0];
totalThreads = gridDim.x * blockDim.x;
betaPresent = beta;
2019-06-06 14:21:15 +02:00
alphaZ = alpha;
betaZ = beta;
}
__syncthreads();
2019-11-19 14:39:36 +01:00
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < M; i += totalThreads) {
// evaluate offsets
auto aOffset = i * aMstride;
auto xOffset = 0;
T3 val = A[aOffset] * X[xOffset]; // first iteration
for (uint j = 1; j < N; ++j) { // rest iterations
aOffset += aNstride;
xOffset += incx;
val = val + A[aOffset] * X[xOffset];
}
auto yOffset = i * incy;
if(betaPresent)
Y[yOffset] = alphaZ * val + betaZ * Y[yOffset];
else
Y[yOffset] = alphaZ * val;
}
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
2019-11-19 14:39:36 +01:00
__host__ static void usualGemv(const int blocksPerGrid, const int threadsPerBlock, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vX, const Nd4jLong* xShapeInfo, void* vY, const Nd4jLong* yShapeInfo, const int incx, const int incy, const int aMaxis, const double alpha, const double beta) {
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
usualCudaGemv<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 512, *stream>>>(vA, aShapeInfo, vX, xShapeInfo, vY, yShapeInfo, incx, incy, aMaxis, alpha, beta);
2019-06-06 14:21:15 +02:00
}
2019-11-19 14:39:36 +01:00
2019-06-06 14:21:15 +02:00
//////////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
static __global__ void usualCudaDot(const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) {
T1* X = reinterpret_cast<T1*>(const_cast<void*>(vX));
T2* Y = reinterpret_cast<T2*>(const_cast<void*>(vY));
T3* Z = reinterpret_cast<T3*>(vZ);
2019-11-19 14:39:36 +01:00
extern __shared__ unsigned char shmem[];
2019-06-06 14:21:15 +02:00
auto pairwiseMul = reinterpret_cast<T3*>(shmem);
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid < length)
pairwiseMul[tid] = X[tid * incx] * Y[tid * incy];
__syncthreads();
if(tid == 0) {
T3 sum = 0;
for(Nd4jLong i = 0; i < length; ++i)
sum = sum + pairwiseMul[i];
2019-11-19 14:39:36 +01:00
if(beta)
*Z = (T3)alpha * sum + (T3)beta * *Z;
else
*Z = (T3)alpha * sum;
2019-06-06 14:21:15 +02:00
}
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
__host__ static void usualDot(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) {
usualCudaDot<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, length*sizeof(T3) + 128, *stream>>>(length, alpha, vX, incx, vY, incy, beta, vZ);
}
//////////////////////////////////////////////////////////////////////////////
// MXK x KxN = MxN
NDArray* MmulHelper::mmulMxM(const NDArray* A, const NDArray* B, NDArray* C, double alpha, double beta, const char outOrder) {
if(A->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of A array is not equal 2 !");
if(B->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of B array is not equal 2 !");
2019-11-19 14:39:36 +01:00
const auto M = A->sizeAt(0);
const auto K = A->sizeAt(1);
const auto N = B->sizeAt(1);
2019-06-06 14:21:15 +02:00
if(C != nullptr && C->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of C array is not equal 2 !");
if(B->sizeAt(0) != K)
throw std::runtime_error("MmulHelper::mmulMxM cuda: B array has wrong number of rows !");
if(C != nullptr && C->sizeAt(0) != M)
throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of rows !");
if(C != nullptr && C->sizeAt(1) != N)
throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of columns !");
if(C == nullptr)
C = new NDArray(outOrder, {M,N}, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext());
2019-12-30 13:06:12 +01:00
if (C->isEmpty())
return C;
2019-11-19 14:39:36 +01:00
const int major = Environment::getInstance()->capabilities()[AffinityManager::currentDeviceId()].first();
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const auto aType = A->dataType();
const auto bType = B->dataType();
const auto cType = C->dataType();
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC);
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const bool typeDouble = ABC && aType == DataType::DOUBLE;
const bool typeFloat = ABC && aType == DataType::FLOAT32;
const bool typeHalf = ABC && aType == DataType::HALF && major >= 6;
const bool typeIntFloat = AB && aType == DataType::INT8 && cType == DataType::FLOAT32 && major >= 6;
const bool typeHalfFloat = AB && aType == DataType::HALF && cType == DataType::FLOAT32 && major >= 6;
2019-06-06 14:21:15 +02:00
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
auto stream = A->getContext()->getCudaStream();
auto status = cublasSetStream_v2(*handle, *stream);
2019-11-19 14:39:36 +01:00
if (status != CUBLAS_STATUS_SUCCESS)
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status);
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
if(!typeDouble && !typeFloat && !typeHalf && !typeIntFloat && !typeHalfFloat) {
2019-08-28 17:27:08 +02:00
2019-11-19 14:39:36 +01:00
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (C->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
