| 
									
										
										
										
											2021-02-01 21:31:45 +09:00
										 |  |  | /* ******************************************************************************
 | 
					
						
							|  |  |  |  * | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  |  * | 
					
						
							|  |  |  |  * This program and the accompanying materials are made available under the | 
					
						
							|  |  |  |  * terms of the Apache License, Version 2.0 which is available at | 
					
						
							|  |  |  |  * https://www.apache.org/licenses/LICENSE-2.0.
 | 
					
						
							|  |  |  |  * | 
					
						
							| 
									
										
										
										
											2021-02-01 21:31:45 +09:00
										 |  |  |  *  See the NOTICE file distributed with this work for additional | 
					
						
							|  |  |  |  *  information regarding copyright ownership. | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  |  * Unless required by applicable law or agreed to in writing, software | 
					
						
							|  |  |  |  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | 
					
						
							|  |  |  |  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the | 
					
						
							|  |  |  |  * License for the specific language governing permissions and limitations | 
					
						
							|  |  |  |  * under the License. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * SPDX-License-Identifier: Apache-2.0 | 
					
						
							|  |  |  |  ******************************************************************************/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <ops/declarable/helpers/transforms.h>
 | 
					
						
							|  |  |  | #include <helpers/Loops.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace sd 	  { | 
					
						
							|  |  |  | namespace ops 	  { | 
					
						
							|  |  |  | namespace helpers { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //////////////////////////////////////////////////////////////////////////
 | 
					
						
							|  |  |  | template<typename T> | 
					
						
							|  |  |  | void pad_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const T* x = input.bufferAsT<T>(); | 
					
						
							|  |  |  |           T* z = output.bufferAsT<T>(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const Nd4jLong* xShape  = input.shapeOf(); | 
					
						
							|  |  |  |     const Nd4jLong* zShape  = output.shapeOf(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const int rank = input.rankOf();  // both input and output have the same rank
 | 
					
						
							|  |  |  |     const int rankMinusOne = rank - 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const auto zLen = output.lengthOf(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if(mode == 0) { // CONSTANT case
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         const T padVal = padValue.e<T>(0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto func = PRAGMA_THREADS_FOR { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int zCoords[MAX_RANK], xCoords[MAX_RANK]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             for (auto i = start; i < stop; i++) { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |                 shape::index2coordsCPU(start, i, output.shapeInfo(), zCoords); | 
					
						
							|  |  |  |                 const auto zOffset = shape::getOffset(output.shapeInfo(), zCoords); | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  |                 memcpy(xCoords, zCoords, rank * sizeof(int)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 bool within = true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 for (int j = rankMinusOne; j >= 0; --j) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     if (xShape[j] == zShape[j]) | 
					
						
							|  |  |  |                         continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     const auto left = paddings.e<Nd4jLong>(j, 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     if (zCoords[j] < left || zCoords[j] >= left + xShape[j]) { | 
					
						
							|  |  |  |                         within = false; | 
					
						
							|  |  |  |                         break; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     else | 
					
						
							|  |  |  |                         xCoords[j] = zCoords[j] - left; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 if (within) | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |                     z[zOffset] = x[shape::getOffset(input.shapeInfo(), xCoords)]; | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  |                 else | 
					
						
							|  |  |  |                     z[zOffset] = padVal; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         samediff::Threads::parallel_tad(func, 0, zLen); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else {  // REFLECT and SYMMETRIC cases
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         const Nd4jLong shift1 = mode == 1 ? 0 : 1;         // REFLECT : SYMMETRIC
 | 
					
						
							|  |  |  |         const Nd4jLong shift2 = mode == 1 ? 2 : 1;         // REFLECT : SYMMETRIC
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto func = PRAGMA_THREADS_FOR { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int zCoords[MAX_RANK], xCoords[MAX_RANK]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             for (auto i = start; i < stop; i++) { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |                 shape::index2coordsCPU(start, i, output.shapeInfo(), zCoords); | 
					
						
							|  |  |  |                 const auto zOffset = shape::getOffset(output.shapeInfo(), zCoords); | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  |                 memcpy(xCoords, zCoords, rank * sizeof(int)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 for (int j = rankMinusOne; j >= 0; --j) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     if (xShape[j] == zShape[j]) | 
					
						
							|  |  |  |                         continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     xCoords[j] = zCoords[j] - paddings.e<Nd4jLong>(j, 0);                             // are ready to fill middle (within input dimension range)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     if (xCoords[j] < 0) | 
					
