2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2019-06-06 14:21:15 +02:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2019-06-06 14:21:15 +02:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com, created on 07.10.2017.
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
|
|
//
|
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/pointercast.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <helpers/shape.h>
|
|
|
|
#include <helpers/TAD.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <ops/specials.h>
|
|
|
|
#include <system/dll.h>
|
|
|
|
#include <array/NDArray.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
#include <types/types.h>
|
2019-07-15 15:36:35 +02:00
|
|
|
#include <helpers/Loops.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-07-15 15:36:35 +02:00
|
|
|
/**
|
|
|
|
* Concatneate multi array of the same shape together
|
|
|
|
* along a particular dimension
|
|
|
|
*/
|
2020-02-20 19:19:01 +01:00
|
|
|
// template <typename T>
|
|
|
|
// void SpecialMethods<T>::concatCpuGeneric(const std::vector<NDArray*>& inArrs, NDArray& output, const int axis) {
|
|
|
|
// const uint numOfArrs = inArrs.size();
|
|
|
|
|
|
|
|
// int outDim;
|
|
|
|
// const bool isOutputVector = output.isCommonVector(outDim);
|
|
|
|
|
|
|
|
// if(isOutputVector || (axis == 0 && output.ordering() == 'c')) {
|
|
|
|
|
|
|
|
// bool allVectorsOrScalars = true;
|
|
|
|
// const uint outEws = isOutputVector ? output.stridesOf()[outDim] : output.ews();
|
|
|
|
|
|
|
|
// std::vector<int> nonUnityDim(numOfArrs);
|
|
|
|
// std::vector<Nd4jLong> zOffset(numOfArrs);
|
|
|
|
|
|
|
|
// for(int i = 0; i < numOfArrs; i++) {
|
|
|
|
// allVectorsOrScalars &= (inArrs[i]->lengthOf() == 1 || inArrs[i]->isCommonVector(nonUnityDim[i]));
|
|
|
|
// if(!allVectorsOrScalars)
|
|
|
|
// break;
|
|
|
|
// if(i == 0) zOffset[0] = 0;
|
|
|
|
// else zOffset[i] = zOffset[i - 1] + outEws * inArrs[i - 1]->lengthOf();
|
|
|
|
// }
|
|
|
|
|
|
|
|
// if(allVectorsOrScalars) {
|
|
|
|
|
|
|
|
// T* outBuff = output.bufferAsT<T>();
|
|
|
|
|
|
|
|
// auto func = PRAGMA_THREADS_FOR {
|
|
|
|
// for (auto r = start; r < stop; r += increment) {
|
|
|
|
// const Nd4jLong arrLen = inArrs[r]->lengthOf();
|
|
|
|
// const uint xEws = (arrLen == 1) ? 1 : inArrs[r]->stridesOf()[nonUnityDim[r]];
|
|
|
|
|
|
|
|
// T *z = outBuff + zOffset[r];
|
|
|
|
// T *x = inArrs[r]->bufferAsT<T>();
|
|
|
|
|
|
|
|
// if (outEws == 1 && xEws == 1)
|
|
|
|
// for (Nd4jLong e = 0; e < arrLen; e++)
|
|
|
|
// z[e] = x[e];
|
|
|
|
// else
|
|
|
|
// for (Nd4jLong e = 0; e < arrLen; e++)
|
|
|
|
// z[e * outEws] = x[e * xEws];
|
|
|
|
// }
|
|
|
|
// };
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
// samediff::Threads::parallel_tad(func, 0, numOfArrs);
|
2020-02-20 19:19:01 +01:00
|
|
|
// return;
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// const int rank = inArrs[0]->rankOf();
|
|
|
|
// const int rank2 = 2*rank;
|
|
|
|
// std::vector<std::vector<Nd4jLong>> indices(numOfArrs, std::vector<Nd4jLong>(rank2,0));
|
|
|
|
|
|
|
|
// // take into account indices for first array
|
|
|
|
// indices[0][2 * axis + 1] = inArrs[0]->sizeAt(axis);
|
|
|
|
|
|
|
|
// // loop through the rest of input arrays
|
|
|
|
// for(int i = 1; i < numOfArrs; ++i) {
|
|
|
|
// indices[i][2 * axis] = indices[i-1][2 * axis + 1]; // index start from
|
|
|
|
// indices[i][2 * axis + 1] = indices[i-1][2 * axis + 1] + inArrs[i]->sizeAt(axis); // index end with (excluding)
|