2020-03-11 14:21:59 +01:00
const int sharedMem = threadsPerBlock * sizeof(int) * 6 + 128; // 6 = aRank + bRank + cRank
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
NDArray::prepareSpecialUse({C}, {A, B});
2019-11-21 20:17:30 +01:00
// BUILD_TRIPLE_SELECTOR(aType, bType, cType, usualGemm, (blocksPerGrid, threadsPerBlock, sharedMem, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), 0, 1, 0, 1, 0, 1, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
BUILD_SINGLE_SELECTOR_THRICE(aType, usualGemm, (blocksPerGrid, threadsPerBlock, sharedMem, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), 0, 1, 0, 1, 0, 1, alpha, beta), NUMERIC_TYPES)
2019-11-19 14:39:36 +01:00
NDArray::registerSpecialUse({C}, {A, B});
2019-11-21 20:17:30 +01:00
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0)
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult);
2019-06-06 14:21:15 +02:00
}
else {
2019-11-19 14:39:36 +01:00
std::vector<NDArray*> toDelete;
NDArray *pA(const_cast<NDArray*>(A)), *pB(const_cast<NDArray*>(B)), *pC(const_cast<NDArray*>(C));
bool aMcont = M == 1 || A->strideAt(0) == 1;
bool aKcont = K == 1 || A->strideAt(1) == 1;
bool bKcont = K == 1 || B->strideAt(0) == 1;
bool bNcont = N == 1 || B->strideAt(1) == 1;
bool cMcont = M == 1 || C->strideAt(0) == 1;
bool cNcont = N == 1 || C->strideAt(1) == 1;
if(!aMcont && !aKcont) {
2019-12-20 20:35:39 +01:00
pA = new NDArray(A->dup('f'));
2019-11-19 14:39:36 +01:00
toDelete.push_back(pA);
aMcont = true;
}
if(!bKcont && !bNcont) {
2019-12-20 20:35:39 +01:00
pB = new NDArray(B->dup('f'));
2019-11-19 14:39:36 +01:00
toDelete.push_back(pB);
bKcont = true;
}
if(!cMcont) {
2019-12-20 20:35:39 +01:00
pC = new NDArray(C->dup('f'));
2019-11-19 14:39:36 +01:00
toDelete.push_back(pC);
cMcont = true;
2019-06-06 14:21:15 +02:00
}
2019-11-19 14:39:36 +01:00
const bool transA = !aMcont;
const bool transB = !bKcont;
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const int lda = (aMcont && aKcont) ? M : transA ? pA->strideAt(0) : pA->strideAt(1);
const int ldb = (bKcont && bNcont) ? K : transB ? pB->strideAt(0) : pB->strideAt(1);
const int ldc = (cMcont && cNcont) ? M : pC->strideAt(1);
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
const cublasOperation_t transBblas = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
NDArray::prepareSpecialUse({pC}, {pA, pB});
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
// choose appropriate cuda gemm api depending on data types
if(typeDouble) {
status = cublasDgemm(*handle, transAblas, transBblas, M, N, K, &alpha, (double*)pA->getSpecialBuffer(), lda, (double*)pB->getSpecialBuffer(), ldb, &beta, (double*)pC->getSpecialBuffer(), ldc);
}
else if(typeFloat) {
float alphaF(alpha), betaF(beta);
status = cublasSgemm(*handle, transAblas, transBblas, M, N, K, &alphaF, (float*)pA->getSpecialBuffer(), lda, (float*)pB->getSpecialBuffer(), ldb, &betaF, (float*)pC->getSpecialBuffer(), ldc);
}
else if(typeHalf) {
float16 alphaH(alpha), betaH(beta);
status = cublasHgemm(*handle, transAblas, transBblas, M, N, K, &alphaH.data, (__half*)pA->getSpecialBuffer(), lda, (__half*)pB->getSpecialBuffer(), ldb, &betaH.data, (__half*)pC->getSpecialBuffer(), ldc);
}
else if(typeIntFloat) {
float alphaF(alpha), betaF(beta);
status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->getSpecialBuffer(), CUDA_R_8I, lda, pB->getSpecialBuffer(), CUDA_R_8I, ldb, &betaF, pC->getSpecialBuffer(), CUDA_R_32F, ldc);
}
else if(typeHalfFloat) {
float alphaF(alpha), betaF(beta);
status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->getSpecialBuffer(), CUDA_R_16F, lda, pB->getSpecialBuffer(), CUDA_R_16F, ldb, &betaF, pC->getSpecialBuffer(), CUDA_R_32F, ldc);
}
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
if (status != CUBLAS_STATUS_SUCCESS)
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status);
NDArray::registerSpecialUse({pC}, {pA, pB});
2019-11-21 20:17:30 +01:00
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0)
throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult);
2019-11-19 14:39:36 +01:00
if(C != pC)
C->assign(pC);
for(int i = toDelete.size() - 1; i >= 0; --i)
delete toDelete[i];
}
2019-06-06 14:21:15 +02:00
return C;
}
////////////////////////////////////////////////////////////////////////////
// MXN x N = M
2020-03-02 10:49:41 +01:00
NDArray* MmulHelper::mmulMxV(const NDArray* A, const NDArray* X, sd::NDArray* Y, const double alpha, const double beta, const char outOrder) {
2019-06-06 14:21:15 +02:00
int xLenDim, yLenDim(0);
if(A->rankOf() != 2)
throw std::runtime_error("MmulHelper::mmulMxV cuda: rank of A array is not equal 2 !");
if(!shape::isCommonVector(X->getShapeInfo(), xLenDim))
throw std::runtime_error("MmulHelper::mmulMxV cuda: X array must be vector !");
const auto M = A->sizeAt(0);
const auto N = A->sizeAt(1);
if(Y != nullptr && !shape::isCommonVector(Y->getShapeInfo(), yLenDim))
throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array must be vector !");