						
							|  |  |  |                         xCoords[j] = -xCoords[j] - shift1;                // means fill from left
 | 
					
						
							|  |  |  |                     else if (xCoords[j] >= xShape[j]) | 
					
						
							|  |  |  |                         xCoords[j] = 2 * xShape[j] - xCoords[j] - shift2; // means fill from right
 | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |                 const auto xOffset = shape::getOffset(input.shapeInfo(), xCoords); | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  |                 z[zOffset] = x[xOffset]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         samediff::Threads::parallel_tad(func, 0, zLen); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // //////////////////////////////////////////////////////////////////////////
 | 
					
						
							|  |  |  | // template<typename T>
 | 
					
						
							|  |  |  | // void pad2_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     const int rank = output.rankOf();
 | 
					
						
							|  |  |  | //     std::vector<int> dimsToExclude(rank);
 | 
					
						
							|  |  |  | //     std::iota(dimsToExclude.begin(), dimsToExclude.end(), 0);             // fill with 0, 1, ... rank-1
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     Nd4jLong numLeft    = paddings.e<Nd4jLong>(rank-1,0);
 | 
					
						
							|  |  |  | //     Nd4jLong numRight   = paddings.e<Nd4jLong>(rank-1,1);
 | 
					
						
							|  |  |  | //     Nd4jLong inDimSize  = input.sizeAt(rank-1);
 | 
					
						
							|  |  |  | //     Nd4jLong outDimSize = output.sizeAt(rank-1);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     std::vector<std::vector<Nd4jLong>> outIdx = { std::vector<Nd4jLong>(2*rank), {numLeft, numLeft + inDimSize}, {0, numLeft}, {numLeft + inDimSize, outDimSize} };
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     for(int i = 0; i < rank-1; ++i) {
 | 
					
						
							|  |  |  | //         outIdx[0][2*i]     = paddings.e<Nd4jLong>(i, 0);
 | 
					
						
							|  |  |  | //         outIdx[0][2*i + 1] = outIdx[0][2*i] + input.sizeAt(i);
 | 
					
						
							|  |  |  | //     }
 | 
					
						
							|  |  |  | //     outIdx[0][2*rank-1] = outIdx[0][2*rank-2] = 0;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     // ***** populate innermost sub-arrays firstly ***** //
 | 
					
						
							|  |  |  | //     dimsToExclude.pop_back();
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     Nd4jLong startL = mode == 1 ? 1 : 0;                            // REFLECT or SYMMETRIC
 | 
					
						
							|  |  |  | //     Nd4jLong startR = mode == 1 ? inDimSize-2 : inDimSize-1;        // REFLECT or SYMMETRIC
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  | //     Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.shapeInfo(), dimsToExclude);
 | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  | //     NDArray outSubArr0 = output(outIdx[0], true);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     PRAGMA_OMP_PARALLEL_FOR
 | 
					
						
							|  |  |  | //     for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         NDArray outSubArr1   = outSubArr0(j, dimsToExclude);
 | 
					
						
							|  |  |  | //         NDArray inSubArr     = input(j, dimsToExclude);
 | 
					
						
							|  |  |  | //         NDArray outSubArrMid = outSubArr1(outIdx[1]);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         outSubArrMid.assign(inSubArr);      // assign middle
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         if(mode == 0)  { // CONSTANT
 | 
					
						
							|  |  |  | //             if(numLeft != 0) {
 | 
					
						
							|  |  |  | //                 NDArray temp = outSubArr1(outIdx[2]);
 | 
					
						
							|  |  |  | //                 temp.assign(padValue);                        // assign left
 | 
					
						
							|  |  |  | //             }
 | 
					
						
							|  |  |  | //             if(numRight != 0) {
 | 
					
						
							|  |  |  | //                 NDArray temp = outSubArr1(outIdx[3]);
 | 
					
						
							|  |  |  | //                 temp.assign(padValue);                        // assign right
 | 
					
						
							|  |  |  | //             }
 | 
					
						
							|  |  |  | //         }
 | 
					
						
							|  |  |  | //         else {                                                              // REFLECT or SYMMETRIC
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //             for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e)     // fill left side
 | 
					
						
							|  |  |  | //                 outSubArr1.t<T>(k) = inSubArr.t<T>(e);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //             for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e)     // fill right side
 | 
					
