265 lines
10 KiB
Java
265 lines
10 KiB
Java
|
|
/*******************************************************************************
|
||
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
|
*
|
||
|
|
* This program and the accompanying materials are made available under the
|
||
|
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
|
*
|
||
|
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
|
* License for the specific language governing permissions and limitations
|
||
|
|
* under the License.
|
||
|
|
*
|
||
|
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
|
******************************************************************************/
|
||
|
|
|
||
|
|
package org.deeplearning4j.nn.params;
|
||
|
|
|
||
|
|
|
||
|
|
import lombok.val;
|
||
|
|
import org.deeplearning4j.nn.api.ParamInitializer;
|
||
|
|
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||
|
|
import org.deeplearning4j.nn.conf.layers.Layer;
|
||
|
|
import org.deeplearning4j.nn.conf.layers.SeparableConvolution2D;
|
||
|
|
import org.deeplearning4j.nn.weights.WeightInitUtil;
|
||
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||
|
|
import org.nd4j.linalg.indexing.NDArrayIndex;
|
||
|
|
|
||
|
|
import java.util.*;
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Initialize separable convolution params.
|
||
|
|
*
|
||
|
|
* @author Max Pumperla
|
||
|
|
*/
|
||
|
|
public class SeparableConvolutionParamInitializer implements ParamInitializer {
|
||
|
|
|
||
|
|
private static final SeparableConvolutionParamInitializer INSTANCE = new SeparableConvolutionParamInitializer();
|
||
|
|
|
||
|
|
public static SeparableConvolutionParamInitializer getInstance() {
|
||
|
|
return INSTANCE;
|
||
|
|
}
|
||
|
|
|
||
|
|
public final static String DEPTH_WISE_WEIGHT_KEY = DefaultParamInitializer.WEIGHT_KEY;
|
||
|
|
public final static String POINT_WISE_WEIGHT_KEY = "pW";
|
||
|
|
public final static String BIAS_KEY = DefaultParamInitializer.BIAS_KEY;
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public long numParams(NeuralNetConfiguration conf) {
|
||
|
|
return numParams(conf.getLayer());
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public long numParams(Layer l) {
|
||
|
|
SeparableConvolution2D layerConf = (SeparableConvolution2D) l;
|
||
|
|
|
||
|
|
val depthWiseParams = numDepthWiseParams(layerConf);
|
||
|
|
val pointWiseParams = numPointWiseParams(layerConf);
|
||
|
|
val biasParams = numBiasParams(layerConf);
|
||
|
|
|
||
|
|
return depthWiseParams + pointWiseParams + biasParams;
|
||
|
|
}
|
||
|
|
|
||
|
|
private long numBiasParams(SeparableConvolution2D layerConf) {
|
||
|
|
val nOut = layerConf.getNOut();
|
||
|
|
return (layerConf.hasBias() ? nOut : 0);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* For each input feature we separately compute depthMultiplier many
|
||
|
|
* output maps for the given kernel size
|
||
|
|
*
|
||
|
|
* @param layerConf layer configuration of the separable conv2d layer
|
||
|
|
* @return number of parameters of the channels-wise convolution operation
|
||
|
|
*/
|
||
|
|
private long numDepthWiseParams(SeparableConvolution2D layerConf) {
|
||
|
|
int[] kernel = layerConf.getKernelSize();
|
||
|
|
val nIn = layerConf.getNIn();
|
||
|
|
val depthMultiplier = layerConf.getDepthMultiplier();
|
||
|
|
|
||
|
|
return nIn * depthMultiplier * kernel[0] * kernel[1];
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* For the point-wise convolution part we have (nIn * depthMultiplier) many
|
||
|
|
* input maps and nOut output maps. Kernel size is (1, 1) for this operation.