if(X->lengthOf() != N)
throw std::runtime_error("MmulHelper::mmulMxV cuda: X vector has wrong length !");
if(Y != nullptr && Y->lengthOf() != M)
throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array has wrong length !");
if(Y == nullptr)
Y = new NDArray(outOrder, {M}, DataTypeUtils::pickPairwiseResultType(A->dataType(), X->dataType()), A->getContext());
2019-12-30 13:06:12 +01:00
if (Y->isEmpty())
return Y;
2019-11-19 14:39:36 +01:00
const int incx = X->strideAt(xLenDim);
const int incy = Y->strideAt(yLenDim);
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const auto aType = A->dataType();
2019-06-06 14:21:15 +02:00
const auto xType = X->dataType();
const auto yType = Y->dataType();
2019-11-19 14:39:36 +01:00
const bool AX(aType == xType), AY(aType == yType), AXY(AX && AY);
const bool typeDouble = AXY && aType == DataType::DOUBLE;
const bool typeFloat = AXY && aType == DataType::FLOAT32;
2019-06-06 14:21:15 +02:00
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
auto stream = A->getContext()->getCudaStream();
auto status = cublasSetStream_v2(*handle, *stream);
2019-11-19 14:39:36 +01:00
if (status != CUBLAS_STATUS_SUCCESS)
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status);
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
if(!typeDouble && !typeFloat) {
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const int threadsPerBlock = MAX_NUM_THREADS;
const int blocksPerGrid = (M + threadsPerBlock - 1) / threadsPerBlock;
NDArray::prepareSpecialUse({Y}, {A, X});
2019-11-21 20:17:30 +01:00
// BUILD_TRIPLE_SELECTOR(aType, xType, yType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), X->getSpecialBuffer(), X->getSpecialShapeInfo(), Y->getSpecialBuffer(), Y->getSpecialShapeInfo(), incx, incy, 0, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
BUILD_SINGLE_SELECTOR_THRICE(xType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, A->getSpecialBuffer(), A->getSpecialShapeInfo(), X->getSpecialBuffer(), X->getSpecialShapeInfo(), Y->getSpecialBuffer(), Y->getSpecialShapeInfo(), incx, incy, 0, alpha, beta), NUMERIC_TYPES)
2019-11-19 14:39:36 +01:00
NDArray::registerSpecialUse({Y}, {A, X});
2019-06-06 14:21:15 +02:00
2019-11-21 20:17:30 +01:00
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0)
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", cudaResult);
2019-06-06 14:21:15 +02:00
}
else {
2019-11-19 14:39:36 +01:00
NDArray *pA(const_cast<NDArray*>(A));
bool aMcont = M == 1 || A->strideAt(0) == 1;
bool aNcont = N == 1 || A->strideAt(1) == 1;
if(!aMcont && !aNcont) {
2019-12-20 20:35:39 +01:00
pA = new NDArray(A->dup('f'));
2019-11-19 14:39:36 +01:00
aMcont = true;
2019-06-06 14:21:15 +02:00
}
2019-11-19 14:39:36 +01:00
const bool transA = !aMcont;
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
const int lda = (aMcont && aNcont) ? M : transA ? pA->strideAt(0) : pA->strideAt(1);
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
NDArray::prepareSpecialUse({Y}, {pA, X});
// choose appropriate cuda gemm api depending on data types
if(typeDouble) {
status = cublasDgemv(*handle, transAblas, transA ? N : M, transA ? M : N, &alpha, (double*)pA->getSpecialBuffer(), lda, (double*)X->getSpecialBuffer(), incx, &beta, (double*)Y->getSpecialBuffer(), incy);
}
else if(typeFloat) {
float alphaF(alpha), betaF(beta);
status = cublasSgemv(*handle, transAblas, transA ? N : M, transA ? M : N, &alphaF, (float*)pA->getSpecialBuffer(), lda, (float*)X->getSpecialBuffer(), incx, &betaF, (float*)Y->getSpecialBuffer(), incy);
}
2019-06-06 14:21:15 +02:00
2019-11-19 14:39:36 +01:00
if (status != CUBLAS_STATUS_SUCCESS)
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status);
2019-06-06 14:21:15 +02:00
2019-11-21 20:17:30 +01:00
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0)
throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", cudaResult);
2019-11-19 14:39:36 +01:00
NDArray::registerSpecialUse({Y}, {pA, X});
if(pA != A)
delete pA;
}
2019-06-06 14:21:15 +02:00
return Y;
}
////////////////////////////////////////////////////////////////////////////
// (X * Y) = Z[0]
2020-03-02 10:49:41 +01:00
NDArray* MmulHelper::dot(const NDArray* X, const NDArray* Y, sd::NDArray* Z, const double alpha, const double beta) {
2019-06-06 14:21:15 +02:00
int xLenDim(0), yLenDim(0);
if(!shape::isCommonVector(X->getShapeInfo(), xLenDim))
throw std::runtime_error("MmulHelper::dot cuda: X array must be vector !");
if(!shape::isCommonVector(Y->getShapeInfo(), yLenDim))
throw std::runtime_error("MmulHelper::dot cuda: Y array must be vector !");
if(Z != nullptr && !Z->isScalar())
throw std::runtime_error("MmulHelper::dot cuda: Z array must be scalar !");
const auto length = X->lengthOf();
if(Y->lengthOf() != length)
throw std::runtime_error("MmulHelper::dot cuda: lengths of input vectors are different !");
if(Z == nullptr)
Z = new NDArray(DataTypeUtils::pickPairwiseResultType(X->dataType(), Y->dataType()), X->getContext());