						
							|  |  |  | //                 outSubArr1.t<T>(k) = inSubArr.t<T>(e);
 | 
					
						
							|  |  |  | //         }
 | 
					
						
							|  |  |  | //     }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     // ***** fill rest of outer sub-arrays ***** //
 | 
					
						
							|  |  |  | //     std::vector<Nd4jLong> outIdxInner(2, 0);
 | 
					
						
							|  |  |  | //     std::vector<Nd4jLong> outIdxOuter(2, 0);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //     for(int i = rankBorder - 1; i >= 0; --i) {
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         dimsToExclude.pop_back();
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         outIdxInner.push_back(0), outIdxInner.push_back(0);
 | 
					
						
							|  |  |  | //         outIdxOuter.push_back(0), outIdxOuter.push_back(0);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         Nd4jLong numLeft  = paddings.e<Nd4jLong>(i, 0);
 | 
					
						
							|  |  |  | //         Nd4jLong numRight = paddings.e<Nd4jLong>(i, 1);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         if(numLeft == 0 && numRight == 0)
 | 
					
						
							|  |  |  | //             continue;
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         Nd4jLong inDimSize  = input.sizeAt(i);
 | 
					
						
							|  |  |  | //         Nd4jLong outDimSize = output.sizeAt(i);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         if(mode == 0) {
 | 
					
						
							|  |  |  | //             outIdxOuter[0] = 0;                   outIdxOuter[1] = numLeft;
 | 
					
						
							|  |  |  | //             outIdxInner[0] = numLeft + inDimSize; outIdxInner[1] = outDimSize;
 | 
					
						
							|  |  |  | //         }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         startL = mode == 1 ? numLeft + 1 : numLeft;                            // REFLECT or SYMMETRIC
 | 
					
						
							|  |  |  | //         startR = mode == 1 ? numLeft + inDimSize - 2 : numLeft + inDimSize-1;      // REFLECT or SYMMETRIC
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  | //         numOfSubArrs = ShapeUtils::getNumOfSubArrs(output.shapeInfo(), dimsToExclude);
 | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  | //         PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(outIdxOuter, outIdxInner))
 | 
					
						
							|  |  |  | //         for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //             NDArray outSubArr = output(j, dimsToExclude);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //             if(mode == 0)  { // CONSTANT
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //                 if(numLeft != 0) {
 | 
					
						
							|  |  |  | //                     NDArray tempO = outSubArr(outIdxOuter);
 | 
					
						
							|  |  |  | //                     tempO.assign(padValue);                              // assign left
 | 
					
						
							|  |  |  | //                 }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //                 if(numRight != 0) {
 | 
					
						
							|  |  |  | //                     NDArray tempI = outSubArr(outIdxInner);
 | 
					
						
							|  |  |  | //                     tempI.assign(padValue);                              // assign right
 | 
					
						
							|  |  |  | //                 }
 | 
					
						
							|  |  |  | //             }
 | 
					
						
							|  |  |  | //             else {                                                              // REFLECT or SYMMETRIC
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //                 for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) {    // fill left side
 | 
					
						
							|  |  |  | //                     outIdxOuter[0] = k;
 | 
					
						
							|  |  |  | //                     outIdxOuter[1] = k+1;
 | 
					
						
							|  |  |  | //                     outIdxInner[0] = e;
 | 
					
						
							|  |  |  | //                     outIdxInner[1] = e+1;
 | 
					
						
							|  |  |  | //                     NDArray outSubArrInner = outSubArr(outIdxInner);
 | 
					
						
							|  |  |  | //                     NDArray outSubArrOuter = outSubArr(outIdxOuter);
 | 
					
						
							|  |  |  | //                     outSubArrOuter.assign(outSubArrInner);
 | 
					
						
							|  |  |  | //                 }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //                 for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) {    // fill right side
 | 
					
						
							|  |  |  | //                     outIdxOuter[0] = k;
 | 
					
						
							|  |  |  | //                     outIdxOuter[1] = k+1;
 | 
					
						
							|  |  |  | //                     outIdxInner[0] = e;
 | 
					
						
							|  |  |  | //                     outIdxInner[1] = e+1;
 | 
					
						
							|  |  |  | //                     NDArray outSubArrInner = outSubArr(outIdxInner);
 | 
					
						
							|  |  |  | //                     NDArray outSubArrOuter = outSubArr(outIdxOuter);
 | 
					