|
||
|
|
*
|
||
|
|
* @param layerConf layer configuration of the separable conv2d layer
|
||
|
|
* @return number of parameters of the point-wise convolution operation
|
||
|
|
*/
|
||
|
|
private long numPointWiseParams(SeparableConvolution2D layerConf) {
|
||
|
|
val nIn = layerConf.getNIn();
|
||
|
|
val nOut = layerConf.getNOut();
|
||
|
|
val depthMultiplier = layerConf.getDepthMultiplier();
|
||
|
|
|
||
|
|
return (nIn * depthMultiplier) * nOut;
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public List<String> paramKeys(Layer layer) {
|
||
|
|
SeparableConvolution2D layerConf =
|
||
|
|
(SeparableConvolution2D) layer;
|
||
|
|
if(layerConf.hasBias()){
|
||
|
|
return Arrays.asList(DEPTH_WISE_WEIGHT_KEY, POINT_WISE_WEIGHT_KEY, BIAS_KEY);
|
||
|
|
} else {
|
||
|
|
return weightKeys(layer);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public List<String> weightKeys(Layer layer) {
|
||
|
|
return Arrays.asList(DEPTH_WISE_WEIGHT_KEY, POINT_WISE_WEIGHT_KEY);
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public List<String> biasKeys(Layer layer) {
|
||
|
|
SeparableConvolution2D layerConf =
|
||
|
|
(SeparableConvolution2D) layer;
|
||
|
|
if(layerConf.hasBias()){
|
||
|
|
return Collections.singletonList(BIAS_KEY);
|
||
|
|
} else {
|
||
|
|
return Collections.emptyList();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public boolean isWeightParam(Layer layer, String key) {
|
||
|
|
return DEPTH_WISE_WEIGHT_KEY.equals(key) || POINT_WISE_WEIGHT_KEY.equals(key);
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public boolean isBiasParam(Layer layer, String key) {
|
||
|
|
return BIAS_KEY.equals(key);
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public Map<String, INDArray> init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
|
||
|
|
SeparableConvolution2D layer = (SeparableConvolution2D) conf.getLayer();
|
||
|
|
if (layer.getKernelSize().length != 2) throw new IllegalArgumentException("Filter size must be == 2");
|
||
|
|
|
||
|
|
Map<String, INDArray> params = Collections.synchronizedMap(new LinkedHashMap<String, INDArray>());
|
||
|
|
SeparableConvolution2D layerConf = (SeparableConvolution2D) conf.getLayer();
|
||
|
|
|
||
|
|
val depthWiseParams = numDepthWiseParams(layerConf);
|
||
|
|
val biasParams = numBiasParams(layerConf);
|
||
|
|
|
||
|
|
INDArray depthWiseWeightView = paramsView.get(
|
||
|
|
NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(biasParams, biasParams + depthWiseParams));
|
||
|
|
INDArray pointWiseWeightView = paramsView.get(
|
||
|
|
NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(biasParams + depthWiseParams, numParams(conf)));
|
||
|
|
|
||
|
|
params.put(DEPTH_WISE_WEIGHT_KEY, createDepthWiseWeightMatrix(conf, depthWiseWeightView, initializeParams));
|
||
|
|
conf.addVariable(DEPTH_WISE_WEIGHT_KEY);
|
||
|
|
params.put(POINT_WISE_WEIGHT_KEY, createPointWiseWeightMatrix(conf, pointWiseWeightView, initializeParams));
|
||
|
|
conf.addVariable(POINT_WISE_WEIGHT_KEY);
|
||
|
|
|
||
|
|
if(layer.hasBias()){
|
||
|
|
INDArray biasView = paramsView.get(NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(0, biasParams));
|
||
|
|
params.put(BIAS_KEY, createBias(conf, biasView, initializeParams));
|
||
|
|
conf.addVariable(BIAS_KEY);
|
||
|
|
}
|
||
|
|
|
||
|
|
return params;
|
||
|
|
}
|
||
|
|
|
||
|
|
@Override
|
||
|
|
public Map<String, INDArray> getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
|
||
|
|
|
||
|
|
SeparableConvolution2D layerConf =
|
||
|
|
(SeparableConvolution2D) conf.getLayer();
|
||
|
|
|
||
|
|
int[] kernel = layerConf.getKernelSize();
|
||
|
|
val nIn = layerConf.getNIn();
|
||
|
|
val depthMultiplier = layerConf.getDepthMultiplier();
|
||
|
|
val nOut = layerConf.getNOut();
|
||
|
|
|
||
|
|
Map<String, INDArray> out = new LinkedHashMap<>();
|
||
|
|
|
||
|
|