2019-11-19 14:39:36 +01:00
const Nd4jLong incx = X->strideAt(xLenDim);
const Nd4jLong incy = Y->strideAt(yLenDim);
2019-06-06 14:21:15 +02:00
const auto xType = X->dataType();
const auto yType = Y->dataType();
const auto zType = Z->dataType();
if(!X->isActualOnDeviceSide()) X->syncToDevice();
if(!Y->isActualOnDeviceSide()) Y->syncToDevice();
if(!Z->isActualOnDeviceSide()) Z->syncToDevice();
cudaStream_t* stream = X->getContext()->getCudaStream();
dim3 threadsPerBlock(512);
dim3 blocksPerGrid(1);
if (length > 512)
threadsPerBlock.x = math::nd4j_ceil<double, int>(static_cast<double>(length) / 512);
NDArray::prepareSpecialUse({Z}, {X, Y});
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* launch context reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* per-device LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Fix functions of OpaqueVariablesSet
* thread-local buffers/affinity
Signed-off-by: raver119 <raver119@gmail.com>
* thread safety for LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* more of thread safety
Signed-off-by: raver119 <raver119@gmail.com>
* one more multi threaded test
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* round robin affinity test
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy CudaContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy ContextPool classes/methods
Signed-off-by: raver119 <raver119@gmail.com>
* one legacy test removed
Signed-off-by: raver119 <raver119@gmail.com>
* few more fields rearranged
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext++
Signed-off-by: raver119 <raver119@gmail.com>
* more of OpaqueLaunchContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext -> CudaContext
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handles
Signed-off-by: raver119 <raver119@gmail.com>
* typo
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver method
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handle propagated
Signed-off-by: raver119 <raver119@gmail.com>
* blas/solver handles
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* legacy concat implementations replaced with new CustomOp
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* concat now uses way more blocks
Signed-off-by: raver119 <raver119@gmail.com>
* print
Signed-off-by: raver119 <raver119@gmail.com>
* no more triple template mmul
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bitonic sort reorganized
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* type conversions moved to generic impl
Signed-off-by: raver119 <raver119@gmail.com>
* cpu data types pass
Signed-off-by: raver119 <raver119@gmail.com>
* non_max_suppression
Signed-off-by: raver119 <raver119@gmail.com>
* sortByValue fix
Signed-off-by: raver119 <raver119@gmail.com>
* ignore all mixed datatype tests for mmul
Signed-off-by: raver119 <raver119@gmail.com>
* special handling of OpProfiler exceptions
Signed-off-by: raver119 <raver119@gmail.com>
* - one failing concat test in cpp
- Nd4j.tile now uses op internally
Signed-off-by: raver119 <raver119@gmail.com>
* get back dtype exception for legacy arrays deserialization
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 15:52:34 +02:00
//BUILD_TRIPLE_SELECTOR(xType, yType, zType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->getSpecialBuffer(), incx, Y->getSpecialBuffer(), incy, beta, Z->getSpecialBuffer()), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
BUILD_SINGLE_SELECTOR_THRICE(xType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->getSpecialBuffer(), incx, Y->getSpecialBuffer(), incy, beta, Z->getSpecialBuffer()), NUMERIC_TYPES)
2019-06-06 14:21:15 +02:00
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0) throw cuda_exception::build("MmulHelper::dot cuda failed !", cudaResult);
NDArray::registerSpecialUse({Z}, {X, Y});
return Z;
}
2019-11-19 14:39:36 +01:00
//////////////////////////////////////////////////////////////////////////////
// [bS,M,K] x [bS,K,N] = [bS,M,N]
// [bS,M,K] x [K,N] = [bS,M,N]
// [M,K] x [bS,K,N] = [bS,M,N]
// bS could stand for several axes
template <typename T1, typename T2, typename T3>
static __global__ void batchedCudaGemm(const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo,
const int* aBatchDims, const int* bBatchDims, const int* cBatchDims,
const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis,
const double alpha, const double beta) {
const T1* A = reinterpret_cast<const T1*>(vA);
const T2* B = reinterpret_cast<const T2*>(vB);
T3* C = reinterpret_cast< T3*>(vC);
__shared__ bool betaPresent;
2020-03-11 14:21:59 +01:00
__shared__ int aRank, bRank, cRank, K, *coords;
__shared__ Nd4jLong cLen, totalThreads;
2019-11-19 14:39:36 +01:00
__shared__ T3 alphaZ, betaZ;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
2020-03-11 14:21:59 +01:00
coords = reinterpret_cast<int*>(shmem);
2019-11-19 14:39:36 +01:00
cLen = shape::length(cShapeInfo);
K = shape::shapeOf(const_cast<Nd4jLong*>(aShapeInfo))[aKaxis];