|
|
|
// }
|
|
|
|
|
|
|
|
// auto func = PRAGMA_THREADS_FOR {
|
|
|
|
// for (auto i = start; i < stop; i += increment) {
|
|
|
|
// auto temp = output(indices[i], true);
|
2020-05-09 07:06:14 +02:00
|
|
|
// sd::TransformLoops<T, T, T>::template loopTransform<simdOps::Assign<T, T>>( inArrs[i]->bufferAsT<T>(), inArrs[i]->shapeInfo(), temp.bufferAsT<T>(), temp.shapeInfo(), nullptr, 0, 1);
|
2020-02-20 19:19:01 +01:00
|
|
|
// }
|
|
|
|
// };
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
// samediff::Threads::parallel_tad(func, 0, numOfArrs);
|
2020-02-20 19:19:01 +01:00
|
|
|
// }
|
|
|
|
|
2020-05-12 06:47:09 +02:00
|
|
|
// static Nd4jLong strideOverContigAxis(const int axis, const Nd4jLong* inShapeInfo) {
|
|
|
|
|
|
|
|
// Nd4jLong result = 9223372036854775807LL;
|
|
|
|
|
|
|
|
// for(uint i = 0; i < shape::rank(inShapeInfo); ++i) {
|
|
|
|
|
|
|
|
// const auto currentStride = shape::stride(inShapeInfo)[i];
|
|
|
|
|
|
|
|
// if(i == axis || shape::shapeOf(inShapeInfo)[i] == 1)
|
|
|
|
// continue;
|
|
|
|
|
|
|
|
// if(result > currentStride)
|
|
|
|
// result = currentStride;
|
|
|
|
// }
|
|
|
|
|
|
|
|
// return result == 9223372036854775807LL ? 1 : result;
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
2019-07-15 15:36:35 +02:00
|
|
|
template <typename T>
|
2020-03-03 05:32:37 +01:00
|
|
|
void SpecialMethods<T>::concatCpuGeneric(const std::vector<const NDArray*>& inArrs, NDArray& output, const int axis) {
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
const int numOfInArrs = inArrs.size();
|
|
|
|
const auto sizeofT = output.sizeOfT();
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
T* zBuff = output.bufferAsT<T>();
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
bool luckCase1 = ((axis == 0 && output.ordering() == 'c') || (axis == output.rankOf() - 1 && output.ordering() == 'f')) && output.ews() == 1;
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
if(luckCase1) {
|
|
|
|
for (uint i = 0; i < numOfInArrs; ++i) {
|
|
|
|
luckCase1 &= inArrs[i]->ordering() == output.ordering() && inArrs[i]->ews() == 1;
|
|
|
|
if(!luckCase1)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
if(luckCase1) { // for example {1,10} + {2,10} + {3,10} = {6, 10} order c; or {10,1} + {10,2} + {10,3} = {10, 6} order f
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
T* z = zBuff;
|
|
|
|
for (uint i = 0; i < numOfInArrs; ++i) {
|
|
|
|
const auto memAmountToCopy = inArrs[i]->lengthOf();
|
|
|
|
memcpy(z, inArrs[i]->bufferAsT<T>(), memAmountToCopy * sizeofT);
|
|
|
|
z += memAmountToCopy;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
// const bool isZcontin = output.strideAt(axis) == 1;
|
|
|
|
// bool areInputsContin = true;
|
|
|
|
// bool allSameOrder = true;
|
|
|
|
// std::vector<Nd4jLong> strideOfContigStride(numOfInArrs);
|
2020-02-20 19:19:01 +01:00
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
// if(isZcontin) {
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
// for (uint i = 0; i < numOfInArrs; ++i) {
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
// areInputsContin &= inArrs[i]->strideAt(axis) == 1;
|
|
|
|
// allSameOrder &= inArrs[i]->ordering() == output.ordering();
|
|
|
|
// if(!areInputsContin || !allSameOrder)
|
|
|
|
// break;
|
2019-11-13 15:15:18 +01:00
|
|
|
|
2020-05-12 06:47:09 +02:00
|
|
|
// strideOfContigStride[i] = strideOverContigAxis(axis, inArrs[i]->getShapeInfo());
|
2020-03-03 05:32:37 +01:00
|
|
|
// }
|
|
|
|
// }
|
2019-11-13 15:15:18 +01:00