						
							|  |  |  | //                     outSubArrOuter.assign(outSubArrInner);
 | 
					
						
							|  |  |  | //                 }
 | 
					
						
							|  |  |  | //             }
 | 
					
						
							|  |  |  | //         }
 | 
					
						
							|  |  |  | //     }
 | 
					
						
							|  |  |  | // }
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void pad(sd::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) { | 
					
						
							|  |  |  |     BUILD_SINGLE_SELECTOR(input.dataType(), pad_, (mode, input, paddings, output, padValue), LIBND4J_TYPES); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //////////////////////////////////////////////////////////////////////////
 | 
					
						
							|  |  |  | template<typename T> | 
					
						
							|  |  |  | static void mirrorPad_(const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // mode:  0 - REFLECT, else - SYMMETRIC
 | 
					
						
							|  |  |  |     const int reflBorder = (bool)mode ? 1 : 0; | 
					
						
							|  |  |  |     const int rank        = input.rankOf(); | 
					
						
							|  |  |  |     const Nd4jLong outLen = output.lengthOf(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if(rank <= 1) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         const Nd4jLong inLen         = input.lengthOf(); | 
					
						
							|  |  |  |         const auto leftSide          = paddings.e<Nd4jLong>(0); | 
					
						
							|  |  |  |         const auto leftSideCorrected = leftSide - reflBorder; | 
					
						
							|  |  |  |         const Nd4jLong len           = 2*(inLen-1) + leftSide + reflBorder; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for(int i = 0; i < outLen; ++i) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             if (i < leftSide)                                   // left side
 | 
					
						
							|  |  |  |                 output.p(i, input.e<T>(leftSideCorrected - i)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             else if(i >= leftSide && i < leftSide + inLen)      // middle
 | 
					
						
							|  |  |  |                 output.p(i, input.e<T>(i - leftSide)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             else                                                // right side
 | 
					
						
							|  |  |  |                 output.p(i, input.e<T>(len - i)); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto func = PRAGMA_THREADS_FOR { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int inIdx[MAX_RANK], outIdx[MAX_RANK]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             for (auto i = start; i < stop; i++) { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |                 shape::index2coordsCPU(start, i, output.shapeInfo(), outIdx); | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  |                 for (int j = 0; j < rank; ++j) { | 
					
						
							|  |  |  |                     const Nd4jLong inLen = input.sizeAt(j); | 
					
						
							|  |  |  |                     const auto leftSide = paddings.e<T>(j, 0); | 
					
						
							|  |  |  |                     const auto leftSideCorrected = leftSide - reflBorder; | 
					
						
							|  |  |  |                     const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     if (outIdx[j] < leftSide)                                        // left side
 | 
					
						
							|  |  |  |                         inIdx[j] = leftSideCorrected - outIdx[j]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     else if (outIdx[j] >= leftSide && outIdx[j] < leftSide + inLen)  // middle
 | 
					
						
							|  |  |  |                         inIdx[j] = outIdx[j] - leftSide; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                     else                                                            // right side
 | 
					
						
							|  |  |  |                         inIdx[j] = len - outIdx[j]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |                 auto outOffset = shape::getOffset(output.shapeInfo(), outIdx); | 
					
						
							|  |  |  |                 auto inOffset = shape::getOffset(input.shapeInfo(), inIdx); | 
					
						
							|  |  |  |                 reinterpret_cast<T *>(output.buffer())[outOffset] = reinterpret_cast<T const*>(input.buffer())[inOffset]; | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  |             } | 
					
						
							|  |  |  |         }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         samediff::Threads::parallel_for(func, 0, outLen); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     void mirrorPad(sd::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) { | 
					
						
							|  |  |  |         BUILD_SINGLE_SELECTOR(input.dataType(), mirrorPad_, (input, paddings, output, mode), LIBND4J_TYPES); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     BUILD_SINGLE_TEMPLATE(template void mirrorPad_, (const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ////////////////////////////////////////////////////////////////////////
 | 
					
						
							|  |  |  | /*// initial values of inIdx, outIdx, dim must be equal to zero
 | 
					
						
							|  |  |  | template<typename T> | 
					
						
							|  |  |  | static void recursiveLoopForPad_(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     int leftOffset; | 
					
						
							|  |  |  |     // dimensions are array of input dimensions, it is sorted in increasing order
 | 
					
						
							|  |  |  |     // every time at the beginning we erase first element from it (not good idea to use vector for this purpose, but luckily it is small enough)
 | 
					
						
							|  |  |  |     // then we use this array for tads building, every time while recursion the number of built tads becomes bigger
 | 
					