totalThreads = gridDim.x * blockDim.x;
aRank = shape::rank(aShapeInfo);
bRank = shape::rank(bShapeInfo);
cRank = shape::rank(cShapeInfo);
betaPresent = beta;
alphaZ = alpha;
betaZ = beta;
}
__syncthreads();
auto aCoords = coords + threadIdx.x * (aRank + bRank + cRank);
auto bCoords = aCoords + aRank;
auto cCoords = bCoords + bRank;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < cLen; i += totalThreads) {
// evaluate C coordinates
shape::index2coords(i, cShapeInfo, cCoords);
// calculate index of current batch
Nd4jLong batchInd;
if(cBatchDims != nullptr)
batchInd = shape::coords2index(cShapeInfo, cCoords, cRank - 2, cBatchDims);
// evaluate A coordinates
if(aBatchDims != nullptr)
shape::index2coords(batchInd, aShapeInfo, aCoords, aRank - 2, aBatchDims);
aCoords[aMaxis] = cCoords[cMaxis];
aCoords[aKaxis] = 0;
// evaluate B coordinates
if(bBatchDims != nullptr)
shape::index2coords(batchInd, bShapeInfo, bCoords, bRank - 2, bBatchDims);
bCoords[bKaxis] = 0;
bCoords[bNaxis] = cCoords[cNaxis];
auto aOffset = shape::getOffset(aShapeInfo, aCoords);
auto bOffset = shape::getOffset(bShapeInfo, bCoords);
T3 val = A[aOffset] * B[bOffset]; // first iteration
for (uint j = 1; j < K; ++j) { // rest iterations
aOffset += shape::stride(aShapeInfo)[aKaxis];
bOffset += shape::stride(bShapeInfo)[bKaxis];
val = val + A[aOffset] * B[bOffset];
}
auto cOffset = shape::getOffset(cShapeInfo, cCoords);
if(betaPresent)
C[cOffset] = alphaZ * val + betaZ * C[cOffset];
else
C[cOffset] = alphaZ * val;
}
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
__host__ static void batchedGemm(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int* aBatchDims, const int* bBatchDims, const int* cBatchDims, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) {
batchedCudaGemm<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vA, aShapeInfo, vB, bShapeInfo, vC, cShapeInfo, aBatchDims, bBatchDims, cBatchDims, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta);
}
///////////////////////////////////////////////////////////////////
NDArray* MmulHelper::mmulNxN(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) {
const int aRank = A->rankOf();
const int bRank = B->rankOf();
// input ranks validation
if(aRank > bRank && bRank != 2)
throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !");
else if(bRank > aRank && aRank != 2)
throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !");
else if (aRank == bRank ) {
for(int i = 0; i < aRank - 2; ++i)
if(A->sizeAt(i) != B->sizeAt(i))
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
}
if(A->sizeAt(-1) != B->sizeAt(-2))
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
// validation of C array
std::vector<Nd4jLong> cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector();
cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2);
cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1);
if(C != nullptr ) {
if(!C->isSameShape(cExpectedShape))
throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !");
}
else
2019-11-21 20:17:30 +01:00
C = new NDArray(outOrder, cExpectedShape, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext());
2019-11-19 14:39:36 +01:00
2019-12-30 13:06:12 +01:00
if (C->isEmpty())
return C;
2019-11-19 14:39:36 +01:00
const int cRank = C->rankOf();
const int aMaxis(aRank-2), aKaxis(aRank-1), bKaxis(bRank-2), bNaxis(bRank-1), cMaxis(cRank-2), cNaxis(cRank-1);
const int threadsPerBlock = MAX_NUM_THREADS / 8;
const int blocksPerGrid = (C->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
2020-03-11 14:21:59 +01:00
const int sharedMem = threadsPerBlock * sizeof(int) * (aRank + bRank + cRank) + 128;
2019-11-19 14:39:36 +01:00
PointersManager manager(A->getContext(), "MmulHelper::mmulNxN");
const int *aBatchDims(nullptr), *bBatchDims(nullptr), *cBatchDims(nullptr);
if(aRank > 2)
aBatchDims = reinterpret_cast<int*>(manager.replicatePointer(ShapeUtils::evalDimsToExclude(aRank, {aMaxis, aKaxis}).data(), (aRank - 2) * sizeof(int)));
if(bRank > 2)
bBatchDims = reinterpret_cast<int*>(manager.replicatePointer(ShapeUtils::evalDimsToExclude(bRank, {bKaxis, bNaxis}).data(), (bRank - 2) * sizeof(int)));
if(cRank > 2)
cBatchDims = reinterpret_cast<int*>(manager.replicatePointer(ShapeUtils::evalDimsToExclude(cRank, {cMaxis, cNaxis}).data(), (cRank - 2) * sizeof(int)));
NDArray::prepareSpecialUse({C}, {A, B});
// BUILD_TRIPLE_SELECTOR(A->dataType(), b->dataType(), C->dataType(), batchedGemm, (blocksPerGrid, threadsPerBlock, A->getContext()->getCudaStream(), A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
BUILD_SINGLE_SELECTOR_THRICE(A->dataType(), batchedGemm, (blocksPerGrid, threadsPerBlock, sharedMem, A->getContext()->getCudaStream(), A->getSpecialBuffer(), A->getSpecialShapeInfo(), B->getSpecialBuffer(), B->getSpecialShapeInfo(), C->getSpecialBuffer(), C->getSpecialShapeInfo(), aBatchDims, bBatchDims, cBatchDims, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), NUMERIC_TYPES)