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
// const bool luckCase2 = isZcontin && areInputsContin && allSameOrder;
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
// if(luckCase2) { // for example {2,1,3} + {2,5,3} + {2,10,3} = {2,16,3}, here axis 1 shoud have stride = 1 for all inputs arrays and output array
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-05-12 06:47:09 +02:00
|
|
|
// const auto zStep = strideOverContigAxis(axis, output.getShapeInfo());
|
2020-03-03 05:32:37 +01:00
|
|
|
|
|
|
|
// for (uint i = 0; i < output.lengthOf() / output.sizeAt(axis); ++i) {
|
|
|
|
|
|
|
|
// T* z = zBuff + zStep * i;
|
|
|
|
|
|
|
|
// for (uint j = 0; j < inArrs.size(); ++j) {
|
|
|
|
// const auto xDim = inArrs[j]->sizeAt(axis);
|
|
|
|
// const T* x = inArrs[j]->bufferAsT<T>() + strideOfContigStride[j] * i;
|
|
|
|
// memcpy(z, x, xDim * sizeofT);
|
|
|
|
// z += xDim;
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// return;
|
|
|
|
// }
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
// general case
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-03-11 14:21:59 +01:00
|
|
|
int coords[MAX_RANK], temp;
|
2019-07-15 15:36:35 +02:00
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
shape::index2coordsCPU(start, i, output.shapeInfo(), coords);
|
2020-03-11 14:21:59 +01:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
const auto zOffset = shape::getOffset(output.shapeInfo(), coords);
|
2020-02-20 19:19:01 +01:00
|
|
|
|
|
|
|
uint inArrIdx = 0;
|
|
|
|
uint xDim = inArrs[inArrIdx]->sizeAt(axis);
|
|
|
|
|
2020-03-11 14:21:59 +01:00
|
|
|
temp = coords[axis];
|
2020-02-20 19:19:01 +01:00
|
|
|
while (coords[axis] >= xDim) {
|
|
|
|
coords[axis] -= xDim;
|
|
|
|
xDim = inArrs[++inArrIdx]->sizeAt(axis);
|
2019-11-13 15:15:18 +01:00
|
|
|
}
|
|
|
|
|
2020-02-20 19:19:01 +01:00
|
|
|
const T* x = inArrs[inArrIdx]->bufferAsT<T>();
|
2020-05-09 07:06:14 +02:00
|
|
|
const auto xOffset = shape::getOffset(inArrs[inArrIdx]->shapeInfo(), coords);
|
2020-02-20 19:19:01 +01:00
|
|
|
|
|
|
|
zBuff[zOffset] = x[xOffset];
|
2020-03-11 14:21:59 +01:00
|
|
|
|
|
|
|
coords[axis] = temp;
|
2020-02-20 19:19:01 +01:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_for(func, 0, output.lengthOf());
|
2019-07-15 15:36:35 +02:00
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
/**
|
|
|
|
* Concatneate multi array of the same shape together
|
|
|
|
* along a particular dimension
|
|
|
|
*/
|
|
|
|
template <typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::concatCpuGeneric(int dimension, int numArrays, Nd4jPointer *data, Nd4jPointer *inputShapeInfo, void *vresult, Nd4jLong const* resultShapeInfo) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto result = reinterpret_cast<T *>(vresult);
|
2020-03-03 05:32:37 +01:00
|
|
|
std::vector<const NDArray*> inputs(numArrays);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
NDArray output(static_cast<void*>(result), resultShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
|
|
inputs[i] = new NDArray(static_cast<void *>(data[i]), static_cast<Nd4jLong*>(inputShapeInfo[i]));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
sd::SpecialMethods<T>::concatCpuGeneric(inputs, output, dimension);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
|
|
delete inputs[i];
|
|
|
|
}
|
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void SpecialMethods<T>::splitCpuGeneric(const NDArray& input, const std::vector<NDArray*>& outArrs, const int axis) {