val depthWiseParams = numDepthWiseParams(layerConf);
|
||
|
|
val biasParams = numBiasParams(layerConf);
|
||
|
|
|
||
|
|
INDArray depthWiseWeightGradientView = gradientView.get(
|
||
|
|
NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(biasParams, biasParams + depthWiseParams))
|
||
|
|
.reshape('c', depthMultiplier, nIn, kernel[0], kernel[1]);
|
||
|
|
INDArray pointWiseWeightGradientView = gradientView.get(
|
||
|
|
NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(biasParams + depthWiseParams, numParams(conf)))
|
||
|
|
.reshape('c', nOut, nIn * depthMultiplier, 1, 1);
|
||
|
|
out.put(DEPTH_WISE_WEIGHT_KEY, depthWiseWeightGradientView);
|
||
|
|
out.put(POINT_WISE_WEIGHT_KEY, pointWiseWeightGradientView);
|
||
|
|
|
||
|
|
if(layerConf.hasBias()){
|
||
|
|
INDArray biasGradientView = gradientView.get(NDArrayIndex.interval(0,0,true), NDArrayIndex.interval(0, nOut));
|
||
|
|
out.put(BIAS_KEY, biasGradientView);
|
||
|
|
}
|
||
|
|
return out;
|
||
|
|
}
|
||
|
|
|
||
|
|
protected INDArray createBias(NeuralNetConfiguration conf, INDArray biasView, boolean initializeParams) {
|
||
|
|
SeparableConvolution2D layerConf =
|
||
|
|
(SeparableConvolution2D) conf.getLayer();
|
||
|
|
if (initializeParams)
|
||
|
|
biasView.assign(layerConf.getBiasInit());
|
||
|
|
return biasView;
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
protected INDArray createDepthWiseWeightMatrix(NeuralNetConfiguration conf, INDArray weightView, boolean initializeParams) {
|
||
|
|
/*
|
||
|
|
Create a 4d weight matrix of: (channels multiplier, num input channels, kernel height, kernel width)
|
||
|
|
Inputs to the convolution layer are: (batch size, num input feature maps, image height, image width)
|
||
|
|
*/
|
||
|
|
SeparableConvolution2D layerConf =
|
||
|
|
(SeparableConvolution2D) conf.getLayer();
|
||
|
|
int depthMultiplier = layerConf.getDepthMultiplier();
|
||
|
|
|
||
|
|
if (initializeParams) {
|
||
|
|
int[] kernel = layerConf.getKernelSize();
|
||
|
|
int[] stride = layerConf.getStride();
|
||
|
|
|
||
|
|
val inputDepth = layerConf.getNIn();
|
||
|
|
|
||
|
|
double fanIn = inputDepth * kernel[0] * kernel[1];
|
||
|
|
double fanOut = depthMultiplier * kernel[0] * kernel[1] / ((double) stride[0] * stride[1]);
|
||
|
|
|
||
|
|
val weightsShape = new long[] {depthMultiplier, inputDepth, kernel[0], kernel[1]};
|
||
|
|
|
||
|
|
return layerConf.getWeightInitFn().init(fanIn, fanOut, weightsShape, 'c',
|
||
|
|
weightView);
|
||
|
|
} else {
|
||
|
|
int[] kernel = layerConf.getKernelSize();
|
||
|
|
return WeightInitUtil.reshapeWeights(
|
||
|
|
new long[] {depthMultiplier, layerConf.getNIn(), kernel[0], kernel[1]}, weightView, 'c');
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
protected INDArray createPointWiseWeightMatrix(NeuralNetConfiguration conf, INDArray weightView,
|
||
|
|
boolean initializeParams) {
|
||
|
|
/*
|
||
|
|
Create a 4d weight matrix of: (num output channels, channels multiplier * num input channels,
|
||
|
|
kernel height, kernel width)
|
||
|
|
*/
|
||
|
|
SeparableConvolution2D layerConf =
|
||
|
|
(SeparableConvolution2D) conf.getLayer();
|
||
|
|
int depthMultiplier = layerConf.getDepthMultiplier();
|
||
|
|
|
||
|
|
if (initializeParams) {
|
||
|
|
|
||
|
|
val inputDepth = layerConf.getNIn();
|
||
|
|
val outputDepth = layerConf.getNOut();
|
||
|
|
|
||
|
|
double fanIn = inputDepth * depthMultiplier;
|
||
|
|
double fanOut = fanIn;
|
||
|
|
|
||
|
|
val weightsShape = new long[] {outputDepth, depthMultiplier * inputDepth, 1, 1};
|
||
|
|
|
||
|
|
return layerConf.getWeightInitFn().init(fanIn, fanOut, weightsShape, 'c',
|
||
|
|
weightView);
|
||
|
|
} else {
|
||
|
|
return WeightInitUtil.reshapeWeights(
|
||
|
|
new long[] {layerConf.getNOut(), depthMultiplier * layerConf.getNIn(), 1, 1}, weightView, 'c');
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|