NDArray::registerSpecialUse({C}, {A, B});
manager.synchronize();
return C;
}
/*
//////////////////////////////////////////////////////////////////////////////
// MXN x N = M
template <typename T1, typename T2, typename T3>
static __global__ void usualCudaGemv(const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) {
T1* A = reinterpret_cast<T1*>(const_cast<void*>(vA));
T2* X = reinterpret_cast<T2*>(const_cast<void*>(vX));
T3* Y = reinterpret_cast<T3*>(vY);
__shared__ T3 alphaZ, betaZ;
__shared__ Nd4jLong strideArow, strideAcol;
const int row = blockIdx.x * blockDim.x + threadIdx.x;
if(row == 0) {
alphaZ = alpha;
betaZ = beta;
if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; }
}
__syncthreads();
T3 val = 0;
if (row < M)
for (int i = 0; i < N; i++)
val = val + A[row * strideArow + i * strideAcol] * X[i * incx];
Y[row * incy] = alphaZ * val + betaZ * Y[row * incy];
}
////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
__host__ static void usualGemv(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) {
usualCudaGemv<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(transA, M, N, alpha, vA, lda, vX, incx, beta, vY, incy);
}
*/
/*
//////////////////////////////////////////////////////////////////////////////
MXK x KxN = MxN
C array must be in f order
template <typename T1, typename T2, typename T3>
static __global__ void usualCudaGemm(const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) {
T1* A = reinterpret_cast<T1*>(const_cast<void*>(vA));
T2* B = reinterpret_cast<T2*>(const_cast<void*>(vB));
T3* C = reinterpret_cast<T3*>(vC);
__shared__ T3 alphaZ, betaZ;
__shared__ Nd4jLong strideArow, strideAcol, strideBrow, strideBcol;
const int row = blockIdx.y * blockDim.y + threadIdx.y;
const int col = blockIdx.x * blockDim.x + threadIdx.x;
if(row == 0 && col == 0) {
alphaZ = alpha;
betaZ = beta;
if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; }
if(transB) { strideBrow = ldb; strideBcol = 1; } else { strideBrow = 1; strideBcol = ldb; }
}
__syncthreads();
T3 val = 0;
if (row < M && col < N)
for (int i = 0; i < K; i++)
val = val + A[row * strideArow + i * strideAcol] * B[i * strideBrow + col * strideBcol];
C[row + col * ldc] = alphaZ * val + betaZ * C[row + col * ldc];
}
//////////////////////////////////////////////////////////////////////////////
template <typename T1, typename T2, typename T3>
__host__ static void usualGemm(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) {
usualCudaGemm<T1,T2,T3><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(transA, transB, M, N, K, alpha, vA, lda, vB, ldb, beta, vC, ldc);
}
*/
//////////////////////////////////////////////////////////////////////////
/*
NDArray* MmulHelper::mmulNxNold1(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) {
const int aRank = A->rankOf();
const int bRank = B->rankOf();
// input ranks validation
if(aRank > bRank && bRank != 2)
throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !");
else if(bRank > aRank && aRank != 2)
throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !");
else if (aRank == bRank ) {
for(int i = 0; i < aRank - 2; ++i)
if(A->sizeAt(i) != B->sizeAt(i))
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
}
if(A->sizeAt(-1) != B->sizeAt(-2))
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
// validation of C array
std::vector<Nd4jLong> cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector();
cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2);
cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1);
if(C != nullptr ) {
if(!C->isSameShape(cExpectedShape))
throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !");
}
else {
C = new NDArray(outOrder, cExpectedShape, B->dataType());
}
// multiplication
const std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(C->rankOf(), {-2, -1});
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(C->getShapeInfo(), dimsToExclude);
std::vector<Nd4jLong> idxRanges(2 * C->rankOf());
// #pragma omp parallel for schedule(guided) firstprivate(idxRanges)
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
ShapeUtils::evalIdxRangesForSubArr(i, C->getShapeInfo(), dimsToExclude, idxRanges.data());
NDArray cSubArr = (*C)(idxRanges);
if(aRank > bRank) {
NDArray aSubArr = (*A)(idxRanges);
mmulMxM(&aSubArr, B, &cSubArr, 1., 0., outOrder);
}
else if(bRank > aRank) {
NDArray bSubArr = (*B)(idxRanges);
mmulMxM(A, &bSubArr, &cSubArr, 1., 0, outOrder);
}
else {
NDArray aSubArr = (*A)(idxRanges);
NDArray bSubArr = (*B)(idxRanges);
mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., outOrder);
}
}
return C;
}
*/
//////////////////////////////////////////////////////////////////////////
// [bS,M,K] x [bS,K,N] = [bS,M,N]
// [bS,M,K] x [K,N] = [bS,M,N]
// [M,K] x [bS,K,N] = [bS,M,N]
// bS could stand for several axes
/*
NDArray* MmulHelper::mmulNxNold2(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) {
const int aRank = A->rankOf();
const int bRank = B->rankOf();
// input ranks validation
if(aRank > bRank && bRank != 2)
throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !");
else if(bRank > aRank && aRank != 2)
throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !");
else if (aRank == bRank ) {
for(int i = 0; i < aRank - 2; ++i)
if(A->sizeAt(i) != B->sizeAt(i))
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
}
if(A->sizeAt(-1) != B->sizeAt(-2))
throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !");
// validation of C array
std::vector<Nd4jLong> cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector();
cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2);
cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1);
if(C != nullptr ) {
if(!C->isSameShape(cExpectedShape))
throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !");
}
else
C = new NDArray(outOrder, cExpectedShape, B->dataType());
const int cRank = C->rankOf();
const auto M = A->sizeAt(-2);
const auto K = A->sizeAt(-1);
const auto N = B->sizeAt(-1);
NDArray *pA(const_cast<NDArray*>(A)), *pB(const_cast<NDArray*>(B)), *pC(const_cast<NDArray*>(C));
std::vector<NDArray*> toDelete;
bool aMcont = M == 1 || A->strideAt(-2) == 1;
bool aKcont = K == 1 || A->strideAt(-1) == 1;
bool bKcont = K == 1 || B->strideAt(-2) == 1;
bool bNcont = N == 1 || B->strideAt(-1) == 1;
bool cMcont = M == 1 || C->strideAt(-2) == 1;
bool cNcont = N == 1 || C->strideAt(-1) == 1;
if(!aMcont && !aKcont) {
2019-12-20 20:35:39 +01:00
pA = new NDArray(A->dup('c'));
2019-11-19 14:39:36 +01:00
toDelete.push_back(pA);
aKcont = true;
}
if(!bKcont && !bNcont) {
2019-12-20 20:35:39 +01:00
pB = new NDArray(B->dup('c'));
2019-11-19 14:39:36 +01:00
toDelete.push_back(pB);
bNcont = true;
}
std::vector<int> permut(cRank);
if(!cMcont) {
std::iota(permut.begin(), permut.end(), 0);
permut[cRank - 2] = cRank - 1;
permut[cRank - 1] = cRank - 2; // swap two last dimensions [..., M,N] -> [..., N,M]
auto Cpermut = C->permute(permut);
pC = new NDArray('c', Cpermut.getShapeAsVector(), Cpermut.dataType(), A->getContext());
pC->assign(Cpermut);
toDelete.push_back(pC);
cMcont = true;
}
const auto aType = pA->dataType();
const auto bType = pB->dataType();
const auto cType = pC->dataType();
const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC);
bool badTypes = false;
cudaDataType_t cudaType, cudaAType, cudaBType, cudaCType;
if(ABC && aType == DataType::HALF) {
cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_16F;
}
else if(ABC && aType == DataType::FLOAT32) {
cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_32F;
}
else if(ABC && aType == DataType::DOUBLE) {
cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_64F;
}
else if(AB && cType == DataType::FLOAT32 && aType == DataType::INT8) {
cudaType = cudaCType = CUDA_R_32F;
cudaAType = cudaBType = CUDA_R_8I;
}
else if(AB && cType == DataType::FLOAT32 && aType == DataType::HALF) {
cudaType = cudaCType = CUDA_R_32F;
cudaAType = cudaBType = CUDA_R_16F;
}
else
badTypes = true;
const int bS = pC->lengthOf() / (M*N);
const std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(cRank, {-2, -1});
NDArray::prepareSpecialUse({pC}, {pA, pB});
if(!badTypes) {
std::vector<Nd4jLong> subArrOffsets(bS);
std::vector<Nd4jLong> subArrShapeInfo(shape::shapeInfoLength(2)); // all sub-arrays have rank = 2
std::vector<void*> aSubArrs(bS), bSubArrs(bS), cSubArrs(bS);
if(aRank > 2)
2020-03-03 05:32:37 +01:00
shape::calcSubArrsShapeInfoAndOffsets(pA->getShapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data());
2019-11-19 14:39:36 +01:00
for (int i = 0; i < bS; ++i)
aSubArrs[i] = aRank == 2 ? pA->getSpecialBuffer() : pA->getSpecialBuffer() + subArrOffsets[i] * pA->sizeOfT();
if(bRank > 2)
2020-03-03 05:32:37 +01:00
shape::calcSubArrsShapeInfoAndOffsets(pB->getShapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data());
2019-11-19 14:39:36 +01:00
for (int i = 0; i < bS; ++i)
bSubArrs[i] = bRank == 2 ? pB->getSpecialBuffer() : pB->getSpecialBuffer() + subArrOffsets[i] * pB->sizeOfT();
2020-03-03 05:32:37 +01:00
shape::calcSubArrsShapeInfoAndOffsets(pC->getShapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data());
2019-11-19 14:39:36 +01:00
for (int i = 0; i < bS; ++i)
cSubArrs[i] = pC->getSpecialBuffer() + subArrOffsets[i] * pC->sizeOfT();
PointersManager manager(A->getContext(), "mmulNxN");
const void** aSubArrsCuda = reinterpret_cast<const void **>(manager.replicatePointer(aSubArrs.data(), aSubArrs.size() * sizeof(void*)));
const void** bSubArrsCuda = reinterpret_cast<const void **>(manager.replicatePointer(bSubArrs.data(), bSubArrs.size() * sizeof(void*)));
void** cSubArrsCuda = reinterpret_cast< void **>(manager.replicatePointer(cSubArrs.data(), cSubArrs.size() * sizeof(void*)));
const bool transA = !aMcont;
const bool transB = !bKcont;
const int lda = (aMcont && aKcont) ? M : transA ? pA->strideAt(-2) : pA->strideAt(-1);
const int ldb = (bKcont && bNcont) ? K : transB ? pB->strideAt(-2) : pB->strideAt(-1);