|
|
|
|
|
|
|
|
int numSplits = outArrs.size();
|
|
|
|
|
|
|
|
const auto sizeofT = input.sizeOfT();
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
auto xBuff = input.bufferAsT<T>();
|
2020-03-03 05:32:37 +01:00
|
|
|
|
|
|
|
bool luckCase1 = ((axis == 0 && input.ordering() == 'c') || (axis == input.rankOf() - 1 && input.ordering() == 'f')) && input.ews() == 1;
|
|
|
|
|
|
|
|
if (luckCase1) {
|
|
|
|
for (uint i = 0; i < numSplits; ++i) {
|
|
|
|
luckCase1 &= outArrs[i]->ordering() == input.ordering() && outArrs[i]->ews() == 1;
|
|
|
|
if (!luckCase1)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (luckCase1) {
|
|
|
|
|
|
|
|
T* x = const_cast<T*>(xBuff);
|
|
|
|
for (uint i = 0; i < numSplits; ++i) {
|
|
|
|
const auto memAmountToCopy = outArrs[i]->lengthOf();
|
|
|
|
memcpy(outArrs[i]->bufferAsT<T>(), x, memAmountToCopy * sizeofT);
|
|
|
|
x += memAmountToCopy;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// const bool isXcontin = input.strideAt(axis) == 1;
|
|
|
|
// bool areOutsContin = true;
|
|
|
|
// bool allSameOrder = true;
|
|
|
|
// std::vector<Nd4jLong> strideOfContigStride(numSplits);
|
|
|
|
|
|
|
|
// if (isXcontin) {
|
|
|
|
|
|
|
|
// for (uint i = 0; i < numSplits; ++i) {
|
|
|
|
|
|
|
|
// areOutsContin &= outArrs[i]->strideAt(axis) == 1;
|
|
|
|
// allSameOrder &= outArrs[i]->ordering() == input.ordering();
|
|
|
|
// if (!areOutsContin || !allSameOrder)
|
|
|
|
// break;
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
// strideOfContigStride[i] = shape::strideOverContigAxis(axis, outArrs[i]->shapeInfo());
|
2020-03-03 05:32:37 +01:00
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// const bool luckCase2 = isXcontin && areOutsContin && allSameOrder;
|
|
|
|
|
|
|
|
// if (luckCase2) {
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
// const auto xStep = shape::strideOverContigAxis(axis, input.shapeInfo());
|
2020-03-03 05:32:37 +01:00
|
|
|
|
|
|
|
// for (uint i = 0; i < input.lengthOf() / input.sizeAt(axis); ++i) {
|
|
|
|
|
|
|
|
// T* x = xBuff + xStep * i;
|
|
|
|
|
|
|
|
// for (uint j = 0; j < numSplits; ++j) {
|
|
|
|
// const auto zDim = outArrs[j]->sizeAt(axis);
|
|
|
|
// T* z = outArrs[j]->bufferAsT<T>() + strideOfContigStride[j] * i;
|
|
|
|
// memcpy(z, x, zDim * sizeofT);
|
|
|
|
// x += zDim;
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// return;
|
|
|
|
// }
|
|
|
|
|
|
|
|
uint zDim = outArrs[0]->sizeAt(axis);
|
|
|
|
// general case
|
|
|
|
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
|
|
|
2020-03-11 14:21:59 +01:00
|
|
|
int coords[MAX_RANK], temp;
|
|
|
|
|
2020-03-03 05:32:37 +01:00
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
|
2020-05-09 07:06:14 +02:00
|
|
|
shape::index2coordsCPU(start, i, input.shapeInfo(), coords);
|
|
|
|
const auto xOffset = shape::getOffset(input.shapeInfo(), coords);
|
2020-03-03 05:32:37 +01:00
|
|
|
|
|
|
|
uint outArrIdx = 0;
|
2020-03-11 14:21:59 +01:00
|
|
|
temp = coords[axis];
|
2020-03-03 05:32:37 +01:00
|
|
|
|
|
|
|
while (coords[axis] >= zDim) {
|
|
|
|
coords[axis] -= zDim;
|
|
|
|
++outArrIdx;
|
|
|
|
}
|
|
|
|
|
|
|
|
T* z = outArrs[outArrIdx]->bufferAsT<T>();
|
2020-05-09 07:06:14 +02:00
|
|
|
const auto zOffset = shape::getOffset(outArrs[outArrIdx]->shapeInfo(), coords);
|
2020-03-03 05:32:37 +01:00
|
|
|
z[zOffset] = xBuff[xOffset];
|
2020-03-11 14:21:59 +01:00
|
|
|
|
|
|
|
coords[axis] = temp;
|
2020-03-03 05:32:37 +01:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_for(func, 0, input.lengthOf());