						
							|  |  |  |     dimensions.erase(dimensions.begin()); | 
					
						
							|  |  |  |     // build tad basing on output array, also create auxiliary arrays pointing on required output array ranges
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |     shape::TAD tadOut(output.shapeInfo(), dimensions.data(), dimensions.size()); | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  |     tadOut.createTadOnlyShapeInfo(); | 
					
						
							|  |  |  |     tadOut.createOffsets(); | 
					
						
							|  |  |  |     auto subArrOut = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext()); | 
					
						
							|  |  |  |     auto subArr = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext()); | 
					
						
							|  |  |  |     // build tad basing on input array, also create auxiliary array pointing on required input array range
 | 
					
						
							| 
									
										
										
										
											2020-05-09 08:06:14 +03:00
										 |  |  |     shape::TAD tadIn(input.shapeInfo(), dimensions.data(), dimensions.size()); | 
					
						
							| 
									
										
										
										
											2020-03-25 07:40:30 +02:00
										 |  |  |     tadIn.createTadOnlyShapeInfo(); | 
					
						
							|  |  |  |     tadIn.createOffsets(); | 
					
						
							|  |  |  |     auto subArrIn = NDArray(input.getBuffer(), tadIn.tadOnlyShapeInfo, output.getContext()); | 
					
						
							|  |  |  |     // these indices take into account recursion and always point to actual tads numbers
 | 
					
						
							|  |  |  |     if (input.rankOf() > 1 && output.rankOf() > 1) {// only for non-vector cases
 | 
					
						
							|  |  |  |         outIdx = outIdx * output.sizeAt(dim + 1); | 
					
						
							|  |  |  |         inIdx = inIdx * input.sizeAt(dim + 1); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     // current input tad number, we add to it unity in a loop
 | 
					
						
							|  |  |  |     int k = -1; | 
					
						
							|  |  |  |     // loop through current dimension
 | 
					
						
							|  |  |  |     for(int i = 0; i < output.sizeAt(dim); ++i) { | 
					
						
							|  |  |  |         // corresponds to outer range (relevant indices are absent in input)
 | 
					
						
							|  |  |  |         leftOffset = paddings.e<int>(dim, 0); | 
					
						
							|  |  |  |         if(i < leftOffset || i >= (input.sizeAt(dim) + leftOffset)) | 
					
						
							|  |  |  |             continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // increase input tads number
 | 
					
						
							|  |  |  |         ++k; | 
					
						
							|  |  |  |         // recursion condition allows for the fact that tad can't reduce to scalar
 | 
					
						
							|  |  |  |         if(dim < input.rankOf() - 2) | 
					
						
							|  |  |  |             recursiveLoopForPad(mode, input, paddings, output, dimensions, dim + 1, inIdx + k, outIdx + i, padValue); | 
					
						
							|  |  |  |         else if (paddings.sizeAt(0) > dim + 1){ | 
					
						
							|  |  |  |             leftOffset = paddings.e<int>(dim + 1, 0); | 
					
						
							|  |  |  |             // shift buffers pointers to actual element position
 | 
					
						
							|  |  |  |             if (output.rankOf() > 1) { | 
					
						
							|  |  |  |                 subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + i]); | 
					
						
							|  |  |  |                 subArrIn.setBuffer(reinterpret_cast<T*>(input.getBuffer()) + tadIn.tadOffsets[inIdx + i - paddings.e<int>(dim, 0)]); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             else { | 
					
						
							|  |  |  |                 subArrOut.p(i, subArrIn.e<T>(i - leftOffset)); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             // most inner loop, corresponds to last dim = rank-1
 | 
					
						
							|  |  |  |             switch (mode) { | 
					
						
							|  |  |  |                 case 0:             // CONSTANT mode
 | 
					
						
							|  |  |  |                     for(int j = 0; j < subArrOut.lengthOf(); ++j) | 
					
						
							|  |  |  |                             if(j < leftOffset || j >= (subArrIn.lengthOf() + leftOffset) )                  // firstly fill with zeros outer ranges
 | 
					
						
							|  |  |  |                                 subArrOut.p(j, (T)0.f); | 
					
						
							|  |  |  |                             else | 
					
						
							|  |  |  |                                 subArrOut.p(j, subArrIn.e<T>(j - leftOffset));   // fill middle with elements of input array
 | 
					
						
							|  |  |  |                     break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 case 1:             // REFLECT mode
 | 
					
