2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2019-06-06 14:21:15 +02:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2019-06-06 14:21:15 +02:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by sgazeos@gmail.com on 26.01.2018.
|
|
|
|
//
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/op_boilerplate.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#if NOT_EXCLUDED(OP_moments)
|
|
|
|
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
#include <ops/declarable/helpers/axis.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
CUSTOM_OP_IMPL(moments, 1, 2, false, 0, -2) {
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
|
|
auto means = OUTPUT_VARIABLE(0);
|
|
|
|
auto variances = OUTPUT_VARIABLE(1);
|
|
|
|
|
|
|
|
std::vector<int> axis = *block.getIArguments();
|
|
|
|
const bool keepDims = block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false;
|
|
|
|
|
|
|
|
// axis might be dynamic (i.e. tf mode)
|
|
|
|
if (block.width() > 1 && axis.size() == 0) {
|
|
|
|
auto axisVector = INPUT_VARIABLE(1);
|
|
|
|
helpers::adjustAxis(input->rankOf(), axisVector, axis);
|
|
|
|
// for (int e = 0; e < axisVector->lengthOf(); e++) {
|
|
|
|
// int ca = (int) axisVector->e(e);
|
|
|
|
// if (ca < 0)
|
|
|
|
// ca += input->rankOf();
|
|
|
|
//
|
|
|
|
// axis.emplace_back(ca);
|
|
|
|
// }
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int>& dims = axis;
|
2019-12-20 20:35:39 +01:00
|
|
|
input->varianceAlongDimension(variance::SummaryStatsVariance, *variances, false, axis);
|
|
|
|
input->reduceAlongDimension(reduce::Mean, *means, axis, keepDims);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
|
|
|
DECLARE_SHAPE_FN(moments) {
|
|
|
|
auto axis = *block.getIArguments();
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
|
|
|
|
|
|
// axis might be dynamic (i.e. tf mode)
|
|
|
|
if (block.width() > 1 && axis.size() == 0) {
|
|
|
|
auto axisVector = INPUT_VARIABLE(1);
|
|
|
|
|
|
|
|
for (int e = 0; e < axisVector->lengthOf(); e++) {
|
|
|
|
int ca = axisVector->e<int>(e);
|
|
|
|
if (ca < 0)
|
|
|
|
ca += input->rankOf();
|
|
|
|
|
|
|
|
axis.emplace_back(ca);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
//std::vector<int> dims = ShapeUtils::evalDimsToExclude(input->rankOf(), {axis});
|
|
|
|
const bool keepDims = block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false;
|
2019-12-20 20:35:39 +01:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto meanShape = ShapeUtils::evalReduceShapeInfo('c', axis, *input, keepDims, false, block.workspace());
|
|
|
|
auto varianceShape = ShapeUtils::evalReduceShapeInfo('c', axis, *input, keepDims, false, block.workspace());
|
2019-12-20 20:35:39 +01:00
|
|
|
return SHAPELIST(meanShape, varianceShape);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
DECLARE_TYPES(moments) {
|
|
|
|
getOpDescriptor()
|
2020-03-02 10:49:41 +01:00
|
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
2019-06-06 14:21:15 +02:00
|
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|