|
2020-03-03 05:32:37 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
/**
|
|
|
|
* This kernel accumulates X arrays, and stores result into Z
|
|
|
|
*
|
|
|
|
* @tparam T
|
|
|
|
* @param x
|
|
|
|
* @param z
|
|
|
|
* @param n
|
|
|
|
* @param length
|
|
|
|
*/
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::accumulateGeneric(void **vx, void *vz, Nd4jLong const* zShapeInfo, int n, const Nd4jLong length) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-20 09:43:26 +01:00
|
|
|
for (auto i = start; i < stop; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
for (auto ar = 0L; ar < n; ar++) {
|
|
|
|
z[i] += x[ar][i];
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_for(func, 0, length);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This kernel averages X input arrays, and stores result to Z
|
|
|
|
*
|
|
|
|
* @tparam T
|
|
|
|
* @param x
|
|
|
|
* @param z
|
|
|
|
* @param n
|
|
|
|
* @param length
|
|
|
|
* @param propagate
|
|
|
|
*/
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::averageGeneric(void **vx, void *vz, Nd4jLong const* zShapeInfo, int n, const Nd4jLong length, bool propagate) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
|
|
|
|
if (z == nullptr) {
|
|
|
|
//code branch for absent Z
|
|
|
|
z = x[0];
|
|
|
|
|
|
|
|
PRAGMA_OMP_SIMD
|
2019-11-13 15:15:18 +01:00
|
|
|
for (uint64_t i = 0; i < length; i++) {
|
2019-12-20 20:35:39 +01:00
|
|
|
z[i] /= static_cast<T>(n);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-20 09:43:26 +01:00
|
|
|
for (auto i = start; i < stop; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
2019-12-20 20:35:39 +01:00
|
|
|
z[i] += x[ar][i] / static_cast<T>(n);
|
2019-11-13 15:15:18 +01:00
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_for(func, 0, length);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
|
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// code branch for existing Z
|
|
|
|
|
|
|
|
// memset before propagation
|
|
|
|
memset(z, 0, length * sizeof(T));
|
|
|
|
|
|
|
|
// aggregation step
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-20 09:43:26 +01:00
|
|
|
for (auto i = start; i < stop; i++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
2019-12-20 20:35:39 +01:00
|
|
|
z[i] += x[ar][i] / static_cast<T>(n);
|
2019-11-13 15:15:18 +01:00
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_for(func, 0, length);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong SpecialMethods<T>::getPosition(Nd4jLong const* xShapeInfo, Nd4jLong index) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto xEWS = shape::elementWiseStride(xShapeInfo);
|
|
|
|
|
2019-09-11 19:12:09 +02:00
|
|
|
if (xEWS == 1)
|
|
|
|
return index;
|
2019-06-06 14:21:15 +02:00
|
|
|
else if (xEWS > 1)
|
|
|
|
return index * xEWS;
|
2019-09-11 19:12:09 +02:00
|
|
|
else
|
|
|
|
return shape::getIndexOffset(index, xShapeInfo);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::quickSort_parallel_internal(T* array, Nd4jLong const* xShapeInfo, int left, int right, int cutoff, bool descending) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
int i = left, j = right;
|
|
|
|
T tmp;
|
|
|
|
T pivot = array[getPosition(xShapeInfo, (left + right) / 2)];
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
/* PARTITION PART */
|
|
|
|
while (i <= j) {
|
|
|
|
if (descending) {
|
|
|
|
while (array[getPosition(xShapeInfo, i)] > pivot)
|
|
|
|
i++;
|
|
|
|
while (array[getPosition(xShapeInfo, j)] < pivot)
|
|
|
|
j--;
|
|
|
|
if (i <= j) {
|
|
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
|
|
i++;
|
|
|
|
j--;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
while (array[getPosition(xShapeInfo, i)] < pivot)
|
|
|
|
i++;
|
|
|
|
while (array[getPosition(xShapeInfo, j)] > pivot)
|
|
|
|
j--;
|
|
|
|
if (i <= j) {
|
|
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
|
|
i++;
|
|
|
|
j--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
if ( ((right-left)<cutoff) ){
|
|
|
|
if (left < j){ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
|
|
|
if (i < right){ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
|
|
|
|
|
|
}else{
|
2019-07-18 13:13:56 +02:00
|
|
|
PRAGMA_OMP_TASK
|
2019-06-06 14:21:15 +02:00
|
|
|
{ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
2019-07-18 13:13:56 +02:00
|
|
|
PRAGMA_OMP_TASK
|
2019-06-06 14:21:15 +02:00
|
|
|
{ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::quickSort_parallel(void *varray, Nd4jLong const* xShapeInfo, Nd4jLong lenArray, int numThreads, bool descending){
|
2019-06-06 14:21:15 +02:00
|
|
|
auto array = reinterpret_cast<T *>(varray);
|
|
|
|
int cutoff = 1000;
|
|
|
|
|
|
|
|
PRAGMA_OMP_PARALLEL_THREADS(numThreads)
|
|
|
|
{
|
2019-07-18 13:13:56 +02:00
|
|
|
PRAGMA_OMP_SINGLE_ARGS(nowait)
|
2019-06-06 14:21:15 +02:00
|
|
|
{
|
|
|
|
quickSort_parallel_internal(array, xShapeInfo, 0, lenArray-1, cutoff, descending);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
template <typename T>
|
|
|
|
int SpecialMethods<T>::nextPowerOf2(int number) {
|
|
|
|
int pos = 0;
|
|
|
|
|
|
|
|
while (number > 0) {
|
|
|
|
pos++;
|
|
|
|
number = number >> 1;
|
|
|
|
}
|
|
|
|
return (int) pow(2, pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
int SpecialMethods<T>::lastPowerOf2(int number) {
|
|
|
|
int p = 1;
|
|
|
|
while (p <= number)
|
|
|
|
p <<= 1;
|
|
|
|
|
|
|
|
p >>= 1;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::sortGeneric(void *vx, Nd4jLong const* xShapeInfo, bool descending) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
|
|
|
|
quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::sortTadGeneric(void *vx, Nd4jLong const* xShapeInfo, int *dimension, int dimensionLength, Nd4jLong const* tadShapeInfo, Nd4jLong const* tadOffsets, bool descending) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
|
|
|
|
//quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
|
|
Nd4jLong xLength = shape::length(xShapeInfo);
|
|
|
|
Nd4jLong xTadLength = shape::tadLength(xShapeInfo, dimension, dimensionLength);
|
|
|
|
int numTads = xLength / xTadLength;
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-20 09:43:26 +01:00
|
|
|
for (auto r = start; r < stop; r++) {
|
2019-11-13 15:15:18 +01:00
|
|
|
T *dx = x + tadOffsets[r];
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
quickSort_parallel(dx, tadShapeInfo, xTadLength, 1, descending);
|
|
|
|
}
|
|
|
|
};
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_tad(func, 0, numTads);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
void SpecialMethods<T>::decodeBitmapGeneric(const void *dx, Nd4jLong N, void *vz, Nd4jLong const* zShapeInfo) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto dz = reinterpret_cast<T *>(vz);
|
2020-05-09 07:06:14 +02:00
|
|
|
auto x = reinterpret_cast<const int *>(dx);
|
2019-06-06 14:21:15 +02:00
|
|
|
Nd4jLong lim = N / 16 + 5;
|
|
|
|
|
|
|
|
FloatBits2 fb;
|
|
|
|
fb.i_ = x[2];
|
|
|
|
float threshold = fb.f_;
|
|
|
|
|