						
							|  |  |  |                     for(int j = 1;  j <= leftOffset; ++j)                                               // fill firstly left side
 | 
					
						
							|  |  |  |                         subArrOut.p(leftOffset - j, subArrIn.e<T>(j)); | 
					
						
							|  |  |  |                     for(int j = 0; j < subArrIn.lengthOf(); ++j)                                        // fill middle
 | 
					
						
							|  |  |  |                         subArrOut.p(leftOffset + j, subArrIn.e<T>(j)); | 
					
						
							|  |  |  |                     for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j)     // fill right side
 | 
					
						
							|  |  |  |                         subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j - 1)); | 
					
						
							|  |  |  |                     break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 case 2:             // SYMMETRIC mode
 | 
					
						
							|  |  |  |                     for(int j = 1;  j <= leftOffset; ++j)                                               // fill firstly left side
 | 
					
						
							|  |  |  |                         subArrOut.p(leftOffset - j, subArrIn.e<T>(j-1)); | 
					
						
							|  |  |  |                     for(int j = 0; j < subArrIn.lengthOf(); ++j)                                        // fill middle
 | 
					
						
							|  |  |  |                         subArrOut.p(leftOffset + j, subArrIn.e<T>(j)); | 
					
						
							|  |  |  |                     for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j)     // fill right side
 | 
					
						
							|  |  |  |                         subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j)); | 
					
						
							|  |  |  |                     break; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         else { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |              if (mode == 0 && input.rankOf() < 2) | 
					
						
							|  |  |  |                  subArrOut.p(i, subArrIn.e<T>(i - leftOffset));   // fill middle with elements of input array
 | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     // populate sub-array formed previously
 | 
					
						
							|  |  |  |     leftOffset = paddings.e<int>(dim,0); | 
					
						
							|  |  |  |     switch (mode) { | 
					
						
							|  |  |  |         case 0:         // CONSTANT mode
 | 
					
						
							|  |  |  |             for(int j = 1;  j <= leftOffset; ++j) { | 
					
						
							|  |  |  |                 // fill left side with padValue
 | 
					
						
							|  |  |  |                 if (output.rankOf() > 1) { | 
					
						
							|  |  |  |                     subArrOut.setBuffer( | 
					
						
							|  |  |  |                             reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]); | 
					
						
							|  |  |  |                     subArrOut.assign(padValue); | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 else { | 
					
						
							|  |  |  |                     subArrOut.p(j - 1, padValue); | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  | //            output.printIndexedBuffer("Output at");
 | 
					
						
							|  |  |  |             for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) {       // fill left side with zeros
 | 
					
						
							|  |  |  |                 if (output.rankOf() > 1) { | 
					
						
							|  |  |  |                     subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]); | 
					
						
							|  |  |  |                     subArrOut.assign(padValue); | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 else { | 
					
						
							|  |  |  |                     subArrOut.p(j, padValue); | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         case 1:         // REFLECT mode
 | 
					
						
							|  |  |  |             for(int j = 1;  j <= leftOffset; ++j) {                                                     // fill left side
 | 
					
						
							|  |  |  |                 subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j]); | 
					
						
							|  |  |  |                 subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]); | 
					
						
							|  |  |  |                 subArrOut.assign(&subArr); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) {       // fill right side
 | 
					
						
							|  |  |  |                 subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - 1 - j]); | 
					
						
							|  |  |  |                 subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]); | 
					
						
							|  |  |  |                 subArrOut.assign(&subArr); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         case 2:         // SYMMETRIC mode
 | 
					
						
							|  |  |  |             for(int j = 1;  j <= leftOffset; ++j) {                                                     // fill left side
 | 
					
						
							|  |  |  |                 subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j - 1]); | 
					
						
							|  |  |  |                 subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]); | 
					
						
							|  |  |  |                 subArrOut.assign(&subArr); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) {       // fill right side
 | 
					
						
							|  |  |  |                 subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - j]); | 
					
						
							|  |  |  |                 subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]); | 
					
						
							|  |  |  |                 subArrOut.assign(&subArr); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |     void recursiveLoopForPad(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) { | 
					
						
							|  |  |  |         BUILD_SINGLE_SELECTOR(input.dataType(), recursiveLoopForPad_, (mode, input, paddings, output, dimensions, dim, inIdx, outIdx, padValue), LIBND4J_TYPES); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     BUILD_SINGLE_TEMPLATE(template void recursiveLoopForPad_, (const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue), LIBND4J_TYPES); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | } |