cavis/libnd4j/include/loops/cuda/aggregates.cu

146 lines
7.3 KiB
Plaintext
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma, created on 27.11.2018
//
#include "../aggregates.h"
namespace functions {
namespace aggregate {
///////////////////////////////////////////////////////////////////////
template <typename X>
template<typename OpClass>
__device__ void AggregatedFunction<X>::execCuda(X **arguments, int numArguments,
Nd4jLong **shapeArguments, int numShapeArguments,
int *indexArguments, int numIndexArguments,
int **intArrays, int numIntArrays,
X *realArguments, int numRealArguments) {
OpClass::executeAggregateCuda(arguments, numArguments, shapeArguments, numShapeArguments, indexArguments, numIndexArguments, intArrays, numIntArrays, realArguments, numRealArguments);
}
///////////////////////////////////////////////////////////////////////
template <typename X>
__device__ void AggregatedFunction<X>::execCuda(int opNum,
X **arguments, int numArguments,
Nd4jLong **shapeArguments, int numShapeArguments,
int *indexArguments, int numIndexArguments,
int **intArrays, int numIntArrays,
X *realArguments, int numRealArguments) {
DISPATCH_BY_OPNUM_T(execCuda, PARAMS(arguments, numArguments, shapeArguments, numShapeArguments, indexArguments, numIndexArguments, intArrays, numIntArrays, realArguments, numRealArguments), AGGREGATE_OPS);
}
///////////////////////////////////////////////////////////////////////
template <typename X>
__global__ static void execAggregateKernel(int opNum,
void **varguments, int numArguments,
Nd4jLong **shapeArguments, int numShapeArguments,
int *indexArguments, int numIndexArguments,
int **intArrays, int numIntArrays,
void *vrealArguments, int numRealArguments) {
auto arguments = reinterpret_cast<X**>(varguments);
auto realArguments = reinterpret_cast<X*>(vrealArguments);
functions::aggregate::AggregatedFunction<X>::execCuda(opNum, arguments, numArguments, shapeArguments, numShapeArguments, indexArguments, numIndexArguments, intArrays, numIntArrays, realArguments, numRealArguments);
}
///////////////////////////////////////////////////////////////////////
template <typename X>
__host__ void AggregatedFunction<X>::aggregateKernelGeneric(dim3& launchDims, cudaStream_t *stream,
int opNum,
void **arguments, int numArguments,
Nd4jLong **shapeArguments, int numShapeArguments,
int *indexArguments, int numIndexArguments,
int **intArrays, int numIntArrays,
void *realArguments, int numRealArguments) {
execAggregateKernel<X><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, arguments, numArguments, shapeArguments, numShapeArguments, indexArguments, numIndexArguments, intArrays, numIntArrays, realArguments, numRealArguments);
nd4j::DebugHelper::checkErrorCode(stream, "aggregateKernelGeneric(...) failed");
}
///////////////////////////////////////////////////////////////////////
template <typename X>
__device__ void AggregatedFunction<X>::aggregateBatch(int opNum, int numAggregates,
int maxArgs, int maxShapes,
int maxIntArrays, int maxIntArraySize,
int maxIdx, int maxReals,
void *ptrToArguments) {
nd4j::PointersHelper<X> helper(ptrToArguments, numAggregates, maxArgs, maxShapes, maxIntArrays, maxIntArraySize, maxIdx, maxReals);
// TODO: we probably should lift this restriction
__shared__ int *intArrays[32];
__shared__ X **arguments;
__shared__ Nd4jLong **shapes;
__shared__ int *idxArg;
__shared__ X *realArg;
for(int r = blockIdx.x; r < numAggregates; r += gridDim.x) {
if (threadIdx.x == 0) {
arguments = helper.getArguments(r);
shapes = helper.getShapeArguments(r);
idxArg = helper.getIndexArguments(r);
realArg = helper.getRealArguments(r);
}
// we fill intArrays param in parallel within block
if (threadIdx.x < 32 && threadIdx.x < maxIntArrays) {
intArrays[threadIdx.x] = helper.getIntArrayArguments(r, threadIdx.x);
}
__syncthreads();
functions::aggregate::AggregatedFunction<X>::execCuda(opNum, arguments, helper.getNumArguments(r), shapes, helper.getNumShapeArguments(r), idxArg, helper.getNumIndexArguments(r), intArrays, helper.getNumIntArrayArguments(r), realArg, helper.getNumRealArguments(r));
}
}
///////////////////////////////////////////////////////////////////////
template <typename X>
__global__ static void execAggregateBatch(int opNum, int numAggregates,
int maxArgs, int maxShapes,
int maxIntArrays, int maxIntArraySize,
int maxIdx, int maxReals,
void *ptrToArguments) {
functions::aggregate::AggregatedFunction<X>::aggregateBatch(opNum, numAggregates, maxArgs, maxShapes, maxIntArrays, maxIntArraySize, maxIdx, maxReals, ptrToArguments);
}
///////////////////////////////////////////////////////////////////////
template <typename X>
__host__ void AggregatedFunction<X>::aggregateBatchKernelGeneric(dim3& launchDims, cudaStream_t *stream,
int opNum, int numAggregates,
int maxArgs, int maxShapes,
int maxIntArrays, int maxIntArraySize,
int maxIdx, int maxReals,
void *ptrToArguments) {
execAggregateBatch<X><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(opNum, numAggregates, maxArgs, maxShapes, maxIntArrays, maxIntArraySize, maxIdx, maxReals, ptrToArguments);
nd4j::DebugHelper::checkErrorCode(stream, "aggregateBatchKernel(...) failed");
}
BUILD_SINGLE_TEMPLATE(template class AggregatedFunction, , FLOAT_TYPES);
}
}