2020-05-08 19:59:39 +02:00
|
|
|
auto pPos = -1;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
2020-02-20 09:43:26 +01:00
|
|
|
for (auto e = start; e < stop; e++) {
|
2020-05-08 19:59:39 +02:00
|
|
|
const auto v = x[e];
|
2019-11-13 15:15:18 +01:00
|
|
|
for (int bitId = 0; bitId < 16; bitId++) {
|
2020-05-08 19:59:39 +02:00
|
|
|
bool hasBit = (v & 1 << (bitId)) != 0;
|
|
|
|
bool hasSign = (v & 1 << (bitId + 16)) != 0;
|
|
|
|
auto cPos = (e - 4) * 16 + bitId;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
if (hasBit) {
|
|
|
|
if (hasSign)
|
2020-05-08 19:59:39 +02:00
|
|
|
dz[cPos] -= static_cast<T>(threshold);
|
2019-11-13 15:15:18 +01:00
|
|
|
else
|
2020-05-08 19:59:39 +02:00
|
|
|
dz[cPos] += static_cast<T>(threshold);
|
2019-11-13 15:15:18 +01:00
|
|
|
} else if (hasSign) {
|
2020-05-08 19:59:39 +02:00
|
|
|
dz[cPos] -= static_cast<T>(threshold / 2);
|
2019-11-13 15:15:18 +01:00
|
|
|
}
|
2020-05-08 19:59:39 +02:00
|
|
|
|
|
|
|
pPos = cPos;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
};
|
|
|
|
|
2020-03-09 06:22:49 +01:00
|
|
|
samediff::Threads::parallel_for(func, 4, lim);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
2020-05-09 07:06:14 +02:00
|
|
|
Nd4jLong SpecialMethods<T>::encodeBitmapGeneric(void *vx, Nd4jLong const* xShapeInfo, Nd4jLong N, int *dz, float threshold) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto dx = reinterpret_cast<T *>(vx);
|
2020-05-08 19:59:39 +02:00
|
|
|
const T two(2.0f);
|
|
|
|
const T zero(0.0f);
|
|
|
|
const T t(threshold);
|
|
|
|
const T thalf = t / two;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-08 19:59:39 +02:00
|
|
|
//auto func = PRAGMA_REDUCE_LONG {
|
2019-11-13 15:15:18 +01:00
|
|
|
Nd4jLong retVal = 0L;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-08 19:59:39 +02:00
|
|
|
PRAGMA_OMP_PARALLEL_FOR_REDUCTION(+:retVal)
|
|
|
|
for (auto x = 0; x < N; x += 16) {
|
2019-11-13 15:15:18 +01:00
|
|
|
int byte = 0;
|
|
|
|
int byteId = x / 16 + 4;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
for (int f = 0; f < 16; f++) {
|
2020-05-08 19:59:39 +02:00
|
|
|
auto e = x + f;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
if (e >= N)
|
|
|
|
continue;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
T val = dx[e];
|
2020-03-02 10:49:41 +01:00
|
|
|
T abs = sd::math::nd4j_abs<T>(val);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
int bitId = e % 16;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-08 19:59:39 +02:00
|
|
|
if (abs >= t) {
|
2019-11-13 15:15:18 +01:00
|
|
|
byte |= 1 << (bitId);
|
|
|
|
retVal++;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-05-08 19:59:39 +02:00
|
|
|
if (val < zero) {
|
2019-11-13 15:15:18 +01:00
|
|
|
byte |= 1 << (bitId + 16);
|
2020-05-08 19:59:39 +02:00
|
|
|
dx[e] += t;
|
2019-11-13 15:15:18 +01:00
|
|
|
} else {
|
2020-05-08 19:59:39 +02:00
|
|
|
dx[e] -= t;
|
2019-11-13 15:15:18 +01:00
|
|
|
}
|
2020-05-08 19:59:39 +02:00
|
|
|
} else if (abs >= thalf && val < zero) {
|
2019-06-06 14:21:15 +02:00
|
|
|
byte |= 1 << (bitId + 16);
|
2020-05-08 19:59:39 +02:00
|
|
|
dx[e] += thalf;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
retVal++;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
dz[byteId] = byte;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
return retVal;
|
2020-05-08 19:59:39 +02:00
|
|
|
//};
|
|
|
|
|
|
|
|
//return samediff::Threads::parallel_long(func, LAMBDA_SUML, 0, N, 16);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
|