const int ldc = (cMcont && cNcont) ? M : C != pC ? pC->strideAt(-2) : pC->strideAt(-1);
const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
const cublasOperation_t transBblas = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
union Coeff {__half _h; float _f; double _d; };
Coeff uAlpha, uBeta;
if(cudaType == CUDA_R_16F) {
uAlpha._h = alpha;
uBeta._h = beta;
}
else if(cudaType == CUDA_R_32F) {
uAlpha._f = alpha;
uBeta._f = beta;
}
else if(cudaType == CUDA_R_64F) {
uAlpha._d = alpha;
uBeta._d = beta;
}
auto handle = reinterpret_cast<cublasHandle_t *>(A->getContext()->getCublasHandle());
auto stream = A->getContext()->getCudaStream();
auto status = cublasSetStream_v2(*handle, *stream);
if (status != CUBLAS_STATUS_SUCCESS)
throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", status);
status = cublasGemmBatchedEx(*handle, transAblas, transBblas, M, N, K, &uAlpha, aSubArrsCuda, cudaAType, lda, bSubArrsCuda, cudaBType, ldb, &uBeta, cSubArrsCuda, cudaCType, ldc, bS, cudaType, CUBLAS_GEMM_DEFAULT);
if (status != CUBLAS_STATUS_SUCCESS)
throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", status);
auto cudaResult = cudaStreamSynchronize(*stream);
if (cudaResult != 0)
throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", cudaResult);
}
else {
std::vector<Nd4jLong> idxRanges(2 * pC->rankOf());
for(Nd4jLong i = 0; i < bS; ++i) {
ShapeUtils::evalIdxRangesForSubArr(i, pC->getShapeInfo(), dimsToExclude, idxRanges.data());
NDArray cSubArr = (*pC)(idxRanges);
if(aRank > bRank) {
NDArray aSubArr = (*pA)(idxRanges);
mmulMxM(&aSubArr, pB, &cSubArr, 1., 0., pC->ordering());
}
else if(bRank > aRank) {
NDArray bSubArr = (*pB)(idxRanges);
mmulMxM(pA, &bSubArr, &cSubArr, 1., 0, pC->ordering());
}
else {
NDArray aSubArr = (*pA)(idxRanges);
NDArray bSubArr = (*pB)(idxRanges);
mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., pC->ordering());
}
}
}
NDArray::registerSpecialUse({pC}, {pA, pB});
if(C != pC)
C->assign(pC->permute(permut));
for(int i = toDelete.size() - 1; i >= 0; --i)
delete toDelete[i];
return C;
}
*/
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* launch context reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* per-device LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Fix functions of OpaqueVariablesSet
* thread-local buffers/affinity
Signed-off-by: raver119 <raver119@gmail.com>
* thread safety for LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* more of thread safety
Signed-off-by: raver119 <raver119@gmail.com>
* one more multi threaded test
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* round robin affinity test
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy CudaContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy ContextPool classes/methods
Signed-off-by: raver119 <raver119@gmail.com>
* one legacy test removed
Signed-off-by: raver119 <raver119@gmail.com>
* few more fields rearranged
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext++
Signed-off-by: raver119 <raver119@gmail.com>
* more of OpaqueLaunchContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext -> CudaContext
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handles
Signed-off-by: raver119 <raver119@gmail.com>
* typo
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver method
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handle propagated
Signed-off-by: raver119 <raver119@gmail.com>
* blas/solver handles
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* legacy concat implementations replaced with new CustomOp
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* concat now uses way more blocks
Signed-off-by: raver119 <raver119@gmail.com>
* print
Signed-off-by: raver119 <raver119@gmail.com>
* no more triple template mmul
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bitonic sort reorganized
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* type conversions moved to generic impl
Signed-off-by: raver119 <raver119@gmail.com>
* cpu data types pass
Signed-off-by: raver119 <raver119@gmail.com>
* non_max_suppression
Signed-off-by: raver119 <raver119@gmail.com>
* sortByValue fix
Signed-off-by: raver119 <raver119@gmail.com>
* ignore all mixed datatype tests for mmul
Signed-off-by: raver119 <raver119@gmail.com>
* special handling of OpProfiler exceptions
Signed-off-by: raver119 <raver119@gmail.com>
* - one failing concat test in cpp
- Nd4j.tile now uses op internally
Signed-off-by: raver119 <raver119@gmail.com>
* get back dtype exception for legacy arrays deserialization
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 15:52:34 +02:00
//BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
//BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vB, const int incx, const double beta, void* vC, const int incy), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
//BUILD_TRIPLE_TEMPLATE(template void usualDot, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES);
2019-06-06 14:21:15 +02